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Abstract: Under some well-defined conditions the mathematical formalism of quantum mechanics enables 

physicists, chemists and other to calculate and predict the outcome of a vast number of experiments. In fact, 

especially the Schrödinger equation which involves an imaginary quantity describes how a quantum state of 

a physical system changes with time and is one of the main pillars of modern quantum mechanics. The 

wave function itself is a determining part of the Schrödinger equation, but the physical meaning of the 

wave function is still not clear. Altogether, does the wave function represent a new kind of reality? This 

publication will solve the problem of the physical meaning of the wave function by investigating the 

relationship between the wave function and the theory of special relativity. It is shown that the wave 

function is determined by notion co-ordinate time of the special theory of relativity. Moreover, the result of 

this investigation suggests a new understanding of the wave function, according to which the wave function 

and co-ordinate time of the theory of special relativity are equivalent. Apparently, based upon the close 

relationship between time and gravitational field and the normalized relativistic energy-momentum 

relation, this contribution provides a way to calculate the “mass-equivalent” of a photon in SI units as 

7.372 503 726 490 51 * 10-51 and the “mass-equivalent” of a graviton in SI units as 1.346053370*10-136 . 

A necessary mathematical formalism for the quantization of the gravitational field is developed. 
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1. Introduction 

 
The Schrödinger equation, published in 1926 by the Austrian physicist Erwin Rudolf Josef 
Alexander Schrödinger (1887-1961), is determined by Newton's (1642 – 1727) second law, in 
its original form known as 
 
“Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam 
rectam qua vis illa imprimitur.” [1] 
 
and to some extent an analogue of Newton's second law in quantum mechanics. Leonhard 
Euler (1707-1783), a pioneering Swiss mathematician and physicist, formulated in 1752 
Newton lex secunda [2] in its mathematical form as 
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amF  .                  (1) 
 

The famous Schrödinger equation [3], a   partial   differential  equation  which 
describes   how   a quantum   state   of   a  system   changes   with   time. The 
Schrödinger equation for any system, no matter whether relativistic or not, no matter how 
complicated, has the form 
 

   ,  t
t

itH RR 



                 (2) 

where i is the imaginary unit, 



2

h
  is Planck's constant divided by 2x, the symbol 

t


 

indicates a partial derivative with respect to time t, R is the wave function of the quantum 
system, and H is the Hamiltonian operator.  

In quantum mechanics, the Hamiltonian operator is a quantum mechanical operator 
which characterizes the total energy of a quantum mechanical system and is usually denoted 
by H. The Hamiltonian operator H takes different forms depending upon situation. The form 
of the Schrödinger equation itself depends on the physical situation and is determined by the 
wavefunction R. The wavefunction itself is one of the most fundamental concepts of 
quantum mechanics. 
Schrödinger himself states, that he has “not attached a definite physical meaning to the 
wavefunction .” [4] The physical meaning of the wave function is in dispute in the 
alternative interpretations of quantum mechanics. The de Broglie-Bohm theory or the 
many-worlds interpretation has another view on the physical meaning of the wave function 
then the Copenhagen interpretation of the wave function. 
In view of this unsatisfactory situation, it seems to be necessary to put some light on the 
problem of the physical meaning of the wave function from the standpoint of the theory of 
special relativity. In a similar way, hereafter, we shall restrict ourselves to a one-dimensional 
treatment in order to decrease the amount of notation needed, since in all cases, the 
generalization to four (i. e. quantum mechanics) or n-dimensions (i. e. quantum field theory) 
will be equally simple. 

2. Definitions 

 Definition.  Einstein's Mass-Energy Equivalence Relation 2.1.

According to Albert Einstein [5], it is 
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where 0m denotes the “rest” mass, Rm denotes the “relativistic” mass, v denotes the relative 
velocity and c denotes the speed of light in vacuum.  
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Scholium. 
In general, let E(0m) denote the expectation value of 0m (as determined by the co-moving 
observer), let E(Rm) denote the expectation value of Rm as determined by the stationary 
observer. A (co-) moving observer is defined by being at rest (relative velocity v = 0) relative 
to a moving (quantum mechanical) object. There are circumstances where the relative 
velocity v between a stationary observer and a moving (quantum mechanical) object can be 
equal to v=0. In contrast to the stationary observer, the relative velocity v between a (co-) 
moving observer and a moving (quantum mechanical) object is under any circumstances equal 
to v=0. In general, the “rest-mass” can be treated as an eigenvalue as obtained by a (co-) 
moving observer after the collapse of the wave function into an eigenfunction.  

 

 Definition.  The Normalized Relativistic Energy Momentum Relation 2.2.

Based on Einstein’s mass-energy equivalence, we define the normalized relativistic energy 
momentum relation [6], a probability theory consistent formulation of Einstein’s energy 
momentum relation, as 
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where Ok denotes a kind of a complex coefficient with 
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and anti Ok denoted as Ok is defined as 
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 Definition.  The Principle Of Superposition 2.3.

A (quantum mechanical) system can sometimes exist as a linear combinations of (two) other 
(eigen-) states, for example 
 


0000  kkR .                (8) 

 
Under conditions where all three functions are normalized and where 0  and 

0
 are 

orthogonal we find 
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The particle-wave duality [7] is defined by 
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where Rp denotes the momentum and WaveE denotes the energy of an associated 
electromagnetic wave. In general, due to quantum mechanics, it is WaveE = rp*c. 
 
 

 Definition. The Eigenfunction and the Anti-Eigenfunction. 2.4.

The wavefunction R itself is not an eigenfunction of an operator. However, every 
wavefunction can be expressed as a superposition of eigenfunctions of an operator such that 
 

 0000     kkR               (11) 

 
where o denotes the corresponding eigenfunction (as determined by a co-moving observer) 
and o denotes the corresponding anti-eigenfunction. The complex coefficient ok represent the 
degree to which the full wavefunction possesses the character of an eigenfunction, the degree 
to which the full wavefunction is determined by an eigenfunction. The anti complex coefficient 

ok represent the degree to which the full wavefunction does not possesses the character of a 
special eigenfunction o, the degree to which the full wavefunction is not determined by a 
special eigenfunction o.  
 
Scholium.  
The wavefunction R corresponding to the system state can change (out of itself or by a third 
[i.e. measurement]) into an eigenfunction o. The change of the wavefunction into an 
eigenfunction of an operator (corresponding to the measured quantity) is called wavefunction 
collapse. In general, the superposition principle follows as 
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where the corresponding eigenfunction of the moving observer is denoted as o and the 
corresponding anti eigenfunction is denoted as o Corresponding to each eigenvalue is an 
'eigenfunction'. Only certain eigenvalues with associated eigenfunctions are able to satisfy 
Schrödinger's equation. The eigenvalue as measured by a co-moving observer is one of the 
eigenvalues of the quantum mechanical observable. The eigenvalue (corresponding to some 
scalar) concept as such is not limited only to energy. Finding a specific function (i.e. 
eigenfunction) which describes an energy state (i.e. a solution to the Schrodinger equation) is 
very important. Under conditions where the eigenvalues are discrete, a physical variable is 
said to be 'quantized' and an index i plays the role of a 'quantum number' which is 
characterizing a specific state.  
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 Definition.  Einstein's Relativistic Time Dilation Relation 2.5.

An accurate clock in motion slow down with respect a stationary observer (observer at rest). 
The proper time Ot of a clock moving at constant velocity v is related to a stationary observer's 
coordinate time Rt by Einstein’s relativistic time dilation [8] and defined as 
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where 0t denotes the “proper” time, Rt denotes the “relativistic” (i. e. stationary or coordinate) 
time, v denotes the relative velocity and c denotes the speed of light in vacuum. Equally, it is 
 

20

²

²
1

c

v

t

t

R

                   (14) 

 
or  
 

20

²

²
1

²

² c

v

t

c

c

t

R

 .                  (15) 

 
Scholium. 
Coordinate systems can be chosen freely, deepening upon circumstances. In many coordinate 
systems, an event can be specified by one time coordinate and three spatial coordinates. The 
time as specified by the time coordinate is denoted as coordinate time. Coordinate time is 
distinguished from proper time. The concept of proper time, introduced by Hermann 
Minkowski in 1908 and denoted as Ot, incorporates Einstein’s time dilation effect. In principle, 
Einstein is defining time exclusively for every place where a watch, measuring this time, is 
located.  
 
"... Definition ... der ... Zeit ... für den Ort, an welchem sich die Uhr … befindet ..." [9] 
 
In general, a watch is treated as being at rest relative to the place, where the same watch is 
located.  
 
"Es werde ferner mittels der im ruhenden System befindlichen ruhenden Uhren die Zeit t [i. 
e. Rt, author] des ruhenden Systems ... bestimmt, ebenso werde die Zeit  [ot, author] des 
bewegten Systems, in welchen sich relativ zu letzterem ruhende Uhren befinden, 
bestimmt..." [10] 
 
Only, the place where a watch at rest is located can move together with the watch itself. 
Therefore, due to Einstein, it is necessary to distinguish between clocks as such which are 
qualified to mark the time Rt when at rest relatively to the stationary system R, and the time Ot 
when at rest relatively to the moving system O. 
 
"Wir denken uns ferner eine der Uhren, welche relativ zum ruhenden System ruhend die 
Zeit t [Rt, author], relativ zum bewegten System ruhend die Zeit  [Ot, author] anzugeben 
befähigt sind ..." [11] 
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In other words, we have to take into account that both observers have at least one point in 
common, the stationary observer R and the moving observer O are at rest, but at rest relative 
to what? The stationary observer R is at rest relative to a stationary co-ordinate system R, the 
moving observer O is at rest relative to a moving co-ordinate system O. Both co-ordinate 
systems can but must not be at rest relative to each other. The time Rt of the stationary system 
R is determined by clocks which are at rest relatively to that stationary system R. Similarly, 
the time Ot of the moving system O is determined by clocks which are at rest relatively to that 
the moving system O. In last consequence, due to Einstein’s theory of special relativity, an 
accelerated clock (Ot) will measure a smaller elapsed time between two events than that 
measured by a non-accelerated (inertial) clock (Rt) between the same two events.  

 Definition.  The Normalized Time Dilation Relation 2.6.

As defined above, due to Einstein’s special relativity, it is 
 

20

²

²
1

c

v

t

t

R

 .                  (16) 

 
The normalized time dilation relation follows as 
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 Definition.  The Energy Operator H 2.7.

In quantum mechanics, the Hamiltonian, named after the Irish mathematician Hamilton, is a 
quantum mechanical operator corresponding to the total energy of a quantum mechanical 
system rather than Newton's second law F=m*a and usually denoted by H. By analogy with 
classical mechanics and special relativity, the Hamiltonian is i. e. the sum of operators 
corresponding to the potential and kinetic energies (of all the particles) associated with a 
quantum mechanical system and can take different forms depending on the situation. The 
Hamiltonian operator H is Hermitian. According to the expansion postulate, the wavefunction 
can be expanded as a series of its eigenfunctions where an eigenfunction belongs to an 
eigenvalue of H. The Hamiltonian function is equal to the total energy of the system. 
Consequently, an eigenstate of the operator H is one in which the energy is perfectly defined 
and equal to i. e. oE. Thus far, an important property of Hermitian operators is that their 
eigenvalues are real. The total energy operator H is determined as 
 

.
t

iH



                     (18) 

 
For our purposes, the (non-relativistic or relativistic) Hamiltonian is corresponding to the 
total energy of a quantum mechanical object or system. Thus far, it is 
 

t
iHER



                    (19) 

 
where ER is identical with the notion “relativistic” energy of a (quantum mechanical) system.  
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 Definition.  The Quantum Mechanical Operator Of Matter 2.8.

In quantum mechanics, the Hamiltonian, named after the Irish mathematician Hamilton, is the 
total energy operator.  Thus far we define the quantum mechanical operator of matter as 
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where RM denotes the quantum mechanical operator of matter (and not only of mass) form 
the standpoint of the stationary (i.e. relativistic) observer R. 

 Definition.  The Relationship Between Energy And Time 2.9.

Let 
 

tES RRR                   (21) 

 
where RE denotes the ‘relativistic’ energy and Rt denotes the ‘relativistic’ time.  
 
Scholium. 
The notion RS can but must not be the equivalent of space. Following Aristotele’s principle of 
the excluded middle, tertium no datur, it is important to stress out, that all but energy is 
denoted as time. Consequently, there is no third between energy and time, a third is not given.  
Let 
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where OE denotes the ‘rest’ energy and Ot denotes the ‘proper’ time. Due to special relativity it 
is 
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 Definition.  The Relationship Between Matter And Gravitational Field 2.10.

From the standpoint of a stationary observer R let us define 
 

gMU RRR                   (24) 

 
where RM denotes the matter and Rg denotes the gravitational field. From the standpoint of a 
moving observer O we define 
 

gMU OOO                   (25) 

 
where OM denotes the matter from the standpoint of a moving observer and Og denotes the 
gravitational field from the standpoint of a moving observer. 
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Scholium. 
In the context of general relativity, Einstein himself demands that everything but the 
gravitational field has to be treated as matter. Thus far, matter as such includes matter in the 
ordinary sense and the electromagnetic field as well. In other words, there is no third between 
matter and gravitational field. Einstein himself wrote:  
 
"Wir unterscheiden im folgenden zwischen 'Gravitationsfeld' und 'Materie', in dem Sinne, daß 
alles außer dem Gravitationsfeld als 'Materie' bezeichnet wird, also nicht nur die 'Materie'  
im üblichen Sinne, sondern auch das elektro-magnetische Feld. " [12] 
 
Einstein's writing translated into English:  
 
>> We make a distinction hereafter between 'gravitational field' and 'matter' in this way, that 
we denote everything but the gravitational field as ‘matter’, the word matter therefore 
includes not only matter in the ordinary sense, but the electromagnetic field as well. << 
 
This definition of the relationship between matter and gravitational field is based on 
Einstein’s definition of matter (i. e. not only mass) ex negativo. Clearly, it is RU = RU + 0 or in 
other words RU = RU -RM +RM. The observable RU is determined by matter and something else. 
Due to Einstein, the other of matter is the gravitational field or RU -RM = Rg. But there is 
matter even under conditions of the special theory of relativity. One feature of matter 
as such is its own gravitational field, whatever the strength (i. e. acceleration) of such a 
gravitational field may be. The existence of a gravitational field cannot be restricted to 
or identified with the strength of the gravitational field itself.  
 

 Definition.  The Relationship Between RS And RU 2.11.

Let us define 
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Due to special relativity it is 
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This relation yields 
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 Definition. The Square Of The Wavefunction (i. e. Born’s rule). 2.12.

In general, the wavefunction as such represents the probability amplitude for finding a 
particle at a given point in space at a given time. Due to special theory of relativity, time as 
measured by a stationary observer can be different from time as determined in the same 
respect by a moving observer. Thus far, let us define the following.  

Let the wavefuntion R(RX, Rt) denote the single-valued probability amplitude at (RX, Rt) 
where RX is position and Rt is time from the standpoint of a stationary observer. Let R

(RX, Rt) 
denote the complex conjugate of the wavefuntion R(RX, Rt) from the standpoint of a 
stationary observer. 

Let the wavefuntion O(OX, Ot) denote the single-valued probability amplitude at (OX, Ot)  
where OX is position and Ot is time from the standpoint of a co-moving observer. Let O

(OX, Ot)  
denote the complex conjugate of the wavefuntion O(OX, Ot) from the standpoint of a 
co-moving observer.  

Let Op(OX, Ot)  denote the probability from the standpoint of a co-moving observer that a 
“particle” will be found at (OX, Ot).  

Let Rp(RX, Rt) denote the probability from the standpoint of a stationary observer that a 
“particle” will be found at (RX, Rt).  

In general, due the Born’s rule, named after Max Born [13], it is 
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From these definitions (i. e. Born’s rule) follows that 
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and that 
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Scholium. 
In general, the wavefuntion O(OX, Ot) denotes an eigenfunction. 
 

 Definition. The Wavefunction As Such Is Reference Frame Dependent. 2.13.

Theoretically, it is possible that the probability as such is reference frame independent (i. e. the 
moving and the stationary observer will agree on the numerical value of probability) while 
the wavefunction as such is reference frame dependent. Under these conditions let us consider 
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the following. In general, let 
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where the wavefuntion R(RX, Rt) denotes the single-valued probability amplitude at 

(RX,Rt) where RX is position and Rt is time from the standpoint of a stationary observer, R
(RX, 

Rt) denotes the complex conjugate of the wavefuntion R(RX, Rt) from the standpoint of a 
stationary observer, the wavefuntion O(OX, Ot) denotes the single-valued probability 
amplitude at (OX, Ot)where OX is position and Ot is time from the standpoint of a co-moving 
observer (i. e. an eingenfunction) and O

(OX, Ot) denotes the complex conjugate of the 
wavefuntion O(OX, Ot) from the standpoint of a co-moving observer. 

 

 Definition. The Expectation Value Of X. 2.14.

In mathematical statistics and probability theory, the expectation value at one point in 
space-time Rt from the standpoint of a stationary observer, denoted as E(RXt), is defined as 
 

        tRRRRRRRtRRRRtR XtXtXXtXpXE   ,  , , *
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The expectation value at one point in space-time Ot from the standpoint of a co-moving 
observer, denoted as E(OXt), is defined as 
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In general it is, 
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 Definition. The Expectation Value Of X². 2.15.

In mathematical statistics and probability theory, the expectation value RXt² at one point in 
space-time Rt from the standpoint of a stationary observer, denoted as E(RXt²), is defined as 
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The expectation value of OXt²at one point in space-time Ot from the standpoint of a co-moving 
observer, denoted as E(OXt²), is defined as 
 

        2*22
    ,   ,     , tOOOOOOOtOOOOtO XtXtXXtXpXE   (39) 

 

 Definition. The Variance. 2.16.

In mathematical statistics and probability theory, the variance at one Bernoulli trial t, at one 
run of an experiment t from the standpoint of a stationary observer is defined as 
 

     222

tRtRtR XEXEX  .            (40) 

 
The variance at one Bernoulli trial t, at one run of an experiment t from the standpoint of a 
co-moving observer (i.e. after the collapse of the wavefunction), is defined as 
 

     222

tOtOtO XEXEX  .            (41) 

 
In contrast to the above definitions, the variance of a population is defined in general as 
 

     222
XEXEX RRR  .            (42) 

 
or as 
 

     222
XEXEX OOO  .            (43) 

      
 

 Definition. The Logical Contradiction And The Inner Contradiction. 2.17.

 
Let (RXt)² denote the logical contradiction of a random variable RXt from the standpoint of a 
stationary observer. Let Rpt denote the probability of the random variable RXt from the 
standpoint of a stationary observer. Let (OXt)² denote the logical contradiction of “same” 
random variable OXt as determined from the standpoint of a co-moving observer. Let Opt 
denote the probability of the random variable oXt from the standpoint of a stationary observer. 
In general, we define  
 

       tRtRtRtRtR ppppX  1
22

.         (44) 

 
and 
 

       tOtOtOtOtO ppppX  1
22

.         (45) 
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Let (RXt) denote the inner contradiction of a random variable RXt from the standpoint of a 
stationary observer. Let (OXt) denote the inner contradiction of “same” random variable OXt as 
determined from the standpoint of a co-moving observer. In general we define 
 

         22 22 2
1 tRtRtRtRtRtR ppppXX  .    (46) 

 
and 
 

         22 22 2
1 tOtOtOtOtOtO ppppXX  .    (47) 

 
Scholium 
Under conditions where the probability of an event is equal to op=1, the logical contradiction 
is equivalent with 1*( 1 – 1 ) = 0, which is known as the form of the logical contradiction in 
classical logic and in Boolean algebra.  As soon as  op < 1, we are no longer under conditions 
of classical logic and Boolean algebra, a multi-valued (dialectical) logic is necessary. In general, 
the logical contradiction can take the values (oXt)² = op*( 1 – op ) < (1/4) or in terms of 
quantum mechanics (oXt)² = op*( 1 – op ) < (ℏ × 𝜋/ℎ)². The logical and the inner 
contradiction is reference frame independent. 
 

 Definition. The Wavefunction Of The Gravitational Field  2.18.

In general, let the wavefunction of the gravitational field represent something like a 
probability amplitude in accordance with special theory of relativity.  

Let R denote the wavefunction of the gravitational field from the standpoint of a 
stationary observer. Let R

 denote the complex conjugate of the wavefunction of the 
gravitational field from the standpoint of a stationary observer.   
Let O denote the wavefunction of the gravitational field from the standpoint of a co-moving 
observer. Let O

 denote the complex conjugate of the wavefunction of the gravitational field 
from the standpoint of a co-moving observer. Let 
 

2

i
n

1i
2

0
02

i
n

0i
2

       
c

k
c

k
c

k
c

g ii
R

RR








       (48) 

 
and 
 

2
 

c
g O

OO


                  (49) 

 
where o denotes something like an eigenfunction. 
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3. Theorems 

 

 Theorem. The Expectation Value Of A Random Variable Is Reference Frame 3.1.
Dependent. 

Special relativity implies some consequences for the calculation of expectation values. 
 
Claim. 
Under conditions of special theory of relativity, the expectation value is reference frame 

dependent (assumed that an expectation value exists). We obtain 
 

 
 

2

²

²
1

c

v

mE

mE

R

O                  (50) 

 
Proof. 

Starting with Axiom I it is 
 

11  .                   (51) 
                                                                                                                        
Assuming that an expectation value of “rest- mass” Om exists, we obtain equally 
  

   mEmE OO                   (52) 

 
Due to special relativity it follows that 
 

 













 2

²

²
1

c

v
mEmE RO                (53) 

Under conditions of special theory of relativity, the term 2

²

²
1

c

v
 is constant. Due to the rules 

of mathematics it is E(constant * X ) = constant * E( X ). Thus far, the equation before can be 
simplified as 
 

   mE
c

v
mE RO  2

²

²
1                (54) 

 
In general, it follows that 
 

 
 

2

²

²
1

c

v

mE

mE

R

O                   (55) 

 
Quod erat demonstrandum. 
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Scholium. 
The expectation value of a random variable is reference frame dependent. Only under 
conditions where the relative velocity v=0, both observer (the moving observer O and the 
stationary observer R) will agree on the expectation value, otherwise not. 
 

 Theorem. The Measure Of Probability p Is Reference Frame Independent. 3.2.

Coordinate systems are used in describing nature and physical laws. But does a coordinate 
system exist a priori in nature? What is the relationship between a coordinate system and 
physical law? Are the physical laws independent of the choice of a coordinate system related 
to each other by any kind of relative motion? Can a physical law take the same mathematical 
form in all coordinate systems (Einstein's principle of general covariance)? 
 

Claim. 
Under conditions of the special theory of relativity, the probability measure p is reference 

frame or coordinate system independent. We obtain 
 

pp RO                     (56)  

 
Proof. 
It is 

 
   mEmE OO                   (57)  

                                                                                                                       
or due to special relativity 

 

 













 m

c

v
EmE RO

2

²

²
1                (58)  

 

  Under conditions of special theory of relativity, the term 2

²

²
1

c

v
  = constant. In general, 

due to mathematics, it is E( constant * X ) = constant * E( X ) and we obtain   
     

   mE
c

v
mE RO  2

²

²
1  .              (59) 

 
  Rearranging equation yields                                                                                                             

 
 

 
 

2

²

²
1

c

v

mE

mE

R

O                   (60)  

                                                                                                                       
and equally  
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 
 

2

²

²
1

 

 

c

v

mp

mp

mE

mE

RR

OO

R

O 



               (61)  

 
where Op denotes the probability of Om as determined by the co-moving observer (observer at 
rest relative to 0m) and Rp denotes the probability of Rm as determined by the stationary 
observer. We obtain 
 

2

²

²
1

 

 

c

v

mp

mp

RR

OO 



.                (62)  

 
Due to special relativity it is 
 

2

2

²

²
1

²

²
1

  

c

v

m

c

v

p

mp

OR

OO 






              (63)  

 
The most terms cancel out. We obtain 
 

1
p

p

R

O                     (64)  

 
which completes our proof. Under conditions of the special theory of relativity it is 
 

pp RO                     (65)  

 
Quod erat demonstrandum. 

 
Scholium. 
This proof is of far reaching and general importance. Under conditions of the theory of special 
relativity the stationary and the moving observer will agree on the probability p of a random 
variable while both observers will disagree at the same time on the expectation value (in 
principle). We see from the proof above that in relativistic quantum theory, the probability is 
left unchanged if it is measured in a co-ordinate system moving with some other constant 
relative velocity. In attempts to extend the quantum theory to the relativistic domain, serious 
difficulties have arisen. Thus far, is this theorem valid under conditions of the general theory 
of relativity too? Under conditions of the general theory of relativity at every space-time point 
there exist a locally inertial reference frames in which the physics of general theory of 
relativity is locally indistinguishable from that of special relativity (Einstein’s famous strong 
equivalence principle). Due to our proof above, it is reasonable to expect that probability 
theory is of use even under conditions of the general theory of relativity. A reference frame 
independent account of probability is appropriate for causal inference. Any subjective 
interpretation of probability advocated by some prominent philosopher and psychologist has 
no place in science. 
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 Theorem. The Wavefunction From The Standpoint Of A Stationary Observer R  3.3.

The Hamiltonian, usually denoted by H of H
^

 is a quantum mechanical operator 

corresponding to the total energy of a (quantum mechanical) system. In most of the cases, the 
spectrum of the Hamiltonian H is the set of possible outcomes when one measures the total 
energy of a system. In special relativity, the total energy of the system is denoted by RE and is 
equally the set of possible outcomes at least OE + E = RE. 

 
Claim. 
Under conditions of the special theory of relativity from the standpoint of a stationary 

observer R it is 
 

 tt RR   .                  (66)  

 
Proof. 
Under conditions of the special theory of relativity and from the standpoint of a stationary 

observer R, a system is completely described by the equation  
  

tEtE RRRR                   (67)  

 
The same system, no matter how complicated, is equally described by Schrödinger equation. 
It is 

 ttE RRR H 
^

                (68)  

 
The Hamiltonian is a quantum mechanical equivalent of the total energy of a system, the set of 
all possible outcomes. In special relativity, the total energy of the system is denoted by RE. 

Therefore, we equate both notions as HER

^

  . Rearranging the equation above, it follows 

that 
 

 tEtE RRRR   .               (69)  

 
At the end, it is 
 

 tt RR   .                  (70)  

 
which completes our proof. 

 
Quod erat demonstrandum. 

 
Scholium. 
On the first sight, Rt has nothing in common with R(t). We can rearrange Rt and obtain an 
equivalent relationship as R(t)=a*(1/a)* Rt. Let it be that b*e-d=((1/a)* Rt) and that f=a*b. We 
obtain at the end R(t)= f * e-d . All the changes have no influence on the fact that Rt = R(t). 
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 Theorem. The Wavefunction From The Standpoint Of A Moving Observer O  3.4.

A moving observer does not measure the superposition of several eigenstates but measures 
a specific energy state, an observable associated with an eigenbasis. In other words, from the 
standpoint of the moving observer, the wave function, usually a linear superposition of its 
eigenstates, has collapsed from the full to just one of the basis eigenstates. The probability of a 
wave function to collapse into a given eigenstate is called the Born probability. 

 
Claim. 
Under conditions of the special theory of relativity from the standpoint of a moving 

observer O it is 
 

OO t .                   (71)  

 
Proof. 
Under conditions of the special theory of relativity and from the standpoint of a moving 

observer O, a system is completely described by the equation  
  

tEtE OOOO                   (72)  

 
where OE denotes the rest energy and Ot denotes the time as determined by the moving 
observer. The measurement of a moving observer describes a very specific energy state, an 

eigenstate or an eigenvalue. Corresponding to such an eigenvalue H
^

0
 is an 'eigenfunction' 

O . The system of a moving observer, no matter how complicated, is equally described by 

Schrödinger equation.  
 

 OOO HtE
^

0
                (73)  

 
The specific energy state obtained by the moving observer is identical with an eigenvalue, an 

energy state after the collapse of the wavefunction. We equate HEO

^

0
 . Rearranging 

equation we obtain 
 

 OOOO EtE                 (74)  

 
At the end, it is 
 

OO t  .                  (75)  

 
which completes our proof. 

 
Quod erat demonstrandum. 
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Scholium. 
A wave function is initially in a superposition of several eigenstates. To obtain a specific 
eigenvalue of a physical parameter (for example energy), it is necessary to operate on the 
wavefunction with a quantum mechanical operator associated with a parameter. 
Corresponding to each eigenvalue is an ‘eigenfunction’. The solution of the Schrodinger 
equation for a given energy involves also finding the specific function, denoted as 
eigenfunction, which describes a specific energy state.   

 

 Theorem. The Wavefunction Is Reference Frame Dependent 3.5.

Claim. 
Under conditions of the special theory of relativity it is 

 

2
*

*

²

²
1

c

v

t

t

R

O

O

R

R

O 








.              (76)  

 
Proof. 
Under conditions of the special theory of relativity, the moving and the stationary observer 

will agree on the probability. In general, it is 
 

pp RO                     (77)  

 
which due to Born’s rule is equivalent with 
 

pp RRROOO 
**

    .            (78)  

 
Rearranging this equation, we obtain 
 

*

*










O

R

R

O                   (79)  

 

As proofed before, it is OO t  and equally  tt RR  . Thus far, we obtain 

 

t

t

R

O

O

R

R

O 








*

*

.                (80)  

 
Due to special relativity theory, this is equivalent to 
 

2
*

*

²

²
1

c

v

t

t

R

O

O

R

R

O 








.              (81)  

 
Quod erat demonstrandum. 
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Scholium. 
Due to our definition above it is equally 
 

2
*

*

²

²
1

c

v

O

R

R

O 








               (82)  

 
or in other words it is 
 

2

²

²
1    

c

v
RO  .                (83)  

 
The relationship between an eigenfunction O of a wavefunction and the wavefunction R 
itself is determined by the needs of special theory of relativity. Consequently, the description 
of physical reality given by the wave function in quantum mechanics must not be regarded as 
being incomplete with the theory of special relativity. Under conditions where the relative 
velocity squared is v² > 0, the moving observer O and the stationary observer R will obtain 
contradictory results, if both observer use the same wave function to describe a concrete 

physical reality. A correction factor 2

²

²
1 

c

v
  is needed to achieve correct results. This 

relation is of great importance especially under circumstances where O is identical with an 
eigenfunction. 
 

 Theorem. The Variance Is Reference Frame Dependent 3.6.

Claim. 
Under conditions of the special theory of relativity the variance and the standard deviation 

of a random variable is reference frame dependent. In general it is 
 

 
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²
1

2

2

0

c

v

X

X

tR

t 



 .                 (84)  

 
Proof. 
In general it is 

 

   20

2

0 tt XX   .                (85)  

Under conditions of special relativity where 2
0

²

²
1

c

v
XX tRt  and it follows that 

 
2

2
2

0
²

²
1
















c

v
XX tRt  .              (86)  

Under conditions of the special theory of relativity, the term 2

²

²
1

c

v
 is constant. Due to the 

rules of mathematics it is (constant * X )² = constant² * ( X )² . Thus far, the equation 
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before can be simplified as 
 

   222
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0
²

²
1

²

²
1 tRt X

c

v

c

v
X   .           (87)  

 
Rearranging equation yields 
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
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









 .           (88)  

 
Quod erat demonstrandum. 

 
 
Scholium. 

Due to the theorem above and under conditions where 2
0

²

²
1

c

v
XX tRt  , the standard 

deviation is reference frame dependent too and we obtain 
 

 
 
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²
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t 



                 (89)  

or 

    2
0

²

²
1

c

v
XX tRt  .              (90)  

 
In contrast to the variance and the standard deviation, the general and the inner contradiction 
are reference frame independent. 
 

 Theorem. Chebyshev's inequality 3.7.

The Chebyshev's inequality, named after the Russian mathematician Pafnuty Lvovich 
Chebyshev (1821-1894), plays a fundamental role in various modern fields of probability 
theory. Especially, due to Chebyshev's inequality it is possible to estimate the probability (i. e. 
of the deviation of a random variable from its mathematical expectation) in terms of the 
variance of the random variable. In this setting, let us derive an exact equality as an 
alternative to Chebyshev's inequality. 
 
 

Claim. 
Under conditions of the special theory of relativity we obtain 
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Proof. 
In general it is 

 

   20
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0 tt XX                    (92)  

 
or 
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Rearranging equation, we obtain 
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In general it is per definitionem 
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In other words, it is 
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Quod erat demonstrandum. 

 
 
Scholium. 

Due to Chebyshev's inequality it is      
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 Theorem. The Wavefunction Is Determined By The Variance 3.8.

 

 
Claim. 
In general, the Schrödinger equation is determined by 
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OtOtO

tO H

pX
c

v

X
.         (98)  

 
 
Proof. 
The variance as determined by the co-moving observer is defined as 

 

     222

tOtOtO XEXEX  .            (99)  

 
Due the definition of the expectation value above this equation is equivalent to 
 

     222

tOtOtOtOtO XpXpX            (100)  

 
which is equivalent to 
 

      222

tOtOtOtO ppXX             (101)  

 
or to 
 

    tOtOtOtO ppXX  1
22

 .           (102)  

 
Rearranging equation, we obtain 
 

 
 

 tOtOtO
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tO XEpX
pX

X
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2

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Based on Born’s rule, it is pp RRROOO 
**

    . Rearranging the equation, 

we obtain 
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*
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or 
 

 
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OtO

OtOtO

tO X
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Under conditions of special relativity where 2
0

²

²
1

c

v
XX tRt   it follows that 
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or that 
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Under conditions where HX tR  , the Schrödinger equation follows as 

 

 

 
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     (108)  

 
Since     tOtOtOtO XEXpX  1  we obtain 
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Let us assume that the standard normal variable Z is defined as 
 

 
  
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It follows that 
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 
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which completes our proof. In general it is 
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Quod erat demonstrandum. 
 
 

 Theorem. The Frist Basic Law Of Special Relativity 3.9.

 
Special relativity implies a basic physical law of far reaching consequences. 

 
 
Claim. 
In general, the basic law of special relativity is determined as 

 

tEtE RR 0 0                    (112)  

 
Proof. 
Starting with  

 

11                     (113)  
                                                                                                                        
it is equally  
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²
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Based on Einstein's mass-energy equivalence we obtain 
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Rearranging this equation due to the relativistic time dilation, it follows that 
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RR t

t

cm

cm 00

²

²





                 (116)  

 
which is equivalent to 
 

tcmtcm RR 0 0  ²²               (117)  

 
or to 
 

tEtE RR 00    .               (118)  

 
Quod erat demonstrandum. 

 
Scholium. 
Any relativistic or non-relativistic (i. e. v = 0) (quantum mechanical) system, no matter how 
complicated, is completely described by this equation. The same system is described by 
Schrödinger’s equation too. 
 

 Theorem. The Second Basic Law Of Special Relativity 3.10.

 
Special relativity implies another basic physical law of no less reaching consequences. In 
general, it is, 
 

ttt R0                  (119)  

 
and equally 
 

EEE R0 .                 (120)  

 
Claim. 
Under these circumstances, the second basic law of special relativity is determined as 

 

tEtE RR                     (121)  

 
Proof. 
From 

 

EEE R0 .                 (122)  

 
follows that 
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10  

E

E

E

E

RR

                 (123)  

                                                                                             
Equally, from  
 

ttt R0                  (124)  

 
follows that 
 

.10  

t

t

t

t

RR

                 (125) 

 
In general, it is  
 

11                    (126) 
                                                                                                                        
and we obtain the equivalence of 
 

t

t

t

t

E

E

E

E

RRRR

  00

.              (127) 

 
After multiplication with (RE x Rt ), it follows that 
 

EtEttEtE RRRR       00   .        (128) 

 
According to the first basic law of special relativity, it is 
 

tEtE RR 00      .               (129)  

 
Based on this insight, we rearrange the equation above and obtain 
 

EttEtEtE RRRR            00             (130)  

 
or at the end similar the law of the lever as provided and proven by Archimedes (~287 BC - 
~212 BC) 
 

EttE RR     .                (131)  

 
Quod erat demonstrandum. 
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Scholium. 
The straightforward question is, are there conditions where 
 

 1        fhEttE RR              (132) 

 
with all the consequences for quantum and special relativity theory. Under these or similar 
circumstances, a “quantization” of time would be possible in principle. The Planck constant h 
is related to the quantization of light and matter and named after Max Planck, is the quantum 
of action in quantum mechanics. In SI units, the Planck constant h is expressed in Joule seconds 
(J·s) or (N·m·s) i.e., energy multiplied by time. 
 
 

 Theorem. The Wavefunction Is Reference Frame Or Observer Dependent 3.11.

 
Claim.  
In general, it is 
 

 00       EE RR .               (133) 

 
Proof. 
Starting with  
 

11                     (134)  
                                                                                                                        
According to the first basic law of special relativity, it is equally 
 

tEtE RR 0 0     .               (135)  

 
Based on this insight, we obtain 
 

1    0 0  tEtE RR .              (136) 

       

Based on Born’s rule pp RRROOO 
**

    , it is 
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Rearranging equation, it follows that 
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Simplifying equation, we obtain 
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In other words, based on Born’s rule it follows that  
*
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



 0

2

00   

²

²
1

1
  E

c

v
E R .            (140)  

 

Due to our definition 



 R

c

v
2
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²

²
1

1
 we obtain 

 

 00     EE RR .               (141)  

  
Quod erat demonstrandum. 

 
 

 Theorem. The Normalization Of Energy And Time  3.12.

Claim. 
In general, it is 
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Proof. 
Form the definition 
 

tES RRR                   (143)  

 
follows that 
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Quod erat demonstrandum. 
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 Theorem. The Normalization Of Matter And Gravitational Field 3.13.

 
Claim. 
In general, it is 
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U

g

U

M

R

R

R

R
                 (145)  

 
Proof. 
Form the definition 

 

gMU RRR                   (146)  

 
follows that 
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Quod erat demonstrandum. 
 

 
Time and gravitational field are related. Following Einstein’s special theory of relativity, both 
are equivalent [13]. 
 

 Theorem. The Equivalence Of Time And Gravitational Field 3.14.

 
Claim. 
In general it is 
 

gct RR  2  .                 (148)  

 
Proof. 
It is 
 

11                    (149)  
 
and thus far 
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and equally 
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Rearranging equality, we obtain 
 

S
U

gS

U

MS
tE R

R

RR

R

RR
RR 





           (152)  

 
or equally 
 

Sg
U

S
M

U

S
tE RR

R

R
R

R

R
RR              (153)  

 

Based on the definition 
U

S
c

R

R2  we obtain 

 

SgcMctE RRRRR     22
          (154)  

 
Due to Einstein’s special relativity matter and energy are equivalent. Thus far, it is 

  2 McE RR  . The equation can be rearranged as 

 

gcEtE RRRR   2                (155)  

 
which completes our proof. In general it is 
 

gct RR  2  .                 (156)  

 
Quod erat demonstrandum. 

 
Scholium. 

This proof before is based on the assumption that 
U

S
c

R

R2  and that   2 McE RR  .  
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 Theorem. The Schrödinger Equation In Relation To The Gravitational Field 3.15.

Claim. 
In general, wave equation of the gravitational field is determined as 
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Proof. 
The Schrödinger equation is defined as 
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Dividing the equation by c²*c² we obtain 
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Due to our definition above it is 
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H
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
 . The wave equation of the 

gravitational field follows as 
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Quod erat demonstrandum. 
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 Theorem. The Generally Covariant Form Of The Schrödinger Equation Claim. 3.16.

Under some well defined circumstances, Schrödinger’s equation can be expressed in a 
generally covariant form as 
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ae
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aeae T
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42 
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Proof. 
Due to our understanding it is 

 

SS RR                     (163)  

 
or in other words 
 

tES RRR  .                 (164)  

 
Rearranging equation, we obtain 
 

tES RRR                   (165)  

 
or equally 
 

tEtS RRRR  2  .              (166)  

 
Dividing by 2, it is 
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R
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Let us define tSR RR   and 
2

ER . Thus far, it is 

 

t
R

R
2

                  (168)  

 
Multiplying with the metric tensor of general relativity theory, gae, we obtain 
 

aeRaeae gtgg
R


2

            (169)  
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Due to our prove above, it is tRR  . Let us define a wave-function tensor as aeRae gt   

or as ae

R

ae gt  . In general it is 

 

aeaeRaeae gtgg
R
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          (170)  

 

Multiplying Einstein’s field equation aeaeae T
cc
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 by the wave-function 

tensor ae , we obtain the generally covariant form of Schrödinger’s equation as 
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
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22
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   (171)  

 
Quod erat demonstrandum. 

 
Scholium. 
While electromagnetic, weak and strong force act in a given space-time, gravitation itself is far 
more difficult. According to the general theory of relativity (GRT), gravitation is identified 
with the curvature of space-time itself. Consequently, quantizing gravitation could be 
equivalent with quantizing space-time, and it is not at all clear what that could mean. To put it 
another way, it is very difficult to incorporate gravitation into a setting of a unified field 
theory. There are many approaches to reconcile quantum theory and general relativity, String 
theory, for instance, is one of them. String theory as one of the many candidates for bridging 
the gap between quantum field theories (QFT) and general relativity theory(GRT) is supplying 
a unified theory of all natural forces, including gravitation, in terms of strings. Strings are able 
to interact on an extended distance and not only at a point. In contrast to String theory, 
quantum field theories (QFT) takes particles as fundamental objects but not strings. Thus far, 
in quantum field theories (QFT), it is complicated to quantize the gravitational field. The 
above proposal shows a way how to quantize the gravitational field.  
From our definition RS =RE+Rt follows that RS-RE=Rt. Adding time Rt to this equation we obtain 
RS+Rt -RE=Rt+ Rt which is equivalent to RS+Rt -RE=2*Rt. It is possible to divide this equation by 2, 
we obtain (RS+Rt)/2 –(RE/2)=Rt. Multiplying this equation by the metric tensor gae of the 
general theory of relativity, it is ((RS+Rt)/2)* gae –(RE/2)* gae = Rt* gae . Under conditions of the 
general theory of relativity where (RS+Rt)/2=R/2 and where the term (RE/2) =  (R denotes 
the Ricci scalar and  denotes cosmological constant ) Einstein’s field equation follows in as 
Rae = (8**/c4)*Tae + Rt*gae. In general, due to our proof above the notion Rt*gae can be 
regarded as being equivalent with R*gae or as R*gae, which can be regarded as something 
like a wave-function tensor. Thus far, multiplying Einstein’s field equation by the wavefunction 
tensor leads to a generally covariant form of the Schrödinger equation as 
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Since 
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2  we obtain equally 
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or  
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A possible conclusion is that we must accept that 
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. Under these assumption, the 

Hamiltonian follows as   ae

ae gTH   42  or of course as 

  aeae gTH   42  too. 

 

 Theorem. The Gravitational Waves Under Conditions Of Special Relativity 3.17.

One central feature of the theory of General Relativity is the existence of gravitational waves. 
For the usual, in contrast to the theory of General Relativity, Einstein's Special Theory of 
Relativity is of use especially for systems which are not accelerating. Most commonly, today’s 
academic positions in physics are more or less that the spacetime of special relativity is a 
spacetime where there is no gravity at all. Under these circumstances, it becomes important 
to note that within the spacetime of special relativity, a line (i. e. from the standpoint of a 
moving observer O) is straight while the same line in the same respect is curved (from the 
standpoint of a stationary observer R). The curved line, as a simple form of curved spacetime, 
is possible even under conditions of special relativity. Any distortion of spacetime geometry 
can be regarded as gravity. Thus far, gravity under conditions of the special theory of 
relativity must be treated different form gravity under conditions of the general theory of 
relativity. Even under conditions of special relativity, it is possible (and necessary) to 
distinguish between the gravitational field itself and the strength of a gravitational field. 
Under conditions of the special theory of relativity the strength of a gravitational field can be 
equivalent to zero while the gravitational field itself is different from zero. Thus far, let us 
consider the structure of spacetime under conditions of the theory of special relativity. 
 
Claim. 
The probability theory consistent normalization of the relationship between the gravitational 
field and the gravitational wave follows as 
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Proof. 
Due to Axiom I it is 
 

11                     (176) 
 
The normalized relativistic time dilation relationship is determined as 
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As we found before, it is equally 
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We define ctgcvt pRW      where gvt Rp     and where v denotes the relative 

velocity.  The equation above can be simplified as 
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We define 
²

  

c

t
g W

W  . Thus far, it is 
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   which completes our proof. Under 

conditions of the special theory of relativity it is 
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Quod erat demonstrandum. 
 
 
Scholium. 
In our understanding Wg represents the gravitational waves under conditions of the special 

theory of relativity. Consequently, it is g
c

v

c

t
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t
g R
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


 . This theorem is 

based on the difference between the strength of a gravitational field and the gravitational field 
itself. 
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 Theorem. Newton’s second law 3.18.

The gravitational field itself and the gravitational field strength are not identical. The 
gravitational field strength, denoted as ag, is not identical with the gravitational field, denoted 
as Rg, itself. The gravitational field strength in the international system of units is measured in 
meters per second squared [m/s2], the gravitational field due to our proof above is measured 
in seconds times (second squared per meters squared) or as [s3/m²]. Mathematically, 
acceleration itself is defined as change in velocity (v) divided by the duration of the period 
(t), the SI unit for acceleration is the meters per second squared [m/s²]. 
 
Claim. 
Under some well defined conditions, the gravitational field Rg itself and the gravitational field 
strength ag are equivalent. We obtain 
 

   22 gccg Ra  .               (181) 

 
Proof. 
Newton’s second law from the standpoint of the stationary observer R is defined as 
 

amF RRR    .                 (182) 

 
In general, vector quantities can be substituted by scalars in the equations as soon as motion 
is in a straight line. Thus far, let us consider motion is in a straight line. According to the 
equivalence principle the gravitational mass of a test particle is equal to the inertial mass of 
this particle and we obtain 
 

gmamF aRRRR                    (183) 

 
Multiplying Newton’s second law by an unknown parameter RX, we obtain 
 

XgmXF RaRRR       .             (184) 

 
We equate this equation with RE*Rt and obtain 
 

XgmtE RaRRR       .             (185) 

 
Due to special relativity and our proof above, this equation can be rearranged as 
 

Xgmcgcm RaRRR     22  .           (186) 

 
The unknown parameter RX follows as 



Ilija Barukčić – The physical meaning of the wave function. 
 

 

 37 Manuscript submitted to ViXra.org (Saturday, May 23, 2015) 
© Ilija Barukčić, Jever, Germany. All rights reserved. Saturday, May 23, 2015 15:39:59. 

 

   22

g

g
ccX

a

R
R  .               (187) 

 
Under conditions where RX = 1 it follows that 
 

   22 gccg Ra  .               (188) 

 
Quod erat demonstrandum. 
 
Scholium. 
There may exist circumstances where acceleration and gravitational field are equivalent but 
this must not be regarded as being given in general. In general relativity, the gravitational 
field is associated with the metric tensor gae. The metric tensor gae of the general theory of 
relativity is not completely identical with the gravitational field. By the way, it should be 
stressed that the metric tensor gae is more or less a kind of a generalization of the Newtonian 
gravitational potential and not of the gravitational field. 
 

 Theorem. The “mass-equivalent” of a photon mp  3.19.

Let pm denote the “mass-equivalent” of a photon. In general it is 
 

 11051 490 726 503 7,372 51

2
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c

h
m Rp         (189) 

 
Proof. 
Due to Axiom I it is 

11                     (190) 
 
or 

EE WaveWave    .                 (191)  

 
The energy of a (electro-magnetic) wave, denoted as WaveE, is or can be treated a being 
massless. But due to special relativity, energy, even if mass-less, is “equivalent” to a certain 
amount of mass too. We obtain 
 

Ecm Wavep  2
.                (192) 

 
where pm denotes the mass-equivalent of an electro-magnetic wave. The same wave energy 
(from the standpoint of a stationary observer R) can be quantized and is determined as 
 

fhcm Rp  2
                (193) 
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where Rf denotes the frequency as associated with a certain electro-magnetic field. 
Rearranging equation, we obtain 
 

f
c

h
m Rp 

2 .                 (194) 

 
This relationship is valid in general but equally for a photon with a frequency of Rf = 1. Under 
these circumstances (Rf = 1), we obtain 
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h
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In SI-Units it is  
 

 
51-
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2
10 51 490 726 503 7,372
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10×6.6260755 
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
c

h
mp     (196) 

 
Quod erat demonstrandum. 
 
Scholium. 
A photon, an elementary particle and the force carrier for the electromagnetic force, is the 
quantum of all forms of electromagnetic radiation and of light too. In empty space, a photon 
moves at the speed of light c. The photon has an energy of the amount EWave. In fact, due to 
special theory of relativity even photon’s energy is equivalent to certain amount of mass pm 
and we obtain EWave = pm * c². This does not imply, that a photon must possess a (rest-)mass. 
The energy (and momentum) of a photon is depending only on its frequency or inversely on 
its wavelength. The lowest frequency possible a photon can have is equal to Rf=1. 
Consequently, the mass-equivalent follows as pm = 7,372 503 726 490 51 * 10 -51 . 
 

 Theorem. The “mass-equivalent” of a photon pm 3.20.

 
The mass-equivalent of a photon pm is defined as 
 

fm Rp  002  .              (197) 

 
Proof. 
Due to Axiom I it is 
 

11  .                   (198) 
 

Due to quantum theory it is 



2

1
h  and equally 

00

21   c . We obtain 



Ilija Barukčić – The physical meaning of the wave function. 
 

 

 39 Manuscript submitted to ViXra.org (Saturday, May 23, 2015) 
© Ilija Barukčić, Jever, Germany. All rights reserved. Saturday, May 23, 2015 15:39:59. 

 

00

2

2






c

h


.               (199) 

 
Rearranging equation it follows that 
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Multiplying the equation before by Rf, the frequency (from the standpoint of a stationary 
observer R), we obtain 
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which completes our proof. In general, the “mass-equivalent” of a photon from the standpoint 
of a stationary observer R) follows as 
 

ff
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h
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Quod erat demonstrandum. 
 

 Theorem. The “mass-equivalent” of a graviton Gm  3.21.

Two photons (pm1 and pm2) with the frequency f = 1 and at a constant distance are moving 
uniformly and in straight line (inertial frame of reference) somewhere in deep space without 
being disturbed anyhow. Thus far, Newton’s laws of motion are valid. Under these conditions, 
the “mass-equivalent” of a graviton can be calculated approximately as 
 

136 - 10 × 1.34605337mG              (203) 

 
Proof. 
Due to Axiom I it is 
 

11                     (204) 
 
or 
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According to Newton’s law of gravitation, we obtain 
 

dd

mmG
F

pp

00

210

0



                (206) 



Ilija Barukčić – The physical meaning of the wave function. 
 

 

 40 Manuscript submitted to ViXra.org (Saturday, May 23, 2015) 
© Ilija Barukčić, Jever, Germany. All rights reserved. Saturday, May 23, 2015 15:39:59. 

 

 
where 𝑚1𝑝  denotes the “mass equivalent” of the one photon 1 and 𝑚2𝑝   denotes the “mass 
equivalent” of the other photon 2, G is the Newtonian “constant” of gravitation and 𝑑0  is the 
distance between the two photons. Rearranging this equation, we obtain 
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since 𝑐 × (𝑡 = 1)0 = 𝑑0  and the “mass equivalent” of the one photon is 𝑚𝑝 =
ℎ

𝑐2 ×

(𝑓 = 1). Multiplying this equation by 𝑑0  we obtain 
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On the left part of the equation there is something like energy  𝐸0 =  𝐹0  × 𝑑0 =

 𝐺 𝑚 × 𝑐2  where  𝐺 𝑚  denotes the “mass equivalent” of the graviton. Following from the 
above, one obtains according to Newtonian axioms and special relativity theory the equation 
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Dividing by c² it is 
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However, in SI Units, we obtain 
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299792458
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A convincing formulation of the “mass equivalent” of the graviton follows as 
 

136 - 10 × 1.34605337mG              (212) 

 
Quod erat demonstrandum. 
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Scholium. 
The “mass equivalent” of the graviton  𝐺 𝑚   does not imply that a graviton as such does 
possess any kind of a mass. The graviton (as a hypothetical elementary particle which 
mediates the force of gravitation in the framework of quantum field theory) is expected to be 
massless. This result suggests that, if it should be possible to convert the massless elementary 
particle graviton into energy completely, the “mass equivalent” of the graviton would be 

equivalent to  𝐺 𝑚 =   1.346053370 × 10 −136. Thus far, there is no experimental evidence 
that a graviton exists. We are just assuming that a graviton exists. 
 

4. Discussion 

 
The theory quantum mechanics, perhaps the most revolutionary theory in the history of 
science, has raised innumerable questions to physicists, chemists and philosophers of science. 
Strictly speaking, the wave function is still one of the pillars of quantum mechanics. Thus far, 
there is nothing mysterious with the wave function. The wave function is existing 
independently of human mind and consciousness and something objective. The wave function 
is the quantum mechanical equivalent of the notion time Rt of the special theory of relativity. 
In particular, another crucial aspect of quantum mechanics is the reduction of the state vector 
(i.e. collapse of the wavefunction).  
 
The collapse of the wave function and the correct understanding of the collapse of the wave 
function addresses several distinct, important and far reaching issues of the foundations of 
today's physics and science as such. Originally, the concept of wavefunction collapse was 
introduced by Werner Heisenberg in his 1927 paper "Über den anschaulichen Inhalt der 
quantentheoretischen Kinematic und Mechanik" and later incorporated into the mathematical 
formalism of quantum mechanics by John von Neumann in his 1932 publication 
"Mathematische Grundlagen der Quantenmechanik". In his 1927 paper, Heisenberg writes 
 
"durch die experimentelle Feststellung: "Zustand m" wählen wir aus der Fülle der 
verschiedenen Möglichkeiten (cnm) eine bestimmte: m aus, zerstören aber gleichzeitig, wie 
nachher erläutert wird, alles, was an Phasenbeziehungen noch in den Größen cnm enthalten 
war." [15] 
 
It is easy understand the core of this problem. A (relativistic) system evolves in time by the 
continuous evolution via the Schrödinger equation or some relativistic equivalent. Under 
appropriate circumstances, the wave function, initially in a superposition of several 
eigenstates, collapses or reduces to a single eigenstate, that what is measured by a moving 
observer O. However, after the collapse of the wave function, a physical system is determined 
or described again by a wave function.  
 
Thus far, the continuous evolution via the Schrödinger equation and the collapse of the wave 
function are the two basic processes by which quantum systems evolve in time. However, let 
us focus on the appropriate notion of the collapse of the wave function. Is the collapse of the 
wavefunction a fundamental and objective physical phenomenon of its own, rather than a 
non-real theoretical mathematical construct? Does the collapse of the wave function takes any 
time, the collapse time?   
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In contrast to the Copenhagen dominated interpretation of quantum mechanics, i. e. Penrose 
has put forward an approach that the phenomenon of wavefunction collapse is a real physical 
process. Penrose approach to the problem of the collapse of the wave function [16] may not 
be correct in detail, but the same goes into the right direction. The collapse of the wave 
function is something objective and happens everywhere around us. It appears to be possible 
that within the collapse of the wave function, the cause of the beginning of our world can be 
found. 
It is clear, that if we divide i.e. Rt/c² we will obtain something physical real and not only a new 
mathematical construct. But the question allowed is of course, is Rt/c² really identical with the 
notion gravitational field (under conditions of special theory of relativity). Thus far, the 
prediction of gravitational waves even under conditions of special theory of relativity is of 
course highly speculative but the same has to potential to help us to decide about the 
correctness of the equivalence of time and gravitational field in general.  
 

5. Conclusion 

 
The problem of the physical meaning of the wave function is solved. The wave function is 
quantum mechanical analogue of the notion time Rt of special relativity. 
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