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Abstract

In the present work approximate formula for periodic windows of the
logistic map is derived.

1 Introduction

We consider the logistic map:

xn+1 = 4bxn (1− xn) , (1)

where b is a parameter. This simple nonlinear system has very complicated
dynamics [1, 2]. Various dynamical modes, universal for some classes of one-
dimensional mappings of form xn+1 = f (xn) [3, 4], were observed in several
experiments [1, 5].

Recently, equation for 3-cycles, stable and unstable, was solved exactly, con-
dition for the onset of the 3-cycles was found, and the map of dynamics for
b ∈ [0.5, 1] onto dynamics for b ∈ [−0.5, 0] was constructed [6]; see also [7] for
a survey of rigorous results for the logistic map. In this note we attempt to
obtain approximate localization of periodic windows in the parameter space for
the map (1). The present work is based on results obtained in Refs. [8, 9, 6].

2 Map on the sphere

Let us consider the following map on the SU (2) group [10]:

Rn+1 = RnSR
−1
n , (2a)

Rn = exp
(
iβ2σ · rn

)
, S = exp

(
iβ2σ · s

)
, (2b)

where σ1, σ2, σ3, are Pauli matrices and rn, s are unit vectors. Components of rn
evolve on a unit sphere, see Eqs. (7) in [10]. Due to symmetry Rn −→ SRnS

−1
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dynamics of variables zn = s · rn decouples from other equations. If we choose
s = [0, 0, 1] then we get one-dimensional map:

zn+1 = f (zn) = cos θ + (1− cos θ) z2n, (3)

and zn = cos (θn) where θn is the polar angle on the sphere. In the case of
a more general map, Rn+1 = QRnSR

−1
n Q−1, Q = exp

(
iγ2σ · q

)
, QS ̸= SQ,

where the symmetry Rn −→ SRnS
−1 is destroyed, we obtain two-dimensional

dynamics on the sphere [11]. Geometry of the map (2) is shown below
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Figure 1: Geometry of the map (2).

where θ = θn, Θ = θn+1, see also Fig. 1a in [10].
There is a simple linear transformation converting (1) into (3), namely:

xn = − 1
2zn + 1

2 , (4a)

b = 1
2 − 1

2 cosβ. (4b)

For cos (β) = −1 equation (3) reads:

zn+1 = −1 + 2z2n, (5)

and due to identity cos (2θn) = 2 cos2 (θn)− 1 we obtain:

zn = cos (θn) , θn = 2nθ0. (6)
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3 Periodic windows for b / 1 and b ' −0.5

Condition for a supercycle is that the first derivative of the map vanishes in a
fixed point z∗:

f ′ (z∗) = 0. (7)

Application of this condition to f (z) = cos (β) + (1− cos (β)) z2 yields:

cos (θ∗) = 0, (8)

and from (3) the next value ot the cycle is computed as cos (θ∗1) = cos (β). We
shall look for stable k-cycles in the case cos (β) ∼= −1. We can expect that in
this case the solution (6) will be a reasonable approximation:

cos (θ∗1) = cos
(
2kθ∗1

)
, θ∗1 = β, cos (β) ∼= −1. (9)

Solving (9) for β we get:

β = ±2kβ + 2mπ, (10)

and β ∼= π. Finally, we obtain:

β± = 2m
2k±1

π, β ∼= π, (11)

where for a given k-cycle (k is the number of parallels on the sphere) we have
to choose such integer m that the condition β± ∼= π is indeed fulfilled. Since
b = 1

2 − 1
2 cos (β) we obtain approximate expression for k-cycles in terms of

parameter b.
Periodic windows, present in the interval of control parameter b ∈

[
1
2 , 1

]
,

can be mapped onto periodic windows in b ∈ [−0.5, 0]. Indeed, if we put
xn = 2−4b

4b x̂n + 4b−1
4b into (1) then we get

x̂n+1 = 4b̂x̂n (1− x̂n) , b̂ = 2−4b
4 , (12)

see the map defined in [6] with r = 4b.

4 Computations

To localize a periodic window we choose value of integer parameter k (which
corresponds to number of parallels on the sphere) in (11) and then we select
such integer m that 2m

2k±1
≃ 1. It follows that m = 2k−1. We thus obtain the

following set of parametrs k and m fulfilling this condition:

TABLE I

k m = 2k−1 β
(k)
+ b

(k)
+ β

(k)
− b

(k)
−

3 4 8
9π 0.969 846 310 4 8

7π 0.950 484 434 0
4 8 16

17π 0.991 486 549 8 16
15π 0.989 073 800 4

5 16 32
33π 0.997 735 961 3 32

31π 0.997 434 661 7
6 32 64

65π 0.999 416 113 4 64
63π 0.999 378 460 6

3



In Table I values of β
(k)
± , as well as b

(k)
± = 1

2 −
1
2 cos

(
β
(k)
±

)
, have been also listed.

In all cases shown in Table I the stable k-cycle is in the interval b ∈
[
b
(k)
− , b

(k)
+

]
.

Moreover, the mean value, b̄(k) = 1
2

(
b
(k)
+ + b

(k)
−

)
, is a good approximation of

the corresponding supercycle. For the sake of just one example we show results
of computations for k = 5.

Figure 2: The logistic map (1): b ∈ [−0.497 6, −0.497 5] – left figure, b ∈
[0.997 55, 0.997 60] – right figure.

Figure 3: Periodic window for the map (2), b = 1
2 − 1

2 cosβ = 0.997 58.
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We have shown in Fig. (2) two periodic windows: the window in the interval

b ∈ [0.997 55, 0.997 60], which was localized with help of b
(5)
± , cf. Table I,

and another window, in the interval b ∈ [−0.497 6, −0.497 5], where the latter
interval was computed from the former via formula b → 2−4b

4 , cf. Eq. (12).

5 Summary

We have shown that periodic windows of the logistic map can be localized for
b / 1 and b ' −0.5, where geometric interpretation of the logistic map, as well
as transformation b → 2−4b

4 , were used.
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