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Abstract

This article continues our previous study in arXiv:1010.0458. Sakaton in-
teractions potentials are re-optimized. Masses of mesons, baryons, light nuclei
and hypernuclei are obtained in a fair agreement with experiment. Total elastic
scattering cross sections (pp, pp, np, and Λp) are also close to experimental data
in a broad range of momenta 0.1 - 1000 GeV/c. Our results suggest that Sakata
model could be a promising alternative to the quark model of hadrons.

1 Introduction

Quark model is universally accepted as the foundation of the modern theory of strong
nuclear interactions and the entire Standard Model. However, in spite of numerous
successes, the idea of quarks is susceptible to criticism. For example, the postulated
quarks and gluons cannot be directly observed, even in principle. These particles are
assumed to possess very unusual properties, such as fractional electric charges and non-
observable color. The mechanism of quark confinement inside mesons and baryons has
not been understood yet. QCD calculations of quark bound states [1] or low-energy
scattering processes are notoriously difficult.

So, one is tempted to ask provocative questions: is the nature of strong interactions
bound to be so complicated? are there alternative ways to think about the physics
of hadrons? One such alternative idea was proposed by S. Sakata in 1956 [2], i.e.,
long before the advent of the quark model. The beauty of the Sakata model was
that the number of arbitrary assumptions was reduced to a minimum. Elementary
constituents (sakatons) were chosen to be the familiar proton (p), neutron (n), and
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Lambda-hyperon (Λ).1 In analogy with electrostatic interactions between charges, it
was assumed that sakaton-sakaton and antisakaton-antisakaton interaction potentials
are strongly repulsive, but sakaton-antisakaton potentials are equally attractive, thus
leading to unusually high defects of mass, especially in pure sakaton-antisakaton meson
states. It was satisfying that, unlike in the quark model, the nature of the sakaton
binding in elementary particles was similar to the usual pattern observed in molecular
and nuclear physics, where the mass of a compound system is lower than the sum
of masses of its constituents. The interaction between sakatons drops to zero when
they are pulled apart to large distances, so that readily observable constituents are
recovered.

1.1 Matumoto’s mass formula

The above ideas about sakaton binding were summarized in a simple mass formula
proposed by K. Matumoto [4, 5]. In this formula, the mass of a multisakaton system
was calculated as the sum of masses of the constituents2 plus the sum of interaction
energies (divided by c2) for all sakaton pairs. These interaction energies were simply
defined as constants3

E(ν, ν) = E(ν, ν) = −E(ν, ν) = 1740MeV

E(ν,Λ) = E(ν,Λ) = −E(ν,Λ) = −E(ν,Λ) = 1561MeV

E(Λ,Λ) = E(Λ,Λ) = −E(Λ,Λ) = 1275MeV

Table 1: Model properties of sakatons.
sakaton Mass Electric Strangeness Spin
symbol MeV/c2 charge
n 940 0 0 1/2
p 940 1 0 1/2
Λ 1116 0 -1 1/2

For example, in the Sakata model the Σ− baryon is identified with a bound state
of two sakatons and one antisakaton Σ− = Λnp. Then by Matumoto’s formula one
immediately obtains its mass

1In this work we consider only systems possessing up, down, and strange flavors. By adding the
fourth elementary hadron Λ+

c , one can extend the Sakata model to charmed particles as well [3].
2See Table 1.
3Here we use symbol ν to collectively denote nucleons n and p.
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m(Σ−) = m(Λnp) = m(Λ) +m(n) +m(p) + E(Λ, n)/c2 + E(Λ, p)/c2 + E(n, p)/c2

= (1116 + 940 + 940 + 1561− 1561− 1740) MeV/c2 = 1256 MeV/c2

which is not far from the experimental value of 1189 MeV/c2. This simple estimate
should be contrasted with the enormous complexity of ab initio QCD calculations [1],
which are impossible without powerful supercomputers.

1.2 Sakatons vs. quarks

In Table 2 we collected predictions of the Matumoto’s mass formula for some hadrons.
This formula is doing a pretty good job for common mesons (π,K) and baryons (Σ,Ξ).
It even predicts the instability of ∆ resonances,4 which are not distinguished from stable
baryons in the quark model.

Table 2: Comparison of the Sakata and quark models
Sakaton Mass from Exp. Quark

Particle composition Matumoto’s mass composition
formula, MeV/c2 MeV/c2

π− np 140 140 du
K− Λp 495 494 su
∆− nnp unstable unstable ddd
Σ− Λnp 1256 1189 dds
Ξ− ΛΛp 1325 1322 dss
Ω− ΛΛΛpn 1427 1672 sss
Ω−− ΛΛΛpp 1427 not seen not predicted
Ω0 ΛΛΛnn 1427 not seen not predicted
?? ΛΛpp 883 not seen not predicted

In the Sakata-Matumoto approach, the famous Ω− baryon is stable with respect to
all possible channels of dissociation, even though this particle is a bound state of five
sakatons. However, at this point the luck of the model ends, as it incorrectly predicts
stability of the two other members (Ω−− and Ω0) of the isospin triplet. Similarly,
the model predicts non-existent tetrasakatons, like ΛΛpp. Such predictions could be
taken seriously in the beginning of 1960’s when not all members of the particle zoo
were known. However, in 2017 we can be sure that such exotic particles do not exist.
Should this failure be sufficient for disqualifying the Sakata model?

4The predicted mass of ∆−(= nnp) is 1080 MeV/c2, which corresponds to zero energy of dissoci-
ation into n and π− = np.
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We think that such a conclusion would be premature, because the primitive Ma-
tumoto mass formula cannot be reliable. In our previous publication [3] we designed
a set of inter-sakaton potentials and calculated masses of multisakaton bound states
by numerical solution of the corresponding Schrödinger equations. A good agreement
was obtained with the mass spectrum and stabilities of known mesons and baryons.
However, there were also two areas, in which our previous results appeared inadequate:

1. When attempting to model particle collisions, we found that scattering cross
sections of hadrons were overestimated by several orders of magnitude.

2. Our pn, pp and nn potentials were completely repulsive, so they could not explain
the binding of protons and neutrons in nuclei.

In this work we decided to recalibrate sakaton interaction potentials for better
description of these two important aspects.

2 Theory and computational details

2.1 Model Hamiltonian

In our opinion, it should be possible to build a theory of strong interactions based on
the idea of point particles interacting by instantaneous forces. This belief is supported
by the success of the “dressed particle” approach to relativistic quantum field theories
[6, 7, 8, 9], where fields are replaced by directly interacting particles, while all scatter-
ing properties and bound state energies are preserved and the renormalization is not
needed.

Thus we chose to describe an interacting N -sakaton system by the approximate
non-relativistic Hamiltonian

H =
N∑
i=1

mic
2 +

N∑
i=1

p2i
2mi

+
N∑
i<j

Vij(rij) (1)

where pi, rij ≡ |ri − rj| are momenta of the sakatons and their relative distances,
respectively. Masses mi of sakatons are shown in Table 1.

To proceed with calculations, we have to specify sakaton-sakaton interaction po-
tentials V (r) in (1). Despite identification of sakatons with real particles p, n,Λ0, this
information is not readily available. Indeed, many accurate nucleon-nucleon potentials
were reported in the literature [10, 11, 12, 13, 9], but much less is known about nucleon-
antinucleon, nucleon-Λ0, and Λ0 − Λ0 interactions. Moreover, existing potentials are
usually fitted to reproduce low-energy properties, like binding energies of nuclei (few
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MeV) and scattering amplitudes for collision energies below 1 GeV. However, in order
to represent deep sakaton binding in mesons and baryons, we need potentials that
describe strong attraction (E < −1.5 GeV) in sakaton-antisakaton pairs and equally
strong repulsion (E > 1.5 GeV) in sakaton-sakaton pairs at short distances. Unfortu-
nately, existing studies were not interested in these distance/energy ranges.

So, we decided to optimize our own distance-dependent functions V (r), which were
chosen as superpositions of three Yukawa potentials

Vij(r) = Aijzizj
e−αijr

r
+Bij

e−βijr

r
+ Cijzizj

e−γijr

r
(2)

where zi = +1 for sakatons and zi = −1 for antisakatons. Optimized parameters
of these potentials are collected in Table 3. Interaction (2) consists of three parts.
The first term is of the Matumoto type. It corresponds to the attraction in sakaton-
antisakaton pairs (zizj = −1) and equal repulsion in sakaton-sakaton and antisakaton-
antisakaton pairs (zizj = 1). Our preliminary tests indicated that this interaction alone
was inadequate as it systematically overestimated binding and thus predicted stability
of many nonexistent species. Some extra repulsion was provided by the second term.
The third term was designed to represent the long-range (r > 0.6 fm) nucleon-nucleon
attraction responsible for the binding in nuclei.

Table 3: Parameters of sakaton-sakaton interaction potentials (2) optimized in this
work.

A α B β C γ
MeV·fm fm−1 MeV·fm fm−1 MeV·fm fm−1

p− p 2137 8.2 1119 10.04 -12 0.125
n− n 2137 8.2 1119 10.04 -12 0.125
p− n 1610 7.02 886.6 14.55 -18.6 0.106
p− Λ 1334 7.245 386.8 10.726 -21 0.25
n− Λ 1334 7.245 386.8 10.726 -21 0.25
Λ− Λ 709 9.13 500 11.15 -22 0.30

As an example, in Fig. 1 we show the proton-proton interaction potential Vpp(r)
by a thick full line. The proton-neutron potential Vpn(r) (thin full line) has a similar
shape, but the attractive well at r ≈ 1 fm is somewhat deeper, so that a bound state
of the deuteron (pn) can be supported (see Table 6). These functions are comparable
to well-known models of nucleon-nucleon interactions: the Malfliet-Tjon potential [14]
and the scalar portion of the Reid potential [10], though in our case the attractive well is
somewhat shallower and wider. The proton-antiproton interaction Vpp(r) (broken line)
is almost a mirror image of the pp potential. Other sakaton-antisakaton potentials have
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Figure 1: Interaction potentials: proton-proton (thick full line), proton-neutron (thin
full line), and proton-antiproton (broken line).

similar shapes. Their deep attractive wells at r < 0.6 fm are responsible for holding
sakatons inside mesons and baryons.

Note that in our approximation p and n sakatons have equal masses and the same
interaction parameters. This implies that all properties calculated here (masses and
scattering cross-sections) are invariant with respect to simultaneous sakaton replace-
ments p ↔ n.

2.2 Bound state calculations

Bound state energies of multisakaton systems were calculated using the stochastic
variational method of Varga and Suzuki [15, 16]. The FBS computer program [17]
was downloaded from the CPC Program Library (Queen’s University of Belfast, N.
Ireland). Only ground states with the lowest total spin (s = 0 for bosons and s = 1/2
for fermions) and zero orbital momentum were considered here. The basis set size
depended on the number of sakatons in the system. For mixed sakaton-antisakaton
species with particle numbers N = 2, 3, 4, 5 the basis size was K = 50, 220, 250,
and 800, respectively. For sakaton-only species (i.e., nuclei and hypernuclei) the basis
size K = 50 was independent on the number of particles. For other computational
parameters explained in [17] we used values M0 = 10, K0 = 50, bmin = 10−6, and
bmax = 10. They were adjusted for optimal balance between the accuracy and the
speed of convergence.
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2.3 Scattering calculations

Scattering calculations were performed in the first Born approximation [18, 19].5 For
the differential cross section of two particles colliding with momenta p1 = −p2 ≡ pc.m

in the center-of-mass frame we used formula6

dσ

dΩ
=

(2π)4~2|TB(k)|2

c4

(
1

E1(pc.m.)
+

1

E2(pc.m.)

)−2

(3)

where Ei(p) ≡
√
m2

i c
4 + p2c2 are energies of the colliding particles, k ≡ p′

1 − p1 is
the transferred momentum and matrix element TB is the Fourier transform of the
interaction potential (2)

TB(k) =
1

(2π~)3

∫
dre

i
~krV (r)

=
1

2π2~

(
Aijzizj

~2α2
ij + k2

+
Bij

~2β2
ij + k2

+
Cijzizj

~2γ2
ij + k2

)
(4)

For comparison with experiments it is convenient to rewrite dσ/dΩ as a function of
invariant Mandelstam variables7 s ≡ (p̃1 + p̃2)

2 and t ≡ (p̃1 − p̃′1)
2, which have simple

meanings in the center of mass frame

s = (E1(pc.m.) + E2(pc.m.))
2

t = −c2k2 = 2c2p2c.m.(cos θ − 1) (5)

where θ is the scattering angle (between vectors p′
1 and p1). Taking into account

(5) and dΩ = 2π sin θdθ = −2πd(cos θ), we obtain the differential cross section as a
function of −t for two colliding protons (m1 = m2 = mp) and high collision energies
(
√
s ≫ mpc

2)

dσ

dt
=

dσ

dΩ
· 2π

dt/d(cos θ)
=

dσ

dΩ
· π

c2p2c.m.

=
4π

s− 4m2
pc

4
· (2π)

4~2s
16c4

|TB(k)|2

≈ π

(
App

c2~2α2
pp − t

+
Bpp

c2~2β2
pp − t

+
Cpp

c2~2γ2
pp − t

)2

(6)

5This approximation is justified as we are interested primarily in the high energy scattering.
6see equation (3.149) in [19]
7Here we used tilde to denote energy-momentum 4-vectors p̃i
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The total elastic cross section was calculated by integrating the differential cross
section (3) on angles

σelastic(pc.m.) = 2π

π∫
0

sin θdθ
dσ

dΩ
(7)

For easier comparison with experiments we switched to the laboratory reference frame8

and expressed σelastic as a function of the “lab frame” momentum of the incoming
particle 9

plab = pc.m.

√
s/(mc2)

So, in the case of equal masses, the lab frame cross section was obtained by replacing
p2c.m. → (mc

√
m2c2 + p2lab −m2c2)/2 in formula (7).

3 Results

3.1 Bound states of sakatons

According to the Sakata model, all mesons and baryons, except p, n, and Λ0, are
in fact composite systems built from elementary sakatons and antisakatons. Atomic
nuclei can be also regarded as multisakaton bound states. So, the first challenge for
our model was to analyze the stability pattern of simplest compound systems listed in
Table 4.10

As shown in Table 5, masses of light stable mesons and baryons are reproduced
reasonably well in our model. In agreement with experiment, no stable tetrasakaton
mesons were found and the only stable pentasakaton baryon is the observed Ω− =
ΛΛΛpn particle.

As we mentioned in subsection 2.1, our potentials (2) were designed to describe
nucleon-nucleon binding in atomic nuclei. Indeed, results presented in Table 6 demon-
strate that the nuclear stability pattern is represented fairly well up to the 6Be nucleus.
However, the nuclear binding energies are systematically lower than the observed ones,
which indicates that pp, pn, and nn attractions are underestimated in our model.11

8where the ”target” particle 2 is at rest
9see eq. (46.36) in [20]

10We are interested only in the stability with respect to strong interactions. Particles experiencing
weak and/or electromagnetic decays are regarded as stable here.

11For some species shown in Tables 6 and 7, our calculations did not converge, probably due to
numerical instability of the FORTRAN code.
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Table 4: Summary table of compound hadrons considered in this work. Notation:
σ = (p, n,Λ) stands for all sakatons; ν = (p, n) stands for nucleons.
Sakaton Particle Comments see Table
composition type

σσ simple mesons all stable except ΛΛ 5
σσσσ tetrasakaton mesons all unstable
σσσ simple baryons all unstable except Σ and Ξ 5
σσσσσ pentasakaton baryons all unstable except Ω− 5
νν . . . ν nuclei 6
νΛ,ΛΛ, ννΛ, νΛΛ hypernuclei 7

Table 5: Stable compound mesons and baryons. Masses, binding energies and prefer-
able dissociation channels.
Stable Sakaton Calc. Exp. Calc. Binding Exp. Binding
particle composition mass mass energy (MeV) energy (MeV)

MeV/c2 MeV/c2

π0 (pp, nn) 323.99 135 1556.01(→ p+ p) 1733(→ p+ n)
π+ pn 338.21 140 1541.79(→ p+ n) 1734(→ p+ n)
π− np 338.21 140 1541.79(→ n+ p) 1734(→ n+ p)
K0 Λn 499.46 498 1556.54(→ Λ + n) 1558(→ Λ + n)
K− Λp 499.46 494 1556.54(→ Λ + p) 1556(→ Λ + p)
Σ0 (Λpp,Λnn) 1428.13 1193 11.33(→ p+ Λp) 58(→ Λ + pp)
Σ+ Λpn 1400.47 1189 38.99(→ p+ Λn) 67(→ Λ + pn)
Σ− Λnp 1400.47 1189 38.99(→ n+ Λp) 67(→ Λ + np)
Ξ0 ΛΛn 1231.32 1315 388.14 (→ Λ + Λn) 299(→ Λ + Λn)
Ξ− ΛΛp 1231.32 1322 388.14 (→ Λ + Λp) 288 (→ Λ + Λp)
Ω− ΛΛΛpn 1720.95 1672 9.83(→ ΛΛn+ Λp) 137(→ ΛΛn+ Λp)

In Table 7 we show binding energies for hypernuclei.12 Our model correctly predicts
the absence of pΛ, nΛ, and ΛΛ bound states. However, the binding energy of the 3

ΛH
species is underestimated, and the model predicts positive binding of several non-
existent species. This suggests that interaction parameters in Table 3 are not well
balanced.

3.2 Elastic scattering

Calculated total elastic cross sections σelastic(plab) for pp, pp, np, and Λp collisions are
shown in Figs. 2, 3, 4, and 5, respectively. In these graphs we also showed results

12i.e., nuclei where one or more neutrons are replaced by Λ0 particles
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Figure 2: Total elastic cross sections for pp collisions.

Figure 3: Total elastic cross sections for pp collisions.
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Figure 4: Total elastic cross sections for np collisions.

Figure 5: Total elastic cross sections for Λp collisions.

11



Table 6: Binding energies (with respect to complete dissociation) of light nuclei.
Sakaton Nuclear symbol Exp. binding Calc. binding
composition energy (MeV) [21] energy (MeV)
pp 0 0
pn 2H 2.22 0.44
nn 0 0
ppp 0 diverged
ppn 3He 7.72 1.75
pnn 3H 8.48 1.75
nnn 0 diverged
pppp 0 0
pppn 4Li 4.62 1.10
ppnn 4He 28.30 1.08
pnnn 4H 5.50 1.10
nnnn 0 0
ppppp 0 diverged
ppppn 0 0
pppnn 5Li 26.33 5.23
ppnnn 5He 27.41 5.23
pnnnn 5H 1.08 0
nnnnn 0 diverged
pppppp 0 0
pppppn 0 0
ppppnn 6Be 26.92 9.10
pppnnn 6Li 31.99 10.84
ppnnnn 6He 29.27 9.10
pnnnnn 6H 5.78 0
nnnnnn 0 0

obtained with sakaton potentials from our earlier work [3]. Our new potentials are
more realistic, even though no special efforts were made to fit the experimental data
[20]. We believe that the remaining discrepancy (of about one order of magnitude) can
be removed by going beyond the first Born approximation in scattering calculations
and further adjusting interaction potentials, in particular, adding spin-dependent terms
there.
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Table 7: Binding energies (with respect to complete dissociation) of hypernuclei.
Sakaton Nuclear Exp. Binding Calc. Binding
composition symbol energy (MeV) [22] energy (MeV)

pΛ not seen 0
nΛ not seen 0
ΛΛ not seen 0
ppΛ not seen 0.52
pnΛ 3

ΛH 2.35 1.30
nnΛ not seen 0.52
pΛΛ not seen 0.72
nΛΛ not seen 0.72
ΛΛΛ not seen diverged

4 Discussion and conclusions

The qualitative momentum dependence of our calculated total elastic scattering cross
sections (see Figs. 2 - 5) was consistent with observations. However, the absolute
values were overestimated by an order of magnitude. To understand this behavior, we
turned to differential cross sections for pp collisions at

√
s = 19.4 GeV shown in Fig.

6. In our approximation (6), dσ/dt does not depend on the collision energy
√
s. This

property holds fairly well in experiments [23, 24, 25, 26].
The most significant deviation occurs at high values of the transferred momentum

(−t), where our calculated differential cross sections appear overestimated. Moreover,
according to (6), the asymptotic decrease dσ/dt ∝ (−t)−2 is much slower than the
observed one [23, 24, 25, 26]. This may explain the systematic overestimation of the
total elastic cross sections in Fig. 2.

It is interesting to note that in our model the characteristic dip on the dσ/dt curve
occurs at −t ≈ 0.01 GeV 2, i.e. the value at which the parenthesis in (6) turns to zero.
The cancellation of the three terms there becomes possible because the potential Vpp(r)
has both repulsive (App > 0, Bpp > 0) and attractive (Cpp < 0) parts.

In spite of some deviations, meson, baryon, nuclear and hypernuclear stability
patterns (Tables 5 - 7) are reproduced quite well in our studies. The most remarkable
result is that our simple model predicts positive binding energies for all existing mesons
and baryons, while dozens of exotic σσσσ and σσσσσ species turn out to be unstable
in agreement with observations. This is a strong indication that the Sakata model
with simple interaction potentials does capture some important aspects of the physics
of hadrons.
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Figure 6: Differential cross section dσ/dt for elastic pp collisions at
√
s = 19.4 GeV.

The author is grateful to Dr. A. V. Shebeko for enlightening discussions, critical
comments, and continuing support.
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