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I discuss generalized spin-1/2 massless equations for neutrinos. They have been obtained by Gersten’s method for
derivation of arbitrary-spin equations. Possible physical consequences are discussed.

1. Introduction

Recently Gersten [1] proposed a method for derivations
of massless equations of arbitrary-spin particles. In
fact, his method is related to the van der Waerden-
Sakurai [2] discussion of obtaining the massive Dirac
equation. I commented the derivation of Maxwell equa-
tions [la]® in [3] and showed that the method is rather
ambigious because instead of free-space Maxwell equa-
tions one can obtain generalized S = 1 equations, which
connect the antisymmetric tensor field with additional
scalar fields. The problem of physical significance of
additional scalar chi-fields should be solved, of course,
by experiment.

In the present article I apply the van der Waerden-
Sakurai-Gersten procedure to the spin-1/2 fields. As a
result one obtains equations which generalize the well-
known Weyl equations. However, these equations are
known for a long time [4]. Recently, Raspini [5, 6, 7,
8, 9] analized them again in detail. I add some com-
ments on physical contents of the generalized spin-1/2
equations.

2. Derivation

I use the equation (4) of the Gersten paper [1a] for two-
component spinor wave function:

(E? — 2By = [E1(2> — B
NEI® +cﬁ.a} b =0 (eq.(4)of [la]). (1)
Actually this equation is a massless limit of the

equation which has been presented (together with a cor-
responding method of derivation of the Dirac equation)
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n fact, the S = 1 equations.

in Sakurai book [2]; in the latter case one should sub-
stitute m2c* into the right-hand side of eq. (1). How-
ever, instead of equation (3.25) of [2] one can define
two-component ‘right” wave function

1,0 .
¢R = milc(lhaixo — tho - v)'l)[},

oL =1 (2)

with an additional mass parameter mj. In such a way
we come to the set of equations

L0 m3c
(’Lhaixo + iho - V)(bR - mil L, (3)
(z?’li —iho - V)¢ =micor, (4)

8$0

which can be written in the 4-component form:

(m(a/axo) iho -V

—ih(8/8m0)> (52) - %

(=m3/ma + m1>> (‘”A) (5)

(m3/m1+ma1) ) \¢5

for the function ¥ = column(¢r+¢r, ¢r—¢r). The
equation (5) can be written in the covariant form (as
one can see the standard representation of v* matrices
was used here):

—iho -V

, <((m%/m1 +ma)

—m3/mi +m1)

myc (1+7°)

mih 2 o 2 }‘I’ZO' ()

If my = mo we can recover the standard Dirac equa-
tion. As noted in [4b] this procedure can be viewed
as simply changing the representation of y* matrices
(unless mg # 0).

Furthermore, one can either repeat a similar pro-
cedure (the modified Sakurai procedure) starting from
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the ‘massless’ equation (4) of [la] or put mg = 0 in eq.
(6). The ‘massless equations’ is?

1 5
in"a), — mic (1+7°)

e =0, (7)

Then we may have physical difference with the Weyl
equation (which is obtained as m — 0 limit of the usual
Dirac equation). The mathematical reason of such a
possibility to have different massless limits is that the
corresponding change of representation of +* matrices
involves mass parameters m; and msy themselves and
in a certain limit the corresponding matrix may be non-
existent (its elements tend to infinity).

It is interesting that we also can repeat this proce-
dure for the definition (or even more general)

b = (-2 4 iho - V)0,

msc:  Oxg

PR =1 (8)

since in the two-component equation the parity prop-
erties of the two-component spinor are undefined. The
resulting equation is

which give us yet another equation in the massless limit
(m4 — O):

) mac (1 —~°)] =

ko, — ————=| U =0 10

o, - el , (10)

The above procedure can be generalized to any
Lorentz group representations, i. e., any spins. In some
sense the equations (7,10) are analogs of the ‘S =1
equations’ [3, (4-7,10-13)] which also contain additional
parameters.

3. Physical Interpretation and the
Conclusion

Is the physical content of the generalized S = 1/2
‘massless’ equations the same as that of the Weyl equa-
tion? We can answer ‘No’. The excellent discussion
can be found in [4a,b]. The theory does not have chi-
ral invariance. Those authors call the additional pa-
rameters as measures of the degree of chirality. Apart,
Tokuoka introduced the concept of the gauge transfor-
mations (not to confuse with phase transformations)
for the 4-spinor fields. He also found somewhat strange
properties of the anti-commutation relations (see §3
in [4a] and cf. [11b]). And, the equation (7) describes
four states, two of which answer for the positive energy
E = |p|, and two others answer for the negative energy
E=—|p|.

21t is necesary to stress that the term ‘massless’ is used in the
sense that p,pH* =0.

We just want to add the following to the discussion.
The operator of the chiral-helicity n = (a - p) (in the
spinorial representation) used in [4b] (and re-discovered
in [11a]) does not commute with the Hamiltonian of the
equation (7):

micl —~°

Hoa-pl- =271y p). (1)

For the eigenstates of chiral-helicity the set of cor-
responding equations read (n =1, ])

iyra,w, — el T 7
h

The conjugated eigenstates of the Hamiltonian |¥;+
U, > and |¥; — ¥ > are connected, in fact, by ~°
transformation ¥ — 750 ~ (a - p)¥ (or my; — —my ).
However, the v° transformation is related to the PT
(t — —t only) transformation [4b], which, in its turn,
can be interpreted as F — —F | if one accepts Stueckel-
berg ideas about antiparticles. We associate |y +¥| >
with the positive-energy eigenvalue of the Hamiltonian
E = |p| and |¥; — ¥ >, with the negative-energy
eigenvalue of the Hamiltonian (E = —|p|). Thus, the
free chiral-helicity massless eigenstates may oscillate
one to another with the frequency w = E/h (as the
massive chiral-helicity eigenstates, see [10a] for details).
Moreover, a special kind of interaction which is not
symmetric with respect to the chiral-helicity states (for
instance, if only left chiral-helicity eigenstates interact
with the matter) may induce changes in the oscillation
frequency.

It is not yet clear how can these frameworks be con-
nected with the Ryder method of derivation of rela-
tivistic wave equations and with subsequent analysis of
problems of the choice of normalization and of phase in
the papers [10, 11, 12]. However, the conclusion may be
similar to that achieved before: the dynamical proper-
ties of the massless particles (e. g., neutrinos) may dif-
fer from those defined by well-known Weyl and Maxwell
equations.

U_,=0. (12)
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