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GENERALIZED NEUTRINO EQUATIONS
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I discuss generalized spin-1/2 massless equations for neutrinos. They have been obtained by Gersten’s method for
derivation of arbitrary-spin equations. Possible physical consequences are discussed.

1. Introduction

Recently Gersten [1] proposed a method for derivations
of massless equations of arbitrary-spin particles. In
fact, his method is related to the van der Waerden-
Sakurai [2] discussion of obtaining the massive Dirac
equation. I commented the derivation of Maxwell equa-
tions [1a]1 in [3] and showed that the method is rather
ambigious because instead of free-space Maxwell equa-
tions one can obtain generalized S = 1 equations, which
connect the antisymmetric tensor field with additional
scalar fields. The problem of physical significance of
additional scalar chi-fields should be solved, of course,
by experiment.

In the present article I apply the van der Waerden-
Sakurai-Gersten procedure to the spin-1/2 fields. As a
result one obtains equations which generalize the well-
known Weyl equations. However, these equations are
known for a long time [4]. Recently, Raspini [5, 6, 7,
8, 9] analized them again in detail. I add some com-
ments on physical contents of the generalized spin-1/2
equations.

2. Derivation

I use the equation (4) of the Gersten paper [1a] for two-
component spinor wave function:

(E2 − c2~p 2)I(2)ψ =
[
EI(2) − c~p · ~σ

]
·

·
[
EI(2) + c~p · ~σ

]
ψ = 0 (eq.(4)of [1a]) . (1)

Actually this equation is a massless limit of the
equation which has been presented (together with a cor-
responding method of derivation of the Dirac equation)

1e-mail: valeri@ahobon.reduaz.mx
1In fact, the S = 1 equations.

in Sakurai book [2]; in the latter case one should sub-
stitute m2c4 into the right-hand side of eq. (1). How-
ever, instead of equation (3.25) of [2] one can define
two-component ‘right’ wave function

φR =
1
m1c

(ih̄
∂

∂x0
− ih̄σ · ∇)ψ, φL = ψ (2)

with an additional mass parameter m1 . In such a way
we come to the set of equations

(ih̄
∂

∂x0
+ ih̄σ · ∇)φR =

m2
2c

m1
φL , (3)

(ih̄
∂

∂x0
− ih̄σ · ∇)φL = m1cφR , (4)

which can be written in the 4-component form:(
ih̄(∂/∂x0) ih̄σ · ∇
−ih̄σ · ∇ −ih̄(∂/∂x0)

) (
ψA

ψB

)
=
c

2
·

·
(

(m2
2/m1 +m1) (−m2

2/m1 +m1)
(−m2

2/m1 +m1) (m2
2/m1 +m1)

) (
ψA

ψB

)
(5)

for the function Ψ = column(φR +φL φR−φL). The
equation (5) can be written in the covariant form (as
one can see the standard representation of γµ matrices
was used here):[

iγµ∂µ −
m2

2c

m1h̄

(1− γ5)
2

− m1c

h̄

(1 + γ5)
2

]
Ψ = 0 . (6)

If m1 = m2 we can recover the standard Dirac equa-
tion. As noted in [4b] this procedure can be viewed
as simply changing the representation of γµ matrices
(unless m2 6= 0).

Furthermore, one can either repeat a similar pro-
cedure (the modified Sakurai procedure) starting from
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the ‘massless’ equation (4) of [1a] or put m2 = 0 in eq.
(6). The ‘massless equations’ is2[

iγµ∂µ −
m1c

h̄

(1 + γ5)
2

]
Ψ = 0 . (7)

Then we may have physical difference with the Weyl
equation (which is obtained as m→ 0 limit of the usual
Dirac equation). The mathematical reason of such a
possibility to have different massless limits is that the
corresponding change of representation of γµ matrices
involves mass parameters m1 and m2 themselves and
in a certain limit the corresponding matrix may be non-
existent (its elements tend to infinity).

It is interesting that we also can repeat this proce-
dure for the definition (or even more general)

φL =
1
m3c

(ih̄
∂

∂x0
+ ih̄σ · ∇)ψ, φR = ψ (8)

since in the two-component equation the parity prop-
erties of the two-component spinor are undefined. The
resulting equation is[

iγµ∂µ −
m2

4c

m3h̄

(1 + γ5)
2

− m3c

h̄

(1− γ5)
2

]
Ψ̃ = 0 , (9)

which give us yet another equation in the massless limit
(m4 → 0):[

iγµ∂µ −
m3c

h̄

(1− γ5)
2

]
Ψ̃ = 0 , (10)

The above procedure can be generalized to any
Lorentz group representations, i. e., any spins. In some
sense the equations (7,10) are analogs of the ‘S = 1
equations’ [3, (4-7,10-13)] which also contain additional
parameters.

3. Physical Interpretation and the
Conclusion

Is the physical content of the generalized S = 1/2
‘massless’ equations the same as that of the Weyl equa-
tion? We can answer ‘No’. The excellent discussion
can be found in [4a,b]. The theory does not have chi-
ral invariance. Those authors call the additional pa-
rameters as measures of the degree of chirality. Apart,
Tokuoka introduced the concept of the gauge transfor-
mations (not to confuse with phase transformations)
for the 4-spinor fields. He also found somewhat strange
properties of the anti-commutation relations (see §3
in [4a] and cf. [11b]). And, the equation (7) describes
four states, two of which answer for the positive energy
E = |p| , and two others answer for the negative energy
E = −|p| .

2It is necesary to stress that the term ‘massless’ is used in the
sense that pµpµ = 0.

We just want to add the following to the discussion.
The operator of the chiral-helicity η = (α · p̂) (in the
spinorial representation) used in [4b] (and re-discovered
in [11a]) does not commute with the Hamiltonian of the
equation (7):

[H, α · p̂]− = 2
m1c

h̄

1− γ5

2
(γ · p̂) . (11)

For the eigenstates of chiral-helicity the set of cor-
responding equations read (η =↑, ↓)

iγµ∂µΨη −
m1c

h̄

1 + γ5

2
Ψ−η = 0 . (12)

The conjugated eigenstates of the Hamiltonian |Ψ↑+
Ψ↓ > and |Ψ↑ − Ψ↓ > are connected, in fact, by γ5

transformation Ψ → γ5Ψ ∼ (α · p̂)Ψ (or m1 → −m1 ).
However, the γ5 transformation is related to the PT
(t → −t only) transformation [4b], which, in its turn,
can be interpreted as E → −E , if one accepts Stueckel-
berg ideas about antiparticles. We associate |Ψ↑+Ψ↓ >
with the positive-energy eigenvalue of the Hamiltonian
E = |p| and |Ψ↑ − Ψ↓ > , with the negative-energy
eigenvalue of the Hamiltonian (E = −|p|). Thus, the
free chiral-helicity massless eigenstates may oscillate
one to another with the frequency ω = E/h̄ (as the
massive chiral-helicity eigenstates, see [10a] for details).
Moreover, a special kind of interaction which is not
symmetric with respect to the chiral-helicity states (for
instance, if only left chiral-helicity eigenstates interact
with the matter) may induce changes in the oscillation
frequency.

It is not yet clear how can these frameworks be con-
nected with the Ryder method of derivation of rela-
tivistic wave equations and with subsequent analysis of
problems of the choice of normalization and of phase in
the papers [10, 11, 12]. However, the conclusion may be
similar to that achieved before: the dynamical proper-
ties of the massless particles (e. g., neutrinos) may dif-
fer from those defined by well-known Weyl and Maxwell
equations.
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