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Abstract – Running coupling constants both of QED and QCD are studied in a heuristic way. 

We estimate two branches of the running coupling of the QCD, the first going from low to 

moderate energies, and the second running at high energies. The intercept of the high energy 

branch of QCD with the high energy curve of the QED-coupling is used, as a means to 

estimate the Grand Unification Theory (GUT) scale.   

 

 

 

1 – Introduction 

 

   It is a consequence of the Maxwell’s equations that the electromagnetic wave 

propagates in vacuum with a speed given by the inverse of the product of the 

electric permittivity and the magnetic permeability of vacuum. In classical 

electromagnetism, all these quantities are constants. However the quantum field 

theory (QFT) considers that the quantum vacuum behaves as an active medium, 

whose physical properties depends on the energy (wavelength) of the instrument 

used to probe it. 

   As asked by Kane [K]: “Why is the electromagnetic interaction due to a 

massless spin-one particle, the photon, being exchanged between charged 

objects?” Yet, as was pointed out by Kane [K], answer to these questions was 

done, at least partially, within the framework of the gauge theories. These are 

theories where the interaction is determined, taken in account some internal 

symmetry. Because of these symmetries the theory is invariant under some local 

transformations. 

   In this paper we will work out two of these theories, namely the Quantum 

Electrodynamics (QED) and the Quantum Chromodynamics (QCD), in order to 
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describe the dependence of their coupling constants on the energy scale used to 

probe them. Besides this we will intend to unify the description of both theories 

with respect to the dependence of their coupling constants on the energy scale. 

We also will look at the energy scale where the strength of these two 

interactions becomes of equal magnitude (the electroweak and strong 

interactions unification scale).  

 

2- Running Coupling constant of the QED 

 

   The lagrangian of the quantum electrodynamics can be written as [K, M, H] 

 

                       L = i

 - m - ¼ F


 F + ie


A,                           (1)                        

 

With                                     

 

                     F


 = 

A


 - 


A


              and                  = 

+


0
.                      (2) 

 

In (1)   is a fermionic field, e and m are respectively electron charge and rest 

mass, A is the four-vector electromagnetic potential and 

 are the Dirac’s -

matrices. We observe that the gauge invariance of (1) is warranted by the 

coupling between the fermionic field and the vector potential. 

   In order to pursue further let us start from the energy density stored in a 

classical electric field Ecl. It is given by 

 

                                                  ucl = ½ ε0 Ecl
2
.                                                   (3) 

 

If we think in terms of a point charge, (3) takes the form 
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                                       ucl = ½[1  (4𝜋)](αħc)  r
4
,                                            (4) 

where α is the fine structure constant. 

   Meanwhile the demand for gauge invariance implies in a coupling between 

the fermionic field  and the classical field Ecl. We can interpret this coupling 

as the the fermionic field imposing a quantum fluctuation over the classical field 

and write (being ξ a constant) 

 

                                                  E = Ecl + ξ .                                                  (5) 

 

When the fermionic field is “turned off”, the classical value of the electric field 

is recovered. 

   Now if we take the average (symbol <>) of the squared fields, we have 

 

                                      <E
2
> = <Ecl

2
> + ξ

2
 <

2
>.                                             (6) 

 

The cross product of the two kinds of field averages out to zero due to the 

fluctuation character of the -field. 

   In a paper dealing with the critical behavior of the Ising model, C. J. 

Thompson [Th, N1] wrote an action as a means to study its critical behavior, 

supposed to be within the same universality class of the ϕ
4
-theory. Inspired in 

Thompson’s work [Th] it is possible to construct an action based on lagragian 

(1), by integrating it in four-volume (V4) endowed with a spherical symmetry. 

One of the Thompson’s prescriptions states that: by considering the integral of 

the lagrangian (1) in a coherence volume V4, the modulus of each integrated 

term of it is separately equal to the unity. Next we use Thompson’s recipe in 

order to study the running coupling constant in the QED. Applying this recipe to 

the first term of (1) we have 
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                                           │∫ i  dV4│= 1.                                          (7) 

 

Neglecting the spinorial character of the field , we can extract from (7) the 

average <>, taking in account a 4-sphere of radius r. We get 

 

                                    <>r = [1  (2𝜋2
)] (1  r

3
).                                            (8) 

 

 This result for the averaged squared quantum field is consistent with the 

calculated self energy of the electron, as discussed by Weisskopf [We]. 

From (60 a relation involving energy densities follows, namely  

 

                                                     u = ucl + uq,                                                    (9) 

 

where uq stands for quantum contribution to the energy density, and using (8) 

and (4) it is possible to write 

 

                                  uq = -½ [1 (4𝜋)] (αħc  r
4
) (r  C),                                  (10) 

 

where C  ħ  (mc)is the reduced Compton wavelength of the electron. We 

observe that at r = C, the two contributions for the energy density, namely 

classical and quantum contributions, have equal magnitude. The minus signal 

which appears in (10) is guided by the necessity of the current treatment to be 

consistent with the dielectric screening provoked by the presence of virtual 

electron-positron pairs in the quantum vacuum. These pairs behave as 

fluctuating electric dipoles. 

   Next we write an energy balance equation 
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                                      c
2
 dm = uq dV3 = uq 4𝜋r

2
dr.                                        (11) 

 

Inserting (10) into (11) leads to 

 

                            dm  m = -½ α (dr  r) = ½ α (d  ).                                    (12) 

 

In the last equality of (12) we took in account that the energy scale  goes as  

1  r. 

   At this point it is convenient to write the relation for the mass energy of the 

electron, namely 

 

                                                  m c
2
 =  αħc  R,                                               (13) 

 

where it is supposed that the α-coupling also depends on the variable R. 

Next we write 

 

                               dm = (m  α) dα + (m  R) dR.                                    (14) 

 

Therefore using (13) we have 

 

                      c
2
 dm = (αħc  R) (dα  α) - (αħc  R) (dR  R).                            (15) 

 

It seems to be a plausible hypothesis to assume that 
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                                             dα α = - dR  R,                                                   (16) 

 

taking in account the screening properties of the vacuum filled with virtual 

electric dipoles. Using (13) and (16) into (15) yields 

 

                                       dα α = ½ (dm  m).                                                    (17) 

 

Putting (12) into (17) we get 

 

                                        dα α = ¼ α (d ).                                                   (18) 

 

Finally we can rewrite (18) in the usual form 

 

                                        (dα d) = (¼) α
2
.                                                   (19) 

 

When the β-function of the QED4 is calculated by computing all the Feynman  

Diagrams present at one-loop level, it is found that the numerical coefficient 

multiplying the α
2
-term in (19) is (2  3𝜋) instead of the ¼ obtained in the 

present work (please see references [N1,R]). 

 

 

3 – Running coupling constant of the QCD 

   Quantum Chromodynamics (QCD) is the most fundamental theory of the 

strong interactions, where quarks endowed with color-charges interact through 

the exchange of gluons. This non-abelian theory exhibits an  SU(3)internal 

symmetry (please see reference [Wil]). 
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The QCD lagrangian can be written in the form [H, M, N1, Wil] 

 

                     LQCD = ∑j j(iD

 - mjj) - ¼ G

a
G


a,                                 (20A) 

 

Where 

 

       D

 = 


 + ½ ig aA


a,               G


a = 


A


a - 


A


a – g fabcA


bA


c.      (20B) 

 

In (20),  mj and j are the mass and the fermionic field of the quark of flavor j, 

A is the gluonic field,  and  are space-time indexes and a,b,c are color 

indexes. 

   As we are dealing with a non-abelian field theory, besides the fermionic 

corrections to the averaged color-electric field we will also have the bosonic 

corrections to it and we write 

 

                            <E
2
> = <Ecl

2
> + <(EF)

2
> + <(EB)

2
>.                                (21) 

 

The total energy density u, reads 

 

                                               u = ucl + uF + uB.                                                (22) 

 

In (21), EF and EB stand for the fermionic and bosonic contributions to the 

color-electric field.  

   As in the QED case, we can apply Thompson’s prescription [Th] to the kinetic 

term of the action constructed by using lagrangian (20). We have 
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        │∫ i  dV4│ 1                                 <jj>  (1  r
3
).           (23) 

 

The coupling between the quark fields j and the color potential A


a warrants 

the gauge invariance of the theory. Pursuing further we write 

                                    <(EF)
2
>  <jj>  (1  r

3
).                                      (24) 

 

However the non-abelian character of the QCD implies in the interaction among 

the components of the gauge field. This leads to a quantum fluctuation 

contribution to the energy density of a bosonic kind (uB). As will see, this 

contribution has its signal changed relative to that found in the fermionic 

contribution, the only present in the QED case. 

   Next we are going to examine the aspect of the bosonic contribution through 

an “auxiliary” scalar field (). To do this we write an action which lagrangian 

exhibits a non-linear term in the field-, mimicking in this way the non-abelian 

feature of the problem.  

 

3A – Color Paramagnetism 

 

   Inspired in the work of Nielsen [Ni], please see also Moryasu [M], we write 

the action (A) for the field- 

 

               A = d
4
r {[( - (eS  c)A)]

2
 + (1  c

2
)(  t)

2
 + ¼ k 

4
}.                 (25) 

 

In (25) eS is the strong charge, and taking A = 0 we get 

      
2
 – (1 c

2
)

 2
  t

2
 – (eS  c)(.A + A.) = (eS

2
  c

2
)A

2
 + k 

3
.           (26) 
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Next we define 

 

                                                    A = H x r,                                                     (27) 

being H a fluctuating color-magnetic field, and performing averages we get 

 

                   <A> = 0                      and                  <A
2
> = H

2
 

2
.                     (28) 

 

Before pursuing further we must renormalize the k-coupling. We adopt the 

Thompson’s recipe and write 

 

       1
2
(k

4
)d

4
r = 1               <k> 1

2
(1 r

4
)(r

3
dr) = <k> ln(R2  R1) = 1.         (29) 

 

Solving for <k>, we find 

 

                                <k> = 1  ln(R2  R1) = 1  ln(E1  E2).                                (30) 

 

Taking the average of the differential equation (26), linear terms in <A> vanish, 

and making the requirement of a free wave propagation for the -field we obtain 

 

                  
2
 – (1 c

2
)

 2
  t

2
  = (eS

2
  c

2
)H

2


2
  + <k> 

3
 =0.                     (31) 

 

Relations (30) and (31) imply 
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                                <
2
> = - (eS

2
  c

2
)H

2


2
 ln(E1  E2).                                     (32) 

 

A energy density may be associated to <
2
> as follows 

             E = V(<
2
>)dV3 = <

2
>V = - (eS

2
  c

2
)H

2
V ln(E1  E2).                  (33) 

 

On the other hand, the paramagnetism of  a system in a color-magnetic field 

permit us to write 

 

                                     Eparamag = - HMV = - H
2
V,                                         (34) 

 

where  is the color-magnetic susceptibility, and M is the color-magnetization. 

Comparing (33) and (34) we find 

 

                                           = (eS
2
  c

2
) ln(E1  E2).                                           (35) 

 

Besides this the color-magnetic permeability is given by 

 

                            = 1 + 4 = 1 + 4(eS
2
  c

2
)ln(E1  E2).                               (36) 

 

Taking in account that 

 

                                                   = c
2
 = 1,                                                     (37) 

 

we obtain the relation for the color-electric permittivity, namely 
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                          = 1   [1 + 4(eS
2
  c

2
)ln(E1  E2)],      E1E2.                          (38) 

 

In (38) we have a single “mode” contribution from the bosonic field. By 

considering 

 

                                                  αS = αS0  ,                                                      (39) 

 

we have 

                    αS(E1)  αS(E2) = 1   [1 + 4(eS
2
  c

2
)ln(E1  E2)].                          (40) 

 

In the limit E1, αS(E1)0,we verify the occurrence of the asymptotic 

freedom. However, here we have not yet considered the effect of the fermionic 

fields which leads the coupling to grow with increasing energies. The 

competition between these two fields will be treated in the following. 

 

3B – QCD running coupling 

 

   Now we turn to the estimations of the quantum contribution for the energy 

density. We write 

 

                           uq = uF + uB = ½[1  (4)]αS ћc(1  r
4
)(r  C).                         (41) 

 

We observe that at r = C, we have uq = uclassic. Pursuing further we have 

 

                   uqdV3 = ½(αS ћc  C)(dr  r) = - ½(αS ћc  C)(d  ).                  (42) 
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Performing the integration of (42) we get 

 

              m c
2
 = -½ 0


 (αS m c

2
)(d  ),          where  C = ћ  (mc).            (43) 

 

We extract from the integrand the averages of αS and m and we obtain 

 

                                m  = -½  <αS > <m> 0

 (d  ).                                   (44) 

 

 

 

Next we make a very plausible proposition, namely 

 

                                        αS  <αS> = m  <m>.                                            (45) 

 

Relations (44) and (45) yield 

 

                                   αS  <αS> = -½ <αS> ln(  0).                                    (46) 

 

Putting αS = αS – αS0 in (46), we obtain 

 

                                     αS = αS0 -½ (<αS>)
2
 ln(  0).                                      (47) 

 

Now we define 
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                                               (<αS>)
2
 = αS αref ,                                               (48) 

 

where αref stands for reference αS-coupling. Finally using (48) in (47) we get 

 

                                 αS  = αS0  [1 + ½αref ln(  0)].                                       (49) 

 

Relation (49) satisfies the differential equation 

 

                                  dαS   d = - ½( αref   αS0) αS
2
.                                      (50) 

 

It is interesting to do an analysis of the signal of the term ½(αref   αS0) of the 

equation (50). As discussed before, in QCD there is a competition between the 

bosonic and the fermionic fields and we can write 

 

                                    αref   (2αS0) = (3N – 2nf)  Q.                                        (51) 

 

In (51), N is the number of the bosonic contributions and 3 is the degeneracy 

number of a spin-1field (2s+1=3), and nf is the number of fermionic fields 

(2s+1=2). 

Q is a number to be determined. In the QED, we have N=0 and nf=1, and by 

considering the -function at the one-loop level, we find Q = 3. Therefore we 

have 

 

                                    αref   (2αS0) = (3N – 2nf)  (3).                                    (52) 
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At lower and moderate energies it is convenient to do an alternative analysis. 

Looking at relation (48) we observe that if αS<1, the maximum value of αref  

which is consistent with this equation is αref = 1. We take as reference energy 

that of the quark constituent mass, equal to one-third of the nucleon mass. 

Doing this eq. (49) assumes the form 

 

                                αS  = 0.41922  [1 + 0.5 ln(  0)].                                   (53) 

 

Table 1 displays some values for the running coupling of the QCD as function 

of the energy, according eq. (53). 

 

 

Energy (GeV) QCD running coupling αS 

0.313 1 

1 0.41922 

2 0.311 

3 0.271 

4 0.248 

5 0.232 

10 0.195 

15 0.178 

20 0.168 

30 0.155 

40 0.147 

80 0.131375 

0.939 0.43284 

   

Table 1-Running coupling constant of the QCD 

 

 

3- Grand Unification (GUT) Scale 
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   It seems that relation (53) is more appropriate to represent the running 

coupling constant of the QCD at lower and intermediate energy scales. At very 

high energies, when approaching the GUT scale we proceed as follows. 

With respect to the number N of bosons which appear in eq. (52), we observe 

that before reaching the Gut scale we have met the electro-weak  scale and 

therefore we have 8 bosons coming from the SU(3) theory (QCD) plus 3bosons 

0f the SU(2) (QFD-Quantum Flavor Dynamics), given N = 11. Besides this nf  = 

6 (six quark flavors). In this way we propose a new branch of the strong 

coupling starting at the energy of 80 GeV.  

We have 

 

               αref = αS0(80 GeV)(7  ) = 0.131375x7  = .292726                       (54) 

 

Taking in account the above considerations, we can write 

 

                αS> 80 GeV = 0.131375  [1 + 0.292726 ln(  80 GeV)].                   (55) 

 

Figure-1displays the two branches of the running coupling of QCD dicussed in 

this work. 

 

  

 

 

 

 

 

 



 

16 
 

 

 

 

                                                                                       x = ln( 0) , 0 = 1 GeV 

Figure 1 – Two regimes for the running coupling constant in QCD. The first 

describes αS for x  ln( 0),in the range 0 to 4.3820266. The second describes 

αS from x = 4.3820266 to 32. We must consider the lower branch of the curves 

in both regimes. The second branch is used to find the energy scale of the GUT. 

First branch equation: .41922/(1+.5*x).                                                         

Second branch equation: .131375/(1+.292726*(x-4.3820266)). 

 

   In order to estimate the running coupling constant of the QED, we adopt a 

procedure advanced by Kane [K-page 235]. We assume that at high energies 

(> 80 GeV), the number of dipoles (nd) contributing to the dielectric screening 

in QED is given by 

 

                                nd = nl +3(4  9)nu+ 3(1  9)nd + nW.                                  (56) 
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In (56), nl is the number of charged leptons, nu the number of quarks up-like, nd 

of quarks down-like and nW =1stands for the W-particles. At sufficient higher 

energies we assume full contribution of all these particles, which gives nd =9. 

The factor of three comes from the number of color charges. Therefore we have 

 

               αref 2QED = - α0 [2  (3)] nd = -(3  64),    with α0 = 1  128.           (57) 

 

For > 80 GeV, we write 

 

          αQED = (1  128)  [1 – (3x)  (64)],     where x = ln(  80 GeV).         (58) 

 

Figure-2 displays the two running coupling constants, namely αQED and αS in the 

region close to the energy scale of GUT. The intercept of these two curves give 

GUT = 3.55 x 10
14

 GeV. 
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                                                                                                x = ln(  (80 GeV)) 

Figure 2 – Plot of the running coupling constants of the QED, given by the 

equation: 1/128/(1-3*x/(64*pi)), and of the QCD, given by the 

equation:.131375/(1+.292726*x). The intercept of the two curves occurs at the 

point x = 29.12 and y = .0138. This corresponds to the energy of GUT = 3.55 x 

10
14

 GeV, the energy scale of the GUT found in the present work. 
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