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Fock (1931 - see Appendix I) showed that Fundamental Quantum Theory requires
Linear Operators “... represented by a definite integral [of a]... kernel ... function ...”.

Hua (1958 - see Appendix II) showed Kernel Functions for Complex Classical Domains.

Schwinger (1951 - see Schweber, PNAS 102, 7783-7788) “... introduced a description in
terms of Green'’s functions, what Feynman had called propagators ... The Green’s
functions are vacuum expectation values of time-ordered Heisenberg operators, and the
field theory can be defined non-perturbatively in terms of these functions ...[which]...
gave deep structural insights into QFTs; in particular ... the structure of the Green's
functions when their variables are analytically continued to complex values ...”.

Wolf (J. Math. Mech 14 (1965) 1033-1047) showed that the Classical Domains
(complete simply connected Riemannian symmetric spaces)

representing 4-dim Spacetime with Quaternionic Structure are:

S1x 81 xS1xS1 =4 copies of U(1)

S2 x S2 = 2 copies of SU(2)

CP2 =SU(3) /1 SU(2)xU(1)

S4 = Spin(5) / Spin(4) = Euclidean version of Spin(2,3) / Spin(1,3)

Armand Wyler (1971 - C. R. Acad. Sc. Paris, t. 271, 186-188) showed how to use
Green’s Functions = Kernel Functions of Classical Domain structures characterizing
Sources = Leptons, Quarks, and Gauge Bosons,

to calculate Particle Masses and Force Strengths (see also viXra 1405.0030).

Schwinger (1969 - see physics/0610054) said: “... operator field theory ... replace[s] the
particle with ... properties ... distributed througout ... small volumes of three-dimensional
space ... particles ... must be created ... even though we vary a number of experimental
parameters ... The properties of the particle ... remain the same ... We introduce a
quantitative description of the particle source in terms of a source function ...

we do not have to claim that we can make the source arbitrarily small ...

the experimeter... must detect the particles ...[by]... collision that annihilates the
particle ... the source ... can be ... an abstraction of an annilhilation collision,

with the source acting negatively, as a sink ... The basic things are ... the source
functions ... describing the intermediate propagation of the particle ...”.

Creation and Annihilation operators indicate a Clifford Algebra, and 8-Periodicity shows
that the basic Clifford Algebra is formed by tensor products of 256-dim CI(8) such as
CI(8) x CI(8) = CI(16) containing 248-dim E8 = 120-dim D8 + 128-dim D8 half-spinor
whose maximal contraction is a realistic generalized Heisenberg Algebra h92 x A7 =

= 5-graded 28 + 64 + ((SL(8,R)+1) + 64 + 28 see viXra 1507.0069 and 1405.0030).
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Part 1

BASIC CONCEPTS
OF QUANTUM MECHANICS

Chapter 1

THE PHYSICAL AND EPISTEMOLOGICAL BASES
OF QUANTUM MECHANICS

1. The need for new methods and concepts
in describing atomic phenomena

Quantum mechanics appeared during the first few decades of
the century on the basis of studies of atomic phenomena. The
structure of the atom, the properties of electrons and atomic
nuclei, the very stability of a system consisting of a positively
charged nucleus and negatively charged electrons, the radiation
of light by atoms and molecules, and, last, the diffraction of
electrons — all these properties and phenomena require for their
explanation ideas and physical concepts that differ substantially
from the ideas and concepts of classical physics.

A precise formulation of the new concepts demands new math-
ematical tools, and we will familiarize ourselves with these in
subsequent chapters. But we will try to explain the principal
difference between quantum mechanics and classical mechanics
in this introductory chapter.

2. The classical description of phenomena

When we describe various phenomena in terms of classical
physics, we assume that physical processes are independent of
the conditions of observation. Thus we take it for granted that we
can always “spy” on the process and yet not interfere with it or
influence it. True enough, if we “spy” on a physical process from
different view points (and correspondingly use different frames
of reference for its description), it will appear to us in different
ways. For instance, the free fall of a body may proceed in a
straight line in one frame of reference and in a parabola in
another. But the dependence of the form of a phenomenon on the
frame of reference has always been taken into consideration,
namely, by transforming from the coordinates of one frame of re-
ference to the coordinates of another. Such a change in form
introduces nothing new into the phenomenon. For this reason in
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14 Fundamentals of Quantum Mechanics

classical physics we can speak of the independence of a pheno-
menon from the manner of observation.

Quantum mechanics has shown that in microprocesses this is
not the case. Here the very possibility of observation presupposes
definite physical conditions that may be related to the essence of
the process. Specifying these conditions does not mean simply
indicating a particular frame of reference but requires more de-
tailed elaboration.

Neglect of these considerations leads to an abstraction that we
may call the absolutization of physical processes. If we accept
this abstraction, it becomes possible to consider physical processes
as occurring by themselves regardless of whether there is a real
possibility of their observation (that is, whether the appropriate
physical conditions exist for such processes). .

The use of this abstraction is justified in studying macroscopic
phenomena, for in these the influence produced by a measurement
is to all practical purposes negligible. The absolutization of such
phenomena seemed so natural that before the appearance of
quantum mechanics it was never specifically stated. It went with-
out saying that physical processes occur by themselves, which
considerably simplified their description since there was no need
to specify the conditions of observation. All of classical physics is
based on the absolutization of physical processes. This abstraction
is one of its characteristic features.

Another abstraction permitted in classical physics is the
possibility of unlimited amendment of observation. By this we
mean not only an increasingly precise measurement of a specific
quantity but simultaneously the measurement of any other quan-
tity related to the observed object or phenomenon. This can be
called the particularization of measurements. Even when measur-
ing different quantities requires different conditions of observation,
classical physics considers it possible to combine the results
in an overall picture describing the physical process under
investigation. There is a logical connection between allow-
ing for the independence of the physical process from the con-
ditions of observation, that is, absolutization of the process, and
allowing for the possibility of encompassing different aspects
and characteristics of the behaviour of an object in the physical
process.

The concepts of classical physics prompt the idea that not only
an absolute but an exhaustive description of the state of motion
of a physical system (with certain degrees of freedom) is possible.
And an exhaustive description is assumed to be achieved if there
is full particularization of observations and further observations
can add nothing new.
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3. Range of application of the classical way
of describing phenomena.
Heisenberg’s and Bohr's uncertainty relations

Such fundamental facts as the wave-corpuscular duality of light
and of particles of matter prove that the classical way of describ-
ing phenomena is unsuitable for micro-objects. At the same time
we cannot dismiss it completely, since to describe phenomena
objectively we must rely, directly or indirectly, on something that
does not require reservations concerning the manner of observa-
tion. And this is the case with the “absolute” manner of descrip-
lion used in classical physics.

To apply the classical (absolute) manner of description intelli-
gently we must first establish its limits. If we assume that the
mathematical apparatus of quantum mechanics is known, the
relations of classical physics derive from it in the form of a
certain approximation, and the limits of application of the classical
manner of description prove to be the conditions of applicability
of this approximation. But in our discourse we proceed from
classical mechanics and can only use the simplest quantum re:
lationships.

Let us consider a simple case, the motion of a mass point with
a mass m. In classical mechanics the state of motion of a mass
point at any given moment of time is determined by its position
(x,.y4, 2) and momentum (px, py, pz). It would be incorrect, how-
ever, to consider the two sets simultaneously without referring
to the possibility of their measurement, which is limited by quan-
tum effects. |

As Werner Heisenberg proved, the localization of a particle in
space demands conditions that are not favourable for measuring
its momentum, that is, for the localization of the particle in mo-
mentum space. Conversely, conditions that are needed to measure
the momentum of a particle preclude the possibility of localizing
the particle in ordinary space.

Quantum effects, which limit the possibility of measurement,
manifest themselves, for instance, when light quanta irradiate a
particle. What is important here is that a photon, which is charac-
terized by wave parameters, is at the same time a bearer of
definite energy and momentum, which makes it a “particle of
light”. The wave parameters are: the frequency v (or the angular
frequency o = 2xnv), the wavelength A = c/v (c is the velocity of
light), and the wave vector k, which determines the direction of
the wave’s propagation (the absolute value of k is & = 2r/A =
= 2nv/c == w/c). If we define k as Planck’s constant h divided by
2n, that is, h = 2nfi, the energy of the photon, E, and its
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inomentum, p, will be related to the wave parameters as

E = ho, p=Hhk (p==2nh/A) 3.1)
where
h=1.054 X 107" ergs (3.2)

It follows from Egs. (3.1) that using light of short wavelengths
favourable for localizinﬁ a particle in ordinary space means using
high-energy photons that are capable of transferring a great
impact (momentum) to the particle and thereby upsetting its
localization in momentum space. Using low-energy photons means
using light of long wavelengths, and this in turn broadens the
diffraction bands and reduces the precision of localizing a particle
in ordinary (coordinate) space.

Equations (3.1) relate the wave properties of a photon to its
corpuscular properties. Their right-hand members contain w and k,
which are determined by the diffraction pattern, and their left-
hand members, E and p, describe the photon as a particle. Hence
Egs. (3.1) reflect the wave-corpuscular duality of a photon.

The wave-corpuscular duality proves to be a general property
not only of photons but of all particles. This makes it possible to
correlate the concepts of the electron as a particle and as a wave.
The first to suggest the idea of the wave property of matter was
Louis de Broglie, and proof came later when the diffraction of
electrons was discovered. A more precise statement of this idea
is contained in a proper interpretation of the mathematical
apparatus of quantum mechanics.

We can express the results of Heisenberg’s reasoning, just
elaborated, concerning the limits of precision of measurement in
the form of the following inequalities:

AxAp.=h, AyAp,=h, AzAp,=h (3.3)

in which Ax, Ay, Az characterize the size of the region in coordinate
space (x, y, 2) containing the particle, and Ap., Ap,, Ap. the size of
the region in momentum space (px py, Pz) containing the particle.
The inequalities show that the very nature of a particle makes it
impossible to localize it simultaneously in coordinate space and
in momentum space. They are called the Heisenberg uncertainty
relations, or simply the uncertainty relations. The word “uncertain-
ty” is understood to mean the regions of localization, (Ax, Ay, Az)
and (Apx Apy, Ap:), in the corresponding coordinate and mo-
mentum spaces.
We can couple the uncertainty relations (3.3) with

AMA(E —EY>=h (3.4)

which links the uncertainty in the change of energy of a particle,
F’ — E, with the uncertainty in the time during which this change
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occurred. According to (3.4), the transfer of energy cannot be
localized precisely in time, Relation (3.4) can be called the Hei-
senberg-Bohr uncertainty relation.

The uncertainty relations (3.3) and (3.4) characterize the range
of application of the classical (absolute) manner of describin
phenomena. Since Planck’s constant is small, this manner o
description can unquestionably be used in referring to macrosco-
pic bodies and their interactions. But this does not exhaust its
significance. It is important in describing quantum processes
because it is applied to the instruments used to study atomic
objects. Experiments (with atomic objects as well) are always
described in the classical (absolute) way.

The instruments and other means of observation, including
the human senses (which, so to say, play the role of instruments
built into the human body), are the necessary intermediaries
between the human brain and the atomic object under considera-
tion. We can now define more accurately what is meant by means
of observation by indicating the manner of their description:

The means of observation must be described in classical terms
but with due regard to the uncertainty relations (3.3) and (3.4).

4. Relativity with respect to the means
of observation as the basis for the quantum way
of describing phenomena

The new, quantum manner of describing phenomena must allow
for the possibility of actual measurement of the properties of a
micro-object. We must not ascribe to any object properties and
states of motion that cannot be justified. For this reason particular
attention should be given to the way in which we specity proper-
ties and states of motion. We must bear in mind the design and
operation of the instruments that create the conditions to which
the object is subjected. As has been said, the instruments and the
external conditions must be described in the classical manner by
indicating their parameters. It stands to reason that these pa-
rameters can be defined only to an accuracy permitted by the
uncertainty relations. Otherwise we will be exceeding the actual
potential of the measuring instruments.

A micro-object is revealed in its interaction with an instrument.
For instance, the path of a charged ﬁarticle becomes visible in
the irreversible snowballing process that takes place in a cloud
chamber or in the emulsion of a photographic plate (the particle
loses its energy in ionizing the vapour or the chemicals of the
emulsion; hence, its momentum becomes uncertain). The results
of the interaction of an atomic object with a measuring instrument

2— 3434



18 Fundamentals of Quanium Mechanics

(which is described classically) are the main experimental ele-
ments the systematization of which, based on the assumptions
about the propertics of the object, makes up the aim of the theory:
from a study of such interactions we can deduce the properties of
the atomic object, and the predictions of the theory are formu-
lated as the expected results of these interactions.

Such a statement of the problem allows the introduction of
quantities that characterize the object irrespective of the meas-
uring instrument (electric charge, mass, and properties described
by quantum mechanical operatorsL and at the same time makes
possible a comprehensive approach to the object: the object can
be viewed from the aspect (wave or corpuscular, for instance)
necessitated by the instrument and by the external conditions the
instrument creates. -

The new statement of the problem makes it possible to consider
the case when the various aspects and properties of an object do
not manifest themselves simultaneously, that is, when particu-
larization of the object’s behaviour is impossible. This will be so
if incompatible external conditions are needed for the manifesta-
tion of the object’s properties (for instance, wave and corpuscular).

We can act on the proposal of Niels Bohr and call comple-
nmentary the properties that reveal themselves in their pure form
only in different experiments held in mutually exclusive conditions,
whereas in conditions of one and the same experiment they ma-
nifest themselves only in an incomplete, modified form (for
instance, the incomplete localization in the coordinate and the
momentum space permitted by the uncertainty relations). There
is no sense in considering complementary properties simul-
taneously (in the pure form), which explains the absence of a
contradiction in the concept of wave-corpuscular duality.

By making the results of the interaction of a micro-object and
a measuring instrument the basis of the new manner of description
we introduced an important concept, the concept of relativity with
respect to the means of observation, which generalizes the well-
known concept of relativity with respect to the frame of reference.
Such a manner of description does not at ali mean that we are
ascribing a lesser degree of reality to the micro-object than to
the measuring instrument or that we are reducing the properties
of the micro-object to the properties of the instrument. £n the
contrary, a description on the basis of the concept of relativity
with respect to the means of observation gives a much deeper,
more refined, and more objective picture of the micro-object than
was possible on the basis of the idealizations of classical physics.
Such a picture also requires a more sophisticated mathematical
apparatus, namely, the theorﬁ of linear operators, including eigen-
functions and eigenvalues, the theory of groups, and other math-
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ematical concepts. The use of this apparatus in quantum physics
made it possible to give a theoretical explanation of some funda-
mental properties 0% matter that could not be explained in the
classical way and also to calculate the values of many quantities
observed in experiments (for instance, the frequencies in atomic
spectra). But more than that — and this is no less important to
us — the physical interpretation of the matheinatical concepts used
in quantum mechanics leads to a number of profound and prin-
cipled conclusions; for one, generalization of the concept of the
state of a system on the basis of the concepts of probability and
potential possibility.

5. Potential possibility in quantum mechanics

1f we take the act of interaction between an atomic object and
a measuring instrument as the source of our judgements about
the object's properties and if in studying phenomena we allow
for the concept of relativity with respect to the means of observa-
tion, we are introducing a substantially new element into the
description of the atomic object and its state and behaviour, that
is, the idea of probability and thereby the idea of potential possi-
bility. The need to consider the concept of probability as a sub-
stantial element of description rather than a sign of incompleteness
of our knowledge follows from the fact that for given external
conditions the result of the object’s interaction with the instrument
is not, generally speaking, predetermined uniquely but only has
a certain probability of occurring. With a fixed initial state of the
object and with given external conditions a series of such interac-
tions results in a statistics that corresponds to a certain pro-
bability distribution. This probability distribution reflects the po-
tential possibilities that exist in the given conditions.

Let us consider an experiment with a physical system that
would enable us to make predictions about the results of future
interactions between the system and measuring instruments of
various kinds. Such an initial experiment must include a certain
preparation of the system (for instance, preparation of a mono-
chromatic beam of electrons) and the creation of certain external
conditions in which the system will be placed after the prepara-
tion (for instance, the passage of the electron beam through a
crystal). At times it is advisable to consider the preparation of
the system and the creation of external conditions as two
different stages of the experiment, but the two stages can also be

considered one initial experiment, the purpose of which is to obtain
predictlions: |
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The initial experiment is always addressed to the future.

The manner of preparation and the external conditions in an
initial experiment are described in the language of classical phy-
sics, but its result, which must give a ful%ecatalogue of the
potential possibilities for the given conditions, requires new,
quantum mechanical means for formulation. To have an idea of
why we must use these means, let us consider how the potential
possibilities existing in the given conditions materialize.

First of ali we must bear in mind that a final experiment, in
which the potential possibilities materialize, may be conducted in
different ways: the registering instrument may be of different
construction (as a rule, one excludes another). As in the initial
experiment, the construction and operation of the instrument are
described in the classical way. The different versions of the final
experiment and the corresponding instruments can be character-
ized by the type of the quantity they measure (position, momen-
tum, etc.). |

Thus, with the initial experiment given, there is first of all a
possibility of choosing different types of instruments for the final
experiment. In any case,

The final experiment is always addressed to the past

(and not to the future in contrast to the initial experiment). It
can be called the verifying experiment because it enables us to
verify the predictions of the initial experiment.

Let us assume that the type of verifying experiment has been
chosen. How do we formulate its result? We must always remember
that we are talking about potential possibilities, which are created
in the initial experiment and realized in the verifying experiment.
For a given type of verifying experiment these potential possibi-
lities are expressed as probability distributions for the given
quantity (more precisely, for the values of the quantity that can
be obtained in the verifying experiment). Hence it is the probabi-
lity distribution we seek to verify. Clearly, this cannot be done by
a simple measurement but requires many repetitions of the entire
experiment (with the same preparation of the object and the same
external conditions). The statistics obtained in this process of
repetition makes it possible to draw a conclusion about the proba-
bility distribution that is to be studied. |

A total experiment (an experiment that is carried out to the
end and permits a comparison with theory) consists of the initial
and veritying experiments combined and performed many times
over. Here it is in place to note once more that for a given initial
experiment (for given initial conditions) the final experiment ma
be set up in different ways (the measured quantities may diﬁ'er{
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and every type of final experiment has its own probability distri-
bution. |

Thus a theory must describe the initial state of a system in
such a way as to make it possible to obtain probability distribu-
tions for any type of final experiment from this state. In this way
we secure a full description of the potential possibilities that
follow from the initial experiment.

Since a final experiment may take place later than the initial
experiment, a theory must also give the time dependence of
probabilities and potential possibilities. The establishment of this
dependence will play the same role as the discovery of the laws
of motion did in classical physics.



Chapter 11

THE MATHEMATICAL APPARATUS
OF QUANTUM MECHANICS

1. Quantum mechanics
and the ilnear-operator problems

An important step towards the creation of present-day quantum
mechanics was Bohr’s postulation of two principles characterizing
the properties of atomic systems.

The first principle asserts that atomic systems have stationary
states, in which they do not radiate or absorb energy. In these
states an atomic system possesses energy values that form a
discrete sequence E,, Ey, ..., E,, ... (the energy levels of the
systein).

According to the second principle, radiation emitted or absor-
bed by an atomic system in the transition from one energy level
to another has a definite frequency v determined by the con-
dition

E,—E,=hv

wt}ere h is Planck’s constant, and E, and E, are the energy le-
vels.

These principles conflict with classical mechanics and electro-
dynamics but are fully confirmed in experiments, It is a natural
idea, therefore, to propose replacing the classical theory by a
theory that would harmonize with Bohr’s principles and be lo-
gically consistent.

The problem of determining the stationary states of an atomic
system, states that are described by definite energy values (and
certain other constants of integration), is analogous to the prob-
lem of mathematical physics where definite states of a system
are chosen from the whole set of states, namely, the problem of
eigenfrequencies of oscillations, or, more generally, the linear-
operator problem and the associated eigenvalue problem. In the
problem of this kind a sequence of values of a given quantity
would emerge automatically from the whole set of values. Quan-
tum mechanics has substantiated this idea of guantization ever
since the historic paper of Erwin Schrédinger (1926) concerning
quantization as an eigenvalue problem. A certain linear ope-
rator is related to each physical quantity, and the theory of
linear operators is the mathematical apparatus of quantum mech-

4nics.
22
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2, The operator concept and examples

As in the case of a function, which is an instruction as to how,
knowing number x, we can find number y = f(x), an operator
will map a given function ¢(x) into a new function

¥ (x)=L[g(x)] 2.1)

A linear operator has the properties that, for any functions ¢,

2 ‘P;
v L@ +9)=L@) + L)
L(ap)=al(9) (2.2)

where a is an arbitrary complex number. Sincd we will deal only
with linear operators, the word “linear” will be often omitted.

Operators act on functions of one or several variables. The
variables can be either continuous, which is the case for the
coordinates (position) of an object, or discontinuous, that is,
assuming only discrete values, which is the case for energy levels
or the number that labels these levels. Continuous variables can
either take on any value or change within certain domains. Dis-
continuous variables can take on both finite and infinite sequences
of values. We will always assume that the values of the indepen-
dent variables (or arguments) of a function are real numbers,
whereas the functions themselves, which the operators act on, can
be complex-valned. When specifying an operator, we must always
indicate on the functions of what variables it acts.

Typical operators that act on functions of a continuous variable
x are the multiplication of a function into x and the differentiation
with respect to x:

LIFl=xf(x), LIF@]=-f()

In the first case x plays a double role: it is the argument of f(x)
and it is the operator itself.
Another example is the Laplacian operator V2.
0? 0? 0?
V2f (x, Yy, 2)= axfz + ayfz + az£
There is also a class of linear operators that can be represented
by a definite integral:

b

LIf =\ K (x, 8 f (2) dt (2.3)

a

where the function K(x, &) is called the kernel of the operator.
As one example of a kernel let us consider Poisson’s differential
equalion

VF=f
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INTRODUCTION

I. Classical domains. By a classical domain we shall understand an irre-
ducible bounded symmetric domain (in the space of several complex varia-
bles) of one of the following four types:

(1) The domain R; of m X n matrices with complex entries satisfying the
condition

I™ _Z77'>0.

Here I™ is the identity matrix of order m, Z’ is the complex conjugate of
the transposed matrix Z’. (H>0 for a hermitian matrix H denotes, as
usual, that H is positive definite.)

(2) The domain Ry of symmetric matrices of order n (with complex
entries) satisfying the condition

I® _ZZ>0.

(3) The domain Ry of skew-symmetric matrices of order n (with com-
plex entries) satisfying the condition

I"+ZZ>0.
(4) The domain Rv of n-dimensional (n>2) vectors
2=(21,22, -+, 2)
(2, are complex numbers) satisfying the conditions®
|2z’ |24+1— 222" >0, |zz’| <1.

The complex dimension of these four domains is mn,n(n+1)/2,n(n—1)/2,
n, respectively.

The author has shown (cf. L. K. Hua [3]) that Ry can also be regarded
as a homogeneous space of 2Xn real matrices. Therefore, the study of all
these domains can be reduced to a study of the geometry of matrices.

In 1935, E. Cartan [1] proved that there exist only six types of irreduci-
ble homogeneous bounded symmetric domains. Beside the above four
types, there exist only two; their dimensions are 16 and 27. Of course

2 s .
Translator’s note (n.b., unless otherwise noted, these words refer to the Russian trans-
lator). Here and throughout, the author considers a vector as a matrix of one row and n
columns. So 2’ is a matrix of one column and n rows (the transpose of the matrix z).

5



6 INTRODUCTION

these two types are rather special. The problem of the explicit description
of these two types is still open.

The purpose of the present book is to study harmonic analysis on the
classical domains. (The exact content of this harmonic analysis will be
outlined later.)

I1. Characteristic manifolds. Let R be a bounded homogeneous domain
in the 2rn-dimensional Euclidean space of n complex variables z=(2;, 2, - - -,
2,), and f(2) an analytic function of z, regular in R. It is known that the
maximum of the modulus of the function f(2) is assumed on the boundary
of R. Let € be a manifold on the boundary of & having the following
properties:

(a) The modulus of every analytic function regular in R assumes its
maximum on €.

(b) For every point a on € there exists a function f(z), regular on R,
such that the modulus of f(z) assumes its maximum at z=a.

Such a manifold € is called a characteristic manifold of the domain .
We should mention that € is in general a proper subset of the boundary,
and that the dimension of € may be much less than 2n— 1. It is clear that
€ is uniquely determined by R. It is easy to show that € is closed, and
that an analytic function which is regular in a neighborhood of each point
of € is uniquely determined by its values on €. Hence it follows that the
real dimension of € is not less than n. We shall denote by ¢ the variable
on €, and by d¢d¢” and £ the metric and the element of volume of €.

Clearly, in the definition of € it is enough to consider only linear func-
tions instead of all analytic functions.

We describe the characteristic manifolds of the classical domains.

(1) €; consists of the m X n matrices U satisfying the condition

UU =1

(2) €y consists of all symmetric unitary matrices of order n.

(8) €y is defined differently for even and odd n. If n is even, then €y
consists of all skew-symmetric unitary matrices of order n. If n is odd,
then € ;1 consists of all matrices of the form

ubDU’,

where U is an arbitrary unitary matrix and

p=(_9¢)+ - +(%o)Fo
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(4) Gqv consists of the vectors e’x, where x is a real vector such that
xx'=1.

The manifolds €;, €y, €y and €;v have real dimension m(2n—m),
nn+1)/2,n(n—1)/24+ 14+ (—=1)")(n—1)/2 and n, respectively.

These characteristic manifolds are homogeneous spaces. Furthermore,
any point of € can be carried into any other point of € by a transforma-
tion leaving a given point of & invariant. The general theory of harmonic
analysis on homogeneous spaces has been developed earlier (cf. E. Cartan
(1], H. Weyl [1]); however, the method presented in this book gives more
precise and more useful results.

II1. Heuristic considerations. Suppose that we have a sequence of analy-
tic functions in R

‘qay(z)}; ”=071727"'7
such that any analytic function f(z) in R can be developed in a series
[}
f(Z) == ZO av(Pv (Z),
convergent in &. We define the two infinite hermitian matrices

H1=(f¢,(s>cpp(8>é)
(&%

v, 0=0,1,2, ...
and

Hy= ( [¢.@%@ 2-)
R -

The basis {¢, (2) } can be chosen to be orthonormal, such that

[o, 0%, ®i=3,
(-4

=0,1,2,...

and
[e.@e,@z=13,.
R

The eigenvalues X\, A\, Ag, - - - are pseudoconformal invariants, i.e., they do
not depend on the choice of the basis {¢, (2) | and are preserved under
analytic mappings transforming R and € into R, and €,, respectively.

The existence of a system {¢, (2) } is known from a theorem of H. Cartan
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[1] on complete circular domains.?
Now setting

K (z. 6):23&{%& .
v=0 M

we obtain the Bergman kernel which has the following reproducing prop-
erty. For any function f(z) analytic in R we have

f@O= [Keof@)w.
R
Setting
Hz D= Y0 @%0.

v=0

we obtain the Cauchy kernel of the domain . This kernel has the repro-
ducing property that for any analytic function f(z) with a series develop-
ment

f (&) = anv(?v (z)’
on € we have

f@=[HeEDHiOL
&4

Setting
f(2) =u(2)H(z,w),
we have
__[(HEHHE ») ;
u(2) _@ oo = ) u) &
The function
P(Z,E) p— H (Z, E) H(Er Z)

H(z, 2)

is called the Poisson kernel for the domain R. It is positive.
It is clear that the system of functions {¢, (§) },»=0,1,2, --- is not com-
plete in the space of continuous functions on €. We complete it to a com-

® Translator’s note. The domain R in the space of several complex variables is said to be
a :;ircular domain (with center at the origin) if together with any point z in % the point
2¢” isinR for any real ¢. If together with any point z in R also the point rze* is in R for any
real p and 0=<r<1, then®R is said to be a complete circular domain.
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plete orthonormal system
‘%(E) }7 ”=0’ :l:l’ :l:z""9

and develop the function P(z, £) into a Fourier series with respect to this
new system

P(z.H= 2 e, (%0 @ <z)—fP(z. Do, ®F

¥=—CO

If
lim @, (2) = 9, (%),
z>E

then the functions on € having a Fourier series development

e®= Y 6e®. 6= | 9® 704
[

y=-—00

can be put in correspondence with the class of functions
(o)

2= [P He®i= Y 2
(&4

Y= —CO

which we shall call harmonic functions in the domain R.

The harmonic functions can also be defined as solutions of a second
order partial differential equation. This equation can be obtained from the
following considerations.

The Bergman kernel yields a Riemannian metric on the space R:

n
ddnK(z,2) = 220 = - InK (2, 2) dz; dz;= W hijdz; dz;.

i=1j=1 i, J=1
Corresponding to the tensor h? we have a differential operator

> 3w

i=1 j=1
which we call the Laplace operator of this space.

We can talk about a Dirichlet problem with respect to this operator.
All the facts mentioned in this section will be treated in detail later in

the book.

IV. Remarks on the methods to be used.

(a) The machinery of group representation theory. It is known that the
classical domains of all four types are complete circular domains (cf. the

02, 0z; §
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But if @ is a unitary skew-symmetric matrix, then a unitary matrix Vj
can be found such that V,QVi=F. Hence it is also possible to find a uni-
tary matrix U, such that

—_r = 0 0
out=() )
Setting h= kU,, we obtain

h (g 2) = kUoUoK Us=0.

This means that
h=I[e®, 0, ..., O].

Thus the inner integral in formula (4.7.10) is equal to

TS| Sl ()

and we obtain (4.7.8) from (4.7.10).
(We used the formula

o [e@@e®. ..., ze®ab=¢(, 0, ..., 0),
0

which holds for ¢(2) analytic in a closed circular domain with its center
at the origin and z lying inside the domain.)

4°, The characteristic manifold of the domain Ry consists of vectors of
the form e”x, where 0<6<=, and x=(x,,---,x,) is a real vector which
satisfies the condition xx’=1.

1
V(€ [(x— e Bz (x—e B2 (4.7.11)

H(z, 6, x)=

It is easy to calculate the magnitude of the volume V(€ ):

n
21t?+ !
V(@)= —In\

(2
(z)
4.8. The Poisson kernel for circular domains. Suppose that R, just as in
§4.5, is a star-shaped circular domain, and € its characteristic manifold,

transitive with respect to the group Ty of motions of R which leave the
origin unchanged. Then, by Theorem 4.6.1, there exists a Cauchy kernel
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for the domain R, and Cauchy’s formula holds for any function f(z) which
is analytic in R and on its boundary.
Setting, in particular,

f(@)=H(z, w)g (2.

where g(2) is an arbitrary function which is analytic in R and on its
boundary, we have

H(z 5)g(z)=fH(z. BHE ») g®) L
(&
For w=2z, we obtain Poisson’s formula
g@= [P bHe®k (4.8.1)
¢

where the kernel

H(z,§) H( 2)

P@H=—"773

(4.8.2)
has occured above under the name of the Poisson kernel of the domain R.

Up to now we have established that formula (4.8.1) is valid for analytic
g(2); yet it can be extended to other-classes of functions too (see §5.8).
For any continuous function u(¢) the integral

1(2) = f Pz 5u)t (4.8.3)
(&Y

defines a certain function. It can be proved (see §5.8) that u(z)—u(¢) for
z—¢. Functions of the form (4.8.3) we shall call harmonic functions in R.
It is reasonable to expect that if there exists a complete orthonormal sys-
tem {y, (£) } on €, then the set of functions which are harmonic in R is the
closure of the linear span of the system {¢, (z)} (see §5.10).

If R satisfies the conditions of Theorem 4.6.3, then the Poisson kernel
can be written in the following simple form:

PG s)=%- |BE 2 U)|. (4.8.4)|

In conclusion let us list the Poisson kernels for the classical domains.
(1) For R,

1 [det(d—2zZH)"

P ’ == = ’
&0 V(G |det(/—zU)P"

(4.8.5)

where U€ € ;. In particular, for m=n, one can also write
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P(Z,U)y= V1 . [det([—ZZ’)i".
(8D ldet(Z—U) "
(2) FOl‘ SRH
Bt
_ 1 [detg—2Z2)] 2
Pe U= V(Gp) |det(—ZzO) "+ ’
where UEC .
(3) For R y; with.even n
n-—1
P(Z, K)—= 1 [det(1+22_)] 2 i
V(@) ldet(d+ ZK)|*™!
and with odd n
P(Z, K= 1 .[det(l—l—ZZ_)]z '
V() ldet(I4 ZK)|*
In both cases K& € .
(4) FOl’ mlv
Pz )= 1 (4|2 fP—222)°

VEOw) 1E—8HE—8" °
where t€ € y.

99

(4.8.6)

(4.8.7)

(4.8.8)

(4.8.9)
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THEOREM 4.1.1. For a complete circular domain R the system of functions

1

-1 =0,1, 2
Ty 2 of (2), / P
(BV) (P"() v=1, 2, ..., th

is a complete orthonormal system in the domain R. On the other hand, the
system {'gof (¢)} is orthonormal, but in general not complete in the space of
functions which are continuous on €.

(4.1.6)

It is also well known that the series
& Ol {C] ?f ) _
) 2 =K. @)
f= y=1

converges uniformly for any z and w which lie in the interior of R, repre-
senting there a function called the Bergman kernel.'
The sum of the series (if it converges)

oo N)’
20 zo?( @) =H( ¥

we shall call the Cauchy kernel for the domain .
Finally, we shall call the function

|H(z,8)

P@ b= H(z, 2)

the Poisson kernel for the domain R.
This chapter deals with the direct methods of determination of these
kernels.

4.2. The Bergman kernel. Let R be a bounded domain which contains
the origin, I' a group of analytic mappings of R onto itself, and Iy a sub-
group of T which leaves the origin fixed. It is well known (H. Cartan [1))
that an element of T, is fully determined by its linear terms in the neigh-
borhood of the origin, i.e., the mapping of R onto itself which has the form

n
4.2.1
wy =D u;;2;+ > ag;)l m 2Lt 2, (4.2.1)
j=1 my ... m,

m1+ +m”>-

12 Pranslator’s note. In the Russian literature the Bergman kernel is usually called the
“kernel function of the domain”. In this book such a designation would not be very appro-
priate since we are dealing with three kernels to which this designation could apply.
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is fully determined if the matrix (u;)7 is given. As it is well known that
I, is compact, it can be assumed without loss of generality that the
matrices (u;) = U which form the representation of T, are unitary. The
letter U we shall also use for denoting the nonlinear transformation (4.2.1)
itself, determined by the linear element U.

Let us now consider the set of cosets of I'/T,. All group transformations
belonging to one and the same coset carry into the origin one and the same
point a. The totality of all such points a forms in R some set M. It is
called a transitive set with respect to the group I which contains the origin.
Thus any element of T' is uniquely determined by a point a of M, and by
the unitary matrix U of T,,. We shall write the transformations determined
by the elements of I' in the form

w=f(z, a, U), a€M, UET,. (4.2.2)
Suppose
z=f(x, b, V), bEM, VET, (4.2.3)
is another transformation, and
w=f(f(x, b, V), a, Uy=f(x, c, W) (4.2.4)

is the product of the transformations (4.2.2) and (4.2.3). Setting w=0, we
at once obtain

a=f(c, b. V). (4.2.5)
Differentiation of (4.2.4) yields
ofi (x, ¢, W) 0fi(z, a, U) 0fy(x, 8, V)
Toox; ;l 02% 0x; (4.2.6)

We shall denote the Jacobian of the transformation (4.2.2) by

ofi (2, a, U)
0z;

J(z, a, U)y=(ay;), ai;=
By setting x=c in (4.2.6) we obtain z=a. Hence

J(, ¢, W)y=J(a, a, U):-J(c, b, V).
By a change of notation we obtain

J(x, x, Wy=J(z, 2z, U)J(x, b, V). (4.2.7)

This formula is valid for x and z of M which satisfy the relation

z=f(x, b. V). (4.2.8)
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If we have another transformation
u’=f(x: b: VO):

then the mapping of u into z leaves the origin unchanged. Hence

0= (0)..

is a unitary matrix. Whence follows that

{J(x. b, V)}‘”gb=(%>z—0. {"(x' b, VO)}a:=b’

so that we have
J(b: b: V) = UO J(b: b: VO): (4'2'9)

where U, is the unitary matrix of I',. Thus

J@z, 2, VY < J(@z 2. VY=J(2, 2, Vo) - J(2, 2, V). (4.2.10)

This shows that J’J depends on the coset of I'/T, but does not depend on
the choice of representative of this coset. Hence we can write

|detJ(z,z, V)|*=Q(z,2).

From (4.2.7) we obtain for z and x, lying in I and satisfying the rela-
tion (4.2.8), the formula

Q(x, x) =Q(z,2)|det J(x, b, V)| (4.2.11)

Bergman [1] has proved that under the transformation (4.2.8) the
Bergman kernel of the domain R changes according to the law

K(x, %) =K(z,2)|det J(x, b, V) |2 (4.2.12)
Thus for z and x of M
K% _ K(z72)
Qx,x)  Qz2)°

THEOREM 4.2.1. If R is a bounded circular domain, then for z lying in M,
we have

(4.2.13)

K(z =5 Q(z 2)

where Q is the complete volume of R.
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ProoF. In view of §4.1, we can propose the following process of con-
structing an orthonormal system of functions.
We orthonormalize the terms
ez ez, o L. Fa,=m,

for a given m, and we take the totality of all such functions for m=0, 1,
2, ---. This totality forms a complete orthonormal system.

Among the functions ¢,(z) obtained by this process, we have the con-
stant "%, whereas the other functions are homogeneous forms of order
mz=1. Hence

1

(2)=2"2% 4, (0)=0, »21.

Therefore from equation

K@ 2) =299
we obtain at once

K, 0)= .

On the other hand, by the definition of Q(z,z) we have Q(0,0)=1.
Hence the theorem follows from (4.2.13).

Assuming now that R is a transitive domain (i.e., R =IM), let us
ascertain the geometrical properties of Q(z,2). From (4.2.7) we have

J(x, x, Wydx' =J(z,z, U)dz’,

hence
dx - J(x, % WY - J(x, x, W)-dx' =dz-J(z, z, Uy - J(2, z, U)- dz’.

This invariant form can be considered as the metric of our space. The
volume element in this metric is

|detJ(z, z, U)P2=Q(z 2)- 2,

so that Q(z,2z) can be called the volume density.
From Theorem 4.2.1 we obtain the following proposition:

The Bergman kernel for any transitive circular region is equal to the ratio
of the volume density to the Euclidean volume of the domain.

In the subsequent sections we shall determine the Bergman kernel for
our four types of classical domains on the basis of the above considerations
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only, without the use of complete orthonormal systems.”

4.3. Bergman kernels for the domains R;, Ry and Ry
1°. The group T for the domain R; consists of the following transfor-
mations (see L. K. Hua [1)):

Z,=(AZ+B)(CZ+ D)™, (4.3.1)

where A, B, C, D are matrices of dimensions mXm, mXn, nXm and nXn,
respectively, satisfying the relations

AA’ — BB = I"™, AC’—=BD’, CC’'—DD = —I".

For m=n, we assume, moreover, that

det (‘é i) — 1. (4.3.2)

Let us find the transformations which carry an arbitrary point Z= P into
the origin. By the definition of the domain R we have

I™ PP’ >0.
Thus it follows from Theorem 2.1.2 that also
I® —PP>0.

It is known that there exists an m X m matrix @ and nXn matrix R such
that

QU™ —PP)Q =1m, R(I™—PP)R =Im, (4.3.3)
The transformation
Z,:=Q(Z—P)(I”" —P'Z)"'R™! (4.3.4)

carries P into the origin. It is easy to see that this transformation is of the
form (4.3.1).
Differentiating (4.3.4), we obtain

az,=Qldz - U—P2)" +@Z—P)dU—FP 2} R".
We shall set Z=P. Then
dZ,=Q-dZ-I—P'P)'R'=Q-dz-R,
i.e., at the point Z=P
Z,=|(det Q™ - (det R"Y* [+ Z={det(/ — PP")}™™". Z.

13 5 . . .
Translator’s note. The 4 domains in question, Ry, Ry, Ry and Ry, are defined
by the author in the introduction to the book.
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Hence
Q(Z, 2)={det(I — zZ"))~m+m

Using the results of §4.2, we obtain the following theorem.

THEOREM 4.3.1. The Bergman kernel of the domain R; is

1 77 —m+n) 4.35
VoD (det (I — ZZ")} , (4.3.5)

where, by (2.2.2)

N2 ... (m—1 12 ... (n—1)
V(i) = ... (m+rn—1) .
2°.Thegroup T of the domain Ry; consists of transformations of the form
Z,=(AZ+B)(BZ+ A7, (4.3.6)

where
A'B=B'A, AA’ —BB’'=1.
Suppose P is a point of R ;. A matrix R can be found such that
R(I—PP)R =1. (4.3.7)
The transformation
Z,=R(Z—Py(I—PZ)y 'R}, (4.3.8)

belonging to T, carries the point P into the origin.
Differentiation of (4.3.8) yields

dZ,=R\{dz-(—PZ)y'4+(Z—P)d(y—Pz)'} R7"
Setting Z= P, we obtain
dZ,=R-dZ-(I—PP)y'R'=R.dZ-R'.
Hence at the point Z=P
Zy=|(det R [P Z = (det(/| — PP)} -1 . Z,
Thus
Q(Z, Zy={det(I — 2Z)}~"**D,
THEOREM 4.3.2. The Bergman kernel of the domain Ry is

1 . 77— (D)
V@D {det(I — ZZ)) , (4.3.9)
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where, by (2.3.2),
n (n+1)

V@)=~

241 ... (2n—2)
‘Al ... Cr—1)"

3°. The group T of the domain Ry consists of transformations of the
form

Z,=(AZ+B)(—BZ 4+ A)™}, (4.3.10)
where
AB=—BA, AA—BB=I.

Suppose P is a point of Ry, ie., [+ PP>0. Then a matrix @ can be
found such that T

QUAPPQ =
Then in T we have the transformation
Z,;=QZ—P)U+Pz)'Q?, (4.3.11)

which carries the point P into the origin.
By differentiation of (4.3.11) we have

dz,=Q{dz- (I +Pzy* +(Z—Pyd(+P2)"'} gV

For Z= P, we obtain

dZ,=Q-dz-(I+PP)™'- Q7'=Q-dZ-Q.
Hence at the point Z=P

Zy=|(det Q"' Z = (det(/ + PP)}~"**. Z.
Therefore

Q(Z, Z)=/det(I +ZZ)}™"*.
THEOREM 4.3.3. The Bergman kernel of the domain Ry is

1 ( 7\ —N+1
T < det (/ V4 ,
V@) | I+ 22))
where, by (2.4.2),

n(n-1)
e 2041 ... 2n—4)!
V(Ry)=n= S P 3 i e B

4.4. The Bergman kernel for the domain R y. The group I of the domain
R v consists of transformations of the form
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o—{[{de+ 0. £ — ) e (1))
X {(% (@2 41, 5 (22 — D) C 2D}, (4.4.1)

where A, B, C and D are real matrices of dimensions 2X 2, 2Xn, nX2 and
nXn, respectively, satisfying the relations

A B\(I® o A By ? o
c D)(O —1(’0) (c D) =(0 —1(">) (4.4.2)

and

det (7 p)=+1. (4.4.3)

We shall now find the transformations of T which carry the point z, into
the origin. Proceeding from the vector z, we shall construct the 2Xn
matrix X, as follows:

’ ’ -1
)(0=2(z_°z_‘j+1 ’(Zif_l)) 7 )—2A‘1 %
zezo+ 1 —i(z2,—1) z, 2,
_ 1 ( zo‘i';o—(z?(')'_%"i'zozl,)’;o) ) (4.4.4)
1—| 202 [* 1 (20— 20) + 1 (2070 20— 2020 - 20)

This matrix is evidently real. We have

I— XoXo=Aq! (A0A0_4(_><Zo) ) A

20
_ 1+ [ 2420 | — 92z, 0
= 2,40‘1( |50 = 22026 ) A7t (4.4.5)
0 l—f—]zozol —22020
Hence
(1 — XoXo) = : oA :

5 — ApAo= 7 pog
2(1+|2020|2—22020) 00 1+ |zozo|2—‘22020
AR s N B TP

t(z20—20%)  (20%—1) (2% —1)

where
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1 r T rLT

1 ’ 1o — =5 [ —il2920 — 2 F-4 —2

A=7(l +IZOZo|‘—2zozo) 2 ( Eoz—o . %) 'ozo—ljzoz?_, .
220t 2020 +2 i (zozo - zozo)

(4.4.7)

We shall choose a D which satisfies the « »ndition D(I™ — X§X,) D’ = I";
then the transformation

w={[(%(zz’+l)- %(zz’—l))A’-—-zX(’)A’](;)}_1
% {zD' —-(% (@2 4-1), & (22 — 1)) XOD'} (4.4.8)

has the form (4.4.1) and carries the point z; into the origin.
In addition,
1— | zoz(', |2

det A=detD = =7 -
14| 202, [* — 2242,

(4.4.9

Differentiation of (4.4.8) yields (z= (2%, ---,2™))

n
dw ={dz D — (Ez@)dz@), i En: z(mdz(p)) XoD”

p=1 p=1
X {[(% (22’ +1), & (22 — 1)) A —zX(,A']( : ) }_1
+ { 2D’ — (% (22’ +1), & (22’ — 1)) X,D’ }
X d{[(%(zz’—}— D), + (2 — 1)) A’ —zx;A'] (; )}-1 :
Setting z=z,, we obtain

n n
dw— { dz-D — (2 z(()p) dz(p), iz z(()P) dz(P)) XODI}
p=1 p=1

[ o 1) et — ) 2| (D)}
ie.,
dw= {dz D' —d(z2))- (1, i) X, D'}

X { [(% (@oe 4 1) o (226 — 1)) A —zoXSA’] ( : )}-1. (4.4.10)
Using (4.4.4) and (4.4.7), we have

/—__/' ’ _ ,__1.
dw:—idz-{l—Qz—ozLozo,zfzo}-D’-(l 4| 2020 [2— 22020) 2.
1— | 2g25 (4.4.11)
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From (4.4.9) we obtain

ow
det ('E)z=zo
VO SN S ) O el . 1
ey R B (P ey
n
X (1 +| 2020 [2 — onzé)_g.
or
0 2 79 — N\
‘ det (7‘;’-)2#0 = (1 +| zozo | — 9zoz0) ™™ (4.4.12)
Here the identity
e 1—22"’%_523'2"’%} _ el o2 (4409
1—| 22 1—|zez [*

is used, which follows from the relation det(/—u'v)=1—vu’ (see
Theorem 2.1.2).
Thus we arrived at the theorem:

THEOREM 4.4.1. The Bergman kernel of the domain Ry is
1 —
l ’ 2 =N
V(@) (I 4| 22" P—222")7",

where, by (2.5.7),

T

2n—1 .n! )

Vi) =

4.5. The Cauchy kernel. Let us now pass to the study of the Cauchy
kernel

o N f - _
2 2@ O=HG 8. (4.5.1)
(Here z belongs to R, and ¢ to €.)

Suppose Iy is a group of motions of R which leave the origin unchanged.
We shall assume that € is transitive with respect to I, i.e., that any two
points of € can be carried into each other by a transformation which
belongs to T,.

THEOREM 4.5.1. The series



