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This manuscript explores the restrictions that light velocity imposes 
on orbiting objects. It then applies the findings to the ‘entropy atom’, 
a concept that was introduced in an earlier publication (see 
http://vixra.org/abs/1408.0142)  

The key results are: 

1. Proof that Gravity travels a light velocity. 

2. Orbit diameters are subject to Lorentz expansion (as opposed 

to Lorentz contraction). 

3. The smallest observable object (thus elementary particle) 

has an entropy value of 2 bits. It has been named ‘entropy 

atom’. 

4. There is a universal maximum limit to how much an entropy 

atom can contain: 228.97 GeV/c2. 

Note: CERN found with high probability the lightest version of 

the Higgs boson at 125.3 (± 0.6) GeV/c2. Per standard model 

the heaviest possible particle should not exceed 1000 GeV/c2. 

Therefore, the here found maximum possible energy 

contained within an ‘entropy atom’ is about one quarter of 

that. 

Note: 
Where concepts and their implications are addressed, calculations or 

examples do not always have to be very exact. To improve 
readability, the word ‘approximately’ can and will therefore be 
omitted in cases where numerical exactness is not relevant. For 

example it might be stated that the velocity of light is 300.000 km/s, 
where in fact it is approximately 300.000 km/s (it is closer to 
299.792 km/s). 

  

Summary. 

http://vixra.org/abs/1408.0142
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An earthly observer doesn’t see the moon where it actually is: from 

earth one sees the moon where it was 1.3 seconds ago. This is 

because it takes light 1.3 seconds to travel from the moon to an 
observer on earth. During those 1.3 seconds the moon progressed in 
its orbit.  

Every 27 days the moon completes a full circular orbit around 
the earth. The orbit radius is 384.000 km. The orbit length 
equals 2. 𝜋. r =  2. 𝜋. 384.000 𝑘𝑚 ≈ 2.400.000 km. This gives an 

orbit velocity of 2.400.000 km / 27 days = 89.000 km/day or 
1 km/s. Therefore, the distance between where we see the 
moon and where we must reckon it actually resides, equals 
1.3 seconds x 1 km/s = 1.3 km further forward in its orbit. 

Imagine –for simplicity of our model- that both earth and moon are 
not spatial spheres, but just points in space. And that from our 
earthly position we want to use a laser gun to fire a pulse of laser 

light to hit the moon. From the above we know that shooting in the 
direction in which we see the moon doesn’t work: the moon isn’t 
there anymore, but 1.3 km forward in its orbit. Aiming at that 
reckoned actual position isn’t good either: during the 1.3 seconds 
between us pulling the trigger and our laser pulse reaching that 
position, the moon travelled another 1.3 km forward in its orbit. 
Therefore we must aim at a point that is two times 1.3 km (= 2.6 

km) forward in the moon’s orbit, relative to the point at which we 
actually see it. 

1. The orbiting of earth and moon. 
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Figure 1.1: Definition of three points of interest. 

All three points are located on the moon’s orbit path, and therefore 

from an earthly perspective all are at an exact equal distance from 
earth: 384.000 km. 

Now we install a flat mirror on the moon. Our objective is to point 
this mirror so, that it reflects the incoming laser pulse back to earth. 
From our position on the moon, we observe in turn that it is the 
earth that is orbiting around, every 27 days, at a radius of 384.000 

km. The incoming laser pulse comes from the ‘seen position’ of the 
earth. This is because both the laser pulse as well as the light that 

the earth itself emits (and that we continuously see) travel along: 
both follow the same path at equal speed. Again we reckon that the 
position at which we see the earth (and where the laser pulse 
appears to come from) is not where the earth actually resides: again 
we reckon it is actually 1.3 km further in its orbit. The incoming laser 

pulse should not be reflected towards that ‘reckoned actual position’, 
but at the ‘aim position’ which is yet another 1.3 km forward in the 
earth’s orbit path. Again, the ‘seen position’, the ‘reckoned actual 
position’ and ‘aim position’ all are located exactly on the orbit path of 
the earth around the moon, at 384.000 km away. For our flat mirror 
the incoming light beam angle equals the outgoing beam angle. To 
bounce the laser pulse back to earth, we therefore must point our 

moon mirror exactly towards the ‘reckoned actual position’ of the 
earth, as shown in the next Figure. 

Moon orbit
Seen

position
Reckoned 

actual
position 

Aim 
position

1.3 km 1.3 km
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Figure 1.2: The impulse force. 

Note: for clarity Figure (1.2) is not according to scale. At scale, the 

mirror should be shown much farther away. 

Figure (1.2) shows that the impulse force is directed away from the 
‘Reckoned Actual Position’ of the opposite object.  

With the mirror on the moon in place, after pulling the trigger of our 
laser gun on earth, we now replace this gun by a mirror, and point it 
towards the ‘reckoned actual position’ of the moon. The reflected 

laser pulse that returns from the moon will thus be reflected back 
towards it. With both mirrors in place, the laser pulse will 
continuously bounce back and forth between the mirrors on earth 
and moon. The associated –repelling- impulse forces on both mirrors 
are thereby pointing away from the respective ‘Reckoned Actual 
Position’ of the opposite orbiting object. Because the ‘reckoned actual 

positions’ are the positions that the objects have at the moment of 

impact with the opposite object, it only so appears as if the impulse 
force interaction is instantaneous between the actual positions. A key 
consequence is that the impulse force associated with our bouncing 
laser pulse has no accelerating or decelerating component in the 
direction of the orbit path.   

Despite the earth and moon have different masses (the earth is 6 

Moon orbit
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times heavier than the moon) and therefore have a different orbit 
radius relative to their shared centre of mass, the observations from 

either moon or earth perspective are completely symmetrical.  

Instead of a laser pulse, we now shoot a fast ping-pong ball (e.g. at 
half the light velocity) to bounce back and forth between the two 
mirrors. To make sure that the opposite target is hit, we must point 
both our mirrors towards points further forward on the opposite orbit 
path (relative to ‘the reckoned actual position’). Consequently the 

impulse forces on both mirrors would not point away from the 

‘reckoned actual positions’ anymore, but each force would get a 
forward –thus orbit object accelerating- component. Our ping-pong 
ball would lose kinetic energy at each bounce. Thereby the mirrors 
would need continuous adjustment due to velocity loss of the ping-
pong ball, until finally all of the kinetic energy of the ping-pong ball is 
absorbed by the orbiting objects. 

One can also imagine an opposite scenario, using some hypothetical 
‘super ball’ which would travel faster than light. In such hypothetical 
case the mirrors would have to be pointed towards a location 
somewhere between the ‘seen position’ and the ‘reckoned actual 
position’. In such hypothetical case the impulse force on the mirrors 

would have a backward –orbit object decelerating- component. Our 
super ball would now gain energy at each bounce, at the cost of the 

forward kinetic energy of the orbiting objects. Thus, in due time, all 
forward orbiting movement would ultimately stop, whereby the super 
ball would have absorbed the kinetic energy that is associated with 
the forward orbit velocity. Only in the extreme case of infinite ball 
velocity (the scenario that represents true instantaneous interaction), 
one would have to aim both mirrors at the ‘seen position’ of the 

opposite object, whereby the deceleration effect would be largest. 

Stable orbiting systems demand an equilibrium between centrifugal 
force (which is a local force, therefore acting instantaneous upon 

both orbiting objects), and some attracting force such as gravity or 
electromagnetic force. Our considerations above thereby revealed 
that such attracting forces must travel exactly at light velocity, no 
more, and no less.   

Finding 1: 
Attracting forces in stable orbiting systems, such as 
gravitational force and electromagnetic force, travel at light 
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velocity. 

As discussed, in circular orbit systems these attracting forces only 

appear to come instantaneously from the respective ‘Reckoned 
Actual Positions’.  

One conceptual consequence is that the centre of gravity of the 
orbiting system is found on the straight line connecting the 
‘Reckoned Actual Positions’. The centre of gravity therefore is not 
wobbling relative to these.  

There is an enhancement applicable to the above described model. 
When the photons that together shape our laser pulse depart from a 
mirror, e.g. the mirror on earth, these photons need to escape from 
the earth’s gravitational field, and thereby loose energy. This will not 
go at the cost of their velocity, but at the cost of their frequency, and 
thereby of their impulse power. This by itself would not affect their 
direction of propagation. However, these photons will also feel the 

gravitational pull of the moon. And they will not ‘see’ the moon 
straight in front of them during their orbit crossing. This will only be 
so at the moment of impact. Even though it would be a very minor 
effect, from a conceptual viewpoint the moon’s gravitational field 

would therefore slightly bend the path of these photons. And this in 
turn would relocate the position of the earth away from the initial 
direction of photon propagation, adding to the photons path’s 

bending. At the same time these photons would re-gain some of the 
earlier lost impulse power (and thereby frequency, not velocity), but 
not all of it, while approaching the moon: the moon has less mass 
relative to earth. All in all and conceptually, the incoming beam on 
the moon (and thereby the ‘seen position of the earth) will arrive at a 
very slightly steeper angle than our model suggests. We would need 

to slightly compensate our mirror aim position forward for that, 
causing the photons to gradually loose impulse power at each 
bounce, and ultimately dampen out. Therefore, our model using 

photons (embedded in a laser pulse) tells something more on top of 
finding 1.  

Finding 2: 
‘Whatever’ is traveling at light speed between objects to 

generate an attracting force between stable orbiting objects, 
that ‘whatever’ does not interact with the force it induces. 
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For example: let’s assume ‘gravitons’ to travel back and forth 
between two orbiting objects, thereby inducing the gravitational pull. 

Per finding 1 these gravitons travel at light velocity. Per finding 2, 
these gravitons cannot interact with the force they induce, that is: 
with gravity. 

Finding 2 is supported by the general observation that gravitational 
forces are cumulative: one can add up all vectors that represent 
gravitational forces, whereby the resulting vector represents the total 

impact. Should there be interaction, such would not be the case. 
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By looking at the orbiting objects from a remote position, we can 
gain insight in relativity. Let’s first simplify the model by assuming 
two equal point masses ‘A’ and ‘B’, orbiting clockwise around their 
shared centre of gravity ‘X’. And let’s position ourselves remotely, 
straight above that centre of gravity at some unspecified large and 
fixed distance. This is what we see: 

  

Figure 2.1: equal objects ‘A’ and ‘B’ orbiting clockwise around 

their central point of mass ‘X’. 

Because of our position straight above ‘X’, the distances from us 
towards both ‘A’ and ‘B’ are equal and also constant in time. 
Therefore, our seen observations of the objects ‘A’ and ‘B’ are equally 
time delayed, and we can ignore the time delay in the dynamics of 
our observations.  

As Figure 2.1 shows, at any moment in time we see ‘A’ and ‘B’ at 
opposite positions in their shared orbiting path. We can reckon where 
in space their shared centre of gravity ‘X’ resides. Relative to us, this 
‘X’ doesn’t move. Because it is a ‘reckoned’ point, it has been marked 

with a white background in the Figure. 

Note: in the following figures, a white background of a 
position indicates that this point is not taken by some 

physical object: it is a mathematical location, reckoned to be 
located at that point. 

 

BA

2. A remote position. 
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Figure 2.2: the Remotely Observed orbit Diameter ‘ROD’ and 
a reckoned Locally Observed orbit Radius ‘LOR’. 

From our remote location we reconcile where an observer on ‘A’ must 
locate ‘B’ at some given point in time. This reckoning starts by 
measuring the Remotely Observed orbit Diameter (‘ROD’) as 
indicated in Figure (2.2). We reckon that it takes light (at light 
velocity ‘c’) 𝑅𝑂𝐷/𝑐 seconds to cross that distance. Therefore we must 

back-track object ‘B’ on its orbit path to a point ‘C’, a location where 
it resided 𝑅𝑂𝐷/𝑐  seconds ago. Given some yet unknown orbit 

velocity ‘v’, the length of the back-track orbit section BC equals 
𝑣. 𝑅𝑂𝐷/𝑐 meters.  

Figure (2.2) shows that the distance between ‘A’ and ‘C’ (indicated as 
Locally Observed orbit Radius ‘LOR’) will –for any orbit velocity- be 
shorter relative to the distance that we ourselves are observing 
between the orbiting objects (the ‘ROD’). The higher the orbit 
velocity ‘v’ will be, the further we have to back-track to find point ‘C’, 
and the shorter the ‘LOR’ will be. There is however a hard constraint: 

the observed orbit velocity ‘v’ cannot exceed light velocity ‘c’. In that 
ultimate case (e.g. when it is photons which are orbiting), the length 
of the back-track path (calculated as 𝑣. 𝑅𝑂𝐷/𝑐)  would then be at its 

maximum length: 𝑐.
𝑅𝑂𝐷

𝑐
= 𝑅𝑂𝐷. Figure (2.3) shows this extreme case. 

BA

C

ROD
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Figure 2.3: the ‘LOR’ in the maximum orbit velocity case,  
whereby v = c. 

For two equal orbiting objects ‘A’ and ‘B’ this gives a fixed and well 
defined minimum value for the ratio LOR/ROD:  

The length of the entire remotely observed orbit equals: 
𝜋. 𝑅𝑂𝐷. This corresponds to a full revolution of 2. 𝜋 radials 
around centre of gravity ‘X’. The angle marked ‘α’ therefore 

equals (
𝑅𝑂𝐷

𝜋.𝑅𝑂𝐷
) × 2. 𝜋 = 2 𝑟𝑎𝑑𝑖𝑎𝑙𝑠. This is valid for any orbit 

diameter, as long as the orbit velocity equals light velocity c. 
The angle marked ‘β’ then equals 𝜋 − 2 radials. The sinus of 

half the angle ‘β’, (=  (
𝜋−2

2
) radials) equals half of the ‘LOR’, 

divided by half the ‘ROD’. Using goniometry, the length of 
LOR is now calculated as: 

𝐿𝑂𝑅/2

𝑅𝑂𝐷/2
=  

𝐿𝑂𝑅

𝑅𝑂𝐷
= sin (

𝜋−2

2
) =  cos(1) ≈ 0.5403 × 𝑅𝑂𝐷  

Thus in general: 

𝐿𝑂𝑅

𝑅𝑂𝐷
  ≤  cos(1)          (≈ 0.5403 )     (2.1) 

The following Figure (2.4) is used to find this ratio for lower orbit 
velocities: 

BA

C

ROD
αβ
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Figure 2.4: LOR/ROD for lower orbit velocities. 

There are two goniometric properties that are relevant to this figure: 

1. For any point ‘C’ on the circular orbit path, and thus for any 

viable orbit velocity, the angle ACB equals 900, as indicated. 

2. All three angles marked ‘α’ are equal because the three sides 

of triangle XBD are exactly half the length of the 

corresponding sides of triangle ABC.  

As already found, the length of circle segment ‘BC’ on the orbit path 
equals 𝑣. 𝑅𝑂𝐷/𝑐, while entire orbit path length equals 𝜋. 𝑅𝑂𝐷. 
Therefore, angle BXC (shown as 2.α) equals: 

2. 𝛼 =  
𝑣. 𝑅𝑂𝐷/𝑐

𝜋. 𝑅𝑂𝐷
 × 2. 𝜋 (𝑟𝑎𝑑𝑖𝑎𝑙𝑠) =  

2. 𝑣

𝑐
 (𝑟𝑎𝑑𝑖𝑎𝑙𝑠) 

Angle BAC is half of that, thus is equal to 
𝑣

𝑐
 (𝑟𝑎𝑑𝑖𝑎𝑙𝑠). From Figure 

(2.4) it can be seen that cos(α) = LOR/ROD. Therefore: 

𝐿𝑂𝑅

𝑅𝑂𝐷
=  cos (

𝑣

𝑐
) =  √1 − (sin (

𝑣

𝑐
))

2
       (2.2) 

In conclusion: where forward moving objects are subject to ‘Lorentz 

contraction’ (the remote observer sees objects smaller than the local 
observer), in case of orbiting the remote observer sees a larger orbit 
diameter, thus a ‘Lorentz expansion’ per Equation (2.2). 

BA

C

ROD

α α
α

D
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An earlier publication (see http://vixra.org/abs/1408.0142) 
introduced a model named ‘Crenel Physics’. It defines the smallest 
possible observable particle in terms of minimum required 
complexity/entropy: the ‘entropy atom’. Its entropy equals 2 bits (or 
ln(4) ‘nat’). The ‘bit’ is a universal measure for information. Single bit 
entities might exist, but these are not detectable because the 

conservation law does prevent these from exchanging information 
with some external sensor. Without exchange of information, there 
can be no measurement. However, a two bit particle has an internal 
degree of freedom to compensate such external exchange, and 
therefore it is detectable as an isolated particle in an otherwise 
empty space. 

Information (expressed in ‘bits’) has no mass or energy. It just 

seems to exists. A star radiates light in all directions. That light is 
composed of photons that contain ‘mass/energy’ by themselves, and 
their leaving drains energy from their source. But a star also spreads 
information about itself in all directions. ‘Information’ however is 

composed of bits that are weightless and without embedded energy. 
Nevertheless that information represents ‘content’ of its source.  

The Crenel Physics model expresses content in ‘Packages’. Thereby 

‘mass’, ‘energy’ and ‘information’ are modelled as three different and 
mutually independent (orthogonal) dimensions of the Package. The 
aforementioned publication derives the following universal conversion 
factors: 

𝟏 𝑷𝒂𝒄𝒌𝒂𝒈𝒆 =  √𝒉.𝒄𝟓

𝑮
   (𝒆𝒏𝒆𝒓𝒈𝒚)      (3.1) 

𝟏 𝑷𝒂𝒄𝒌𝒂𝒈𝒆 =  √
𝒉.𝒄

𝑮
  (𝒎𝒂𝒔𝒔)     (3.2) 

𝟏 𝑷𝒂𝒄𝒌𝒂𝒈𝒆 =  √ 𝒄𝟓

𝒉.𝑮
   (𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚)     (3.3) 

These conversion factors are ‘universal’ because they are composed 
of universal natural constants only. They match the well-known 

3. The entropy atom. 

http://vixra.org/abs/1408.0142
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‘Planck natural units of measurement’, albeit that the above 
equations hold Planck’s constant ‘h’, whereas Planck’s units of 
measurement hold the ‘reduced Planck constant ‘h/2.’, for which 

symbol ‘ℏ’ is typically used. This difference is explained in that the 

Crenel Physics model is frequency based, rather than angular 
frequency based. 
 
If one substitutes the natural constants in Metric units of 
measurement in the above equations, this leads to Joule, kg and 
Hertz respectively. These are the Metric units of measurement for 

energy, mass and frequency. But the above conversion factors are 

valid in any other consistent system of units of measurement that 
embeds the aforementioned dimensions of the Package.  

Equation (3.3), converts the Package into the ‘frequency’ dimension. 
Frequency is related to ‘information’. We do not know what exactly is 
oscillating at some frequency. It is just that we measure a certain 
periodicity which mathematically can be represented by a bit-stream 

with a bandwidth of one bit: ‘101010101…etcetera’. That stream 
comes at a certain pace, which connects it to the ‘time’ dimension. 
That pace tells something about the source: the higher it is the more 
Packages are associated with it. Planck’s equation 𝐸 = ℎ. 𝜈  quantifies 

how much energy –and thereby Packages- is associated.  

There is no conservation principle when it comes to the distributed 
information as such. For this reason we can manipulate information 
without changing the world. For example if we let a computer do a 

multiplication, that in itself doesn’t cause a change of the world. 
Therefore this calculation doesn’t demand some form of 
compensation. Of course in case of a computer calculation the status 
of physical memories changes, but that’s not related to the 
underlying process at hand: that’s related to the tool. One might 
alternatively do that multiplication on top of his head, with a totally 

different impact on the tool (the human brains).  

With the above non-typical information related properties in mind we 
now further explore the entropy atom within the framework of the 
Crenel Physics model. 

As a starting point, assume a single ‘bit’ (of information) traveling 
through an otherwise empty space. It propagates at light velocity. 
Now assume that due to some encounter our ‘bit’ changes direction: 
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it makes a course change of angle dα. After that directional change, 

its velocity relative to its original path is below light velocity: the 
velocity component along the original direction equals cos(𝑑𝛼). 

To evaluate the implications thereof: envisioning a boat cruising at a 
straight course on an endless and completely quiet lake. Assume its 
velocity is equal to the velocity of the waves that it produces. This 
boat will never engage these waves. However, if the rudder is only 
temporarily turned whereby the course changes permanently, the 
boat will now be overtaken by its own –very recently produced- 

waves. This will have some disturbing impact on its new course: it 
will change again, this time due to interaction with its own waves. 
And that very complex process will from here onwards repeat itself.  

The traveling ‘bit’ is much simpler object than a boat. It is an 
information ‘wave’ by itself, propagating at light velocity. After its 
directional change dα it will be overtaken by the wave it was just 

before this directional change. In other words: it will be overtaken by 
a recent (yet historic) image of itself. And that image is not found 
straight behind it, but resides at an angle dα relative to its current 

path. 

Prior to further analyzing the consequences thereof, imagine a piece 
of rock that is propagating through an empty space at some velocity. 
We now catch it with a rope that is tightened to a fixed point in 
space. The rope tightened immediately and forces the rock to start 
circling, whereby its orbit velocity supposedly is equal to its original 

velocity. From a classical mechanical point of view, that’s it. 
However, according to Planck the orbiting rock is producing a 
frequency now, and the ‘orbiting energy’ associated with that 
frequency equals: 𝐸 = ℎ. 𝜈 . Planck’s constant ‘h’ equals only 

6.62606957x10-34 J.s, and with our frequency being pretty low, one 
can say that in this example the impact will not be noticed. 
Nevertheless, the conservation principle demands an infinitesimal 

amount of the kinetic energy of the rock to be transferred to ‘orbiting 
energy’.  

This would not exactly be so with our propagating ‘bit’: it has no 
kinetic energy to start with. Yet, the traveling bit will –after its 
course change- be confronted with a trailing (thus historical) image 
of itself, being the wave it generated (or better: the wave it was) 
some time ago. As if it suddenly got a trailing twin brother. Let’s 
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assume the original ‘bit’ traveled a distance Δx during which this 

interaction materializes. The associated impact of being overtaken by 

its past image –whatever that impact will be- is going to be repeated 
again and again at each distance Δx that is traveled. The reason is 

that this initial impact cannot be compensated elsewhere to 
disappear from the scenery. Furthermore, this impact can only be 
induced via interaction with the trailing twin image: there is nothing 
else around. Consequently, at each traveling of a distance Δx, the 

initial course change of angle dα will be repeated. Thus in our model 

we now have an orbiting bit, continuously trailed at some distance by 

a twin brother: they keep each other captured in their shared orbit. 

This envisioning meets the definition of the earlier introduced 
‘entropy atom’: the model appears to consist of two bits (the original 
one, and its historic twin) which individually and by themselves have 
no mass or energy, but as an orbiting pair they are a container of 
tangible Package content per Planck’s equation: 𝐸 = ℎ. 𝜈. And also this 

entropy atom is residing in some restricted spatial area: it could be 
boxed. 

Let’s explore in more detail the interaction between the original bit 
and its trailing twin, using Figure (3.1). We start prior to the course 
change with a forward propagating ‘bit’, passing points A1, A2, A3 

and A4. Due to some interaction, at point X our bit is subject to a 
course change dα. When it thereafter reaches point B1, it interacts 

with its trailing twin at A1, when B2 is reached the twin reached A2, 
etcetera. Thereby the distances A1-B1, A2-B2 etc. are all of some yet 
unknown equal length Δx. 

 

Figure 3.1: Force directions after a course change. 
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As the leading bit is progressing along its path, the angle α𝑥 will 

shrink to 0.  

We know find the orbit radius R using the following equation: 

Δ𝑥 = 𝑅. 𝑑α       (3.4) 

We now have an orbit, an orbit velocity (‘c’) and thereby a 
frequency. Per Planck’s equation this unavoidably represents 
measurable ‘orbit energy’ in the Package dimensions ‘energy’ or 

‘mass’. The orbiting of a ‘mass’ –as we now have it- demands the 
presence of some force F. This force can only be between the leading 

‘bit’ and its trailing twin (there is nothing else around), and it was 
applied over a path length Δ𝑥. It can be thought to be composed of a 

backward component Fb, and a tangential (centripetal) component Ft. 

At any point on the shown path section X,B1,B2,B3,B4 a backward 
force component is felt: 

𝐹𝑏 = 𝐹. cos(α𝑥)         (3.5) 

The Package containment PE , measured in the ‘energy’ dimension of 
the Package, is associated with applying this 𝐹𝑏 per equation (3.5) 

along path Δ𝑥.  then equals: 

𝑃𝐸 =  ∫ cos(α)  × 𝐹 ×
α=α

α=0
 Δ𝑥     (3.6) 

Which is equal to: 

𝑃𝐸 =  sin(α)  × 𝐹 ×   Δ𝑥      (3.7) 

Because tangential force 𝐹𝑡 =  sin(α)  × 𝐹 equation (3.7) can be 

rewritten as: 

𝑃𝐸 =  𝐹𝑡  ×   Δ𝑥       (3.8) 

We now have an orbiting ‘bit’, and we know that due to the orbiting 
some quantity of ‘energy’ (per Planck) and thereby ‘mass’ (per 
Einstein) is associated with it.  

One might wonder why the tangent force FT is apparent and needed 
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in our orbiting model, while at the same time we completely ignore 
the impact of the backward force component FB, which acts along the 

line of (actual) propagation of the ‘bit’. Such difference is however 
not unique in physics.  

Consider a metal ring positioned in a homogeneous magnetic 
field. Moving the ring back and forth, up or down, without 
changing its orientation within the magnetic field, has no 
impact other than simple Newton mechanics. However, if one 

rotates the ring from e.g. a horizontal plane into a vertical 

plane, the magnetic flux through the ring changes, and as a 
consequence this will generate an electric current through 
the ring, demanding an extra force that is associated with the 
thus generated electrical energy: the ring now acts as a 
dynamo and without any further interactions it would 
accumulate energy.    

This example illustrates, that forward progression can indeed have a 
totally different outcome than rotation, as we also and exactly 
likewise see in our ‘entropy atom’ model. A ‘bit’ moves straight 
forward without any ‘mass’ or ‘energy’ content, but as soon as we 
make it orbit it contains Planck’s ‘orbiting energy’. 

In general, the equation for centripetal force (equal to Ft here) is: 

𝐹𝑡 =  
𝑚.𝑣2

𝑅
       (3.9) 

And because in our case v equals light velocity c: 

𝐹𝑡 =  
𝑚.𝑐2

𝑅
       (3.10) 

Substituted into equation (3.8) this gives: 

𝑃𝐸 =  𝐹𝑡  ×   Δ𝑥 =  
𝑚.𝑐2

𝑅
  ×   Δ𝑥     (3.11) 

Per equation (3.4): Δ𝑥 = 𝑅. 𝑑α , we now replace Δ𝑥 in equation (3.11): 

𝑃𝐸 = 𝑚. 𝑐2. 𝑑α       (3.12) 

Equation (3.12) has Einstein’s equation 𝐸 = 𝑚. 𝑐2 embedded. At 
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bottom line this comes forth from applying the general equation 
(3.9) for centripetal force to our ‘entropy atom’ model(!). For any 
given value of 𝑑α (the initial ‘course change kick’ that our ‘bit’ 

underwent), Einstein’s equation gives the conversion between the 
‘energy’ dimension of the Package, and its ‘mass’ dimension. This 
outcome is consistent with main stream physics, and therefore a 
strong argument to give credit to the current model. 

But to our model it perhaps is even more more relevant that 
equation (3.12) also makes the ‘mass’ dimension of the Package 

consistent with the ‘frequency’ dimension: both ‘mass’ as well as 
‘frequency’ of the ‘entropy atom’ are proportional to the initial course 
change 𝑑α.   

We now postulate that the attracting force between the ‘leading ‘bit’ 
and its ‘trailing twin brother’ is based on gravitational interaction 
only. At this point it will be postulated, but after closer examination 
of the consequences it will become clear that this is the only valid 

possibility.  

When two equal masses (such as contained in our ‘bits’) keep each 
other in a stable gravitational orbit at a mutual distance D, the 

gravitational attracting force FG must match the centripetal force FCP: 

𝐹𝐺 = 𝐺.
𝑚2

𝐷2  ≡  𝐹𝐶𝑃 =  
𝑚.𝑣2

𝑅
=   

2.𝑚.𝑣2

𝐷
      (3.13) 

Thus the orbit velocity ‘v’ must be: 

𝑣 =  √
𝐺.𝑚

2.𝐷
       (3.14) 

The mass m of a an orbiting ‘bit’ (based on E = m.c2 = h.v) equals: 

𝑚𝑏𝑖𝑡 =
ℎ.𝜈

𝑐2 =  
ℎ

𝑐2  ×  
𝑐

𝜋.𝐷
 =  

ℎ

𝜋.𝑐.𝐷
     (3.15) 

With the orbit velocity being equal to c, we can substitute (3.15) into 
(3.14): 

𝑣 = 𝑐 = √
𝐺.𝑚𝑏𝑖𝑡

2.𝐷
=  √

𝐺.ℎ

2.𝜋.𝐷2.𝑐
      (3.16) 
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Or: 

𝐷 =  √
𝐺.ℎ

2.𝜋.𝑐3 = √
1

2.𝜋
. √

𝐺.ℎ

𝑐3  = √
𝐺.ℏ

𝑐3      (3.17) 

This value of D is equal to one Planck distance, or √
1

2.𝜋
  ‘Crenel’, the 

distance unit per Crenel Physics model (see the aforementioned 
publication http://vixra.org/abs/1408.0142). 

Thus, when we postulated the gravitational force to be the single 
cause for keeping our two bits in orbit, their mutual distance D is 
universally constant, equal to one Planck length.  

We can now envision the entropy atom as a circle section whereby 

the chord length equals one Planck unit. Let’s name it as ‘string’. 
That string can be virtually straight, representing an entropy atom at 
very low frequency and thereby Package containment. But it can also 
‘curl up’, such that the entire orbit length is shortened, thereby 
representing a shorter orbit length and subsequent higher frequency 
and thereby Package containment. 

 

Figure 3.1: the chord length of all entropy atoms is constant, 

and equals 1 Planck length. 

The interaction between both bits being gravitational (as postulated) 
demonstrates here to be of an exclusive relevance: as orbit 

frequency goes up, the associated mass of the ‘bits’ goes up per 
Planck, and thereby the mutual gravitational force. But 
simultaneously the orbit diameter is reduced such that the 
equilibrium conditions for stable orbiting are maintained no matter 

http://vixra.org/abs/1408.0142
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what frequency (and thereby ‘energy’ or ‘mass’) is associated with 
the entropy atom.  

In chapter 2 we have seen however that –with the distance between 
both bits being fixed- there is a restriction in how far our entropy 
atom string can curl up, see Figure (2.3): a maximum of two radials. 
This restriction is shown below in Figure (3.2):        

  

Figure 3.2: the ‘Back-track’ path associated with a maximum 

string curl equals the ‘Remotely Observed Diameter’. 

In Figure (3.1) angle α is equal to 2 radials. The associated chord 

length then is: 

𝐶ℎ𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑃𝑙𝑎𝑛𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑅𝑂𝐷 . sin (
2

2
)   (3.18) 

The with this minimum associated Remotely Observed orbit Diameter 

(‘ROD’) then equals: 

𝑅𝑂𝐷 =  
(𝑃𝑙𝑎𝑛𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ)

sin(
2

2
)

=  
(𝑃𝑙𝑎𝑛𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ)

sin(1)
     (3.19) 

Such that the orbit length equals: 

𝑂𝑟𝑏𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ =  𝜋. 𝑅𝑂𝐷 =  𝜋.
(𝑃𝑙𝑎𝑛𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ)

sin(1)
    (3.20) 

And because the ‘bit’ travels at light velocity c the maximum possible 
entropy atom frequency fmax equals: 
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𝑓𝑚𝑎𝑥 =  
𝑐

𝑜𝑟𝑏𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
=   

𝑐

𝜋.
(𝑃𝑙𝑎𝑛𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ)

sin(1)

 =  
𝑐.sin(1)

𝜋.(𝑃𝑙𝑎𝑛𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ)
   (3.21) 

Substituting equation (3.17) for the Planck length: 

𝑓𝑚𝑎𝑥 =   
𝑐.sin(1)

𝜋.√
𝐺.ℏ

𝑐3

 =  𝑐2 × √
𝑐

𝐺.ℏ
  ×

sin(1)

𝜋
=  𝑐2 × √

𝑐.2𝜋

𝐺.ℎ
  ×

sin(1)

𝜋
  (3.22) 

Or: 

𝒇𝒎𝒂𝒙 =  √ 𝟐.𝒄𝟓

𝑮.𝒉.𝝅
  ×  𝐬𝐢𝐧(𝟏)     (3.23) 

When metric units are entered, this gives a maximum entropy atom 

frequency of 4.9684 * 1042 Hertz = 4.9684 * 1030 THz, which 
corresponds to 2.0548*1028 eV which corresponds to 2.2863* 1011 
eV/c2 which corresponds to 228.63 GeV/c2. 

It should be noted that per Crenel Physics model, the gravitational 
constant G equals: 

𝐺 =  
ℎ

𝑘𝐵
 × ln (4)       (3.24) 

Thereby ‘kB’ is to be expressed in energy units of measurement 
divided by temperature units of measurements (in the Metric system 
that would be J/K). This results in a slightly lower value for G, 
applicable to elementary particles like the entropy atom. If we 

substitute (3.24) into (3.23) the corrected result is: 

𝑓𝑚𝑎𝑥 =  √
2.𝑐5

𝐺.ℎ.𝜋
  ×  sin(1) =  √

2.𝑐5

ℎ

𝑘𝐵
 ×ln (4).ℎ.𝜋

  ×  sin(1)  

Or: 

𝒇𝒎𝒂𝒙 =  √
𝟐.𝒄𝟓.𝒌𝑩

𝒉𝟐𝐥𝐧 (𝟒).𝝅
  ×  𝐬𝐢𝐧(𝟏)     (3.25)
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When metric units are entered, this gives a maximum entropy atom 

frequency of 4.9761 * 1042 Hertz = 4.9761 * 1030 THz, which 
corresponds to 2.0579*1028 eV which corresponds to 2.2897* 1011 
eV/c2 which corresponds to 228.97 GeV/c2. 

CERN found with high probability the lightest version of the Higgs 
boson at 125.3 (± 0.6) GeV/c2. Per standard model the heaviest 
possible particle should not exceed 1000 GeV/c2. Therefore, the here 
found maximum possible energy contained within an ‘entropy atom’ is 
about one quarter of that. 

 

 


