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Motto:   

Love is the purpose, the sacred command of existence. 

 Driven by it, eagles search each other in spaces, 

 Female dolphins brace the sea looking for their grooms 

 Even the stars in the skies cluster in constellations. 

     (Vasile Voiculescu) 
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Foreword 
 

We rejoice expressing our gratitude towards all those who, 

better or less known, along the years, have helped us to get to 

this particular book. And they are many, many indeed whom 

have helped us! Some provided suggestions, others, ideas; at 

times, we have struggled together to decipher a certain elusive 

detail; other times we learned from the perceptive or sometime 

naïve questions of our interlocutors. 

The coming into being of this book represents a very 

good example of altruism, kindness and selflessly giving, of the 

journey, made together, on the road to discovering life’s beauty. 

He who thinks not only of his mother or father, of 

himself or his family, will discover an even bigger family, will 

discover life everywhere, which he will start to love more and 

more in all its manifestations. 

Mathematics can help us in our journey, stimulating and 

enriching not just our mental capacity, our reasoning, logic and 

the decision algorithms, but also contributing in many ways to 

our spiritual betterment. It helps shed light in places we 

considered, at first, fit only for an empirical evolution – our own 

selves. 

We offer this succession of methods encountered in the 

study of high school calculus to students and teachers, to higher 

education entry examination candidates, to all those interested, in 

order to allow them to reduce as many diverse problems as 

possible to already known work schemes.  
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We tried to present in a methodical manner, advantageous 

for the reader, the most frequent calculation methods 

encountered in the study of the calculus at this level. 

In this book, one can find: 

 methods for proving the equality of sets, 

 methods for proving the bijectivity of functions, 

 methods for the study of the monotonic sequences 

and functions, 

 mutual methods for the calculation of the limits of 

sequences and functions, 

 specific methods for the calculation of the limits of 

sequences, 

 methods for the study of continuity and 

differentiation, 

 methods to determine the existence of an equation’s 

root, 

 applications of Fermat’s, Rolle’s, Lagrange’s and 

Cauchy’s theorems, 

 methods for proving equalities and inequalities, 

 methods to show that a function has primitives, 

 methods to show that a function does not have 

primitives, 

 methods to show that a function is integrable, 

 methods to show that a function is not integrable. 

 

We welcome your suggestions and observations for the 

improvement of this presentation. 

 

C. Dumitrescu, F. Smarandache 
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I. Sets Theory 
 

A set is determined with the help of one or more properties 

that we demand of its elements to fulfill.  

Using this definition might trick us into considering that any 

totality of objects constitutes a set. Nevertheless it is not so. 

If we imagine, against all reason, that any totality of objects is 

a set, then the totality of sets would form, in its own turn, a set that 

we can, for example, note with 𝑀 . Then the family 𝜌(𝑀) of its 

parts would form a set. We would thus have 𝜌(𝑀) ∈ 𝑀. 

Noting with card𝑀 the number of elements belonging to 𝑀, 

we will have: 

𝑐𝑎𝑟𝑑 𝜌(𝑀) ≤ 𝑐𝑎𝑟𝑑𝑀. 

However, a theorem owed to Cantor shows that we always 

have 

𝑐𝑎𝑟𝑑 𝑀 < 𝑐𝑎𝑟𝑑 𝜌(𝑀). 

Therefore, surprisingly maybe, not any totality of objects 

can be considered a set. 

 

Operations with sets 
DEFINITION: The set of mathematical objects that we 

work with at some point is called a total set, notated with 𝑇. 

For example, 

 drawing sets on a sheet of paper in the notebook, the 

total set is the sheet of paper; 

 drawing sets on the blackboard, the total set is the set 

of all the points on the blackboard. 

It follows that the total set is not unique, it depends on the 

type of mathematical objects that we work with at some given point 

in time. 
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In the following diagrams we will represent the total set 

using a rectangle, and the subsets of 𝑇 by the inner surfaces of this 

rectangle. This sort of diagram is called an Euler-Venn diagram. 

We take into consideration the following operations with 

sets: 

1. The Intersection  
𝐴 ∩ 𝐵 = {𝑥 ∈ 𝑇 │ 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵} 

Because at a given point we work only with elements 

belonging to 𝑇, the condition 𝑥 ∈ 𝑇 is already implied, so we can 

write: 

𝐴 ∩ 𝐵 = {𝑥 │ 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵} 

 
𝑨 ∩ 𝑩 

More generally, 

 
Let’s observe that: 

𝑥 ∉ 𝐴 ∩ 𝐵 <===> 𝑥 ∉ 𝐴 𝑜𝑟 𝑥 ∉ 𝐵 

 

2. The Union 
𝐴 ∪ 𝐵 = {𝑥 │ 𝑥 ∈ 𝐴 𝑜𝑟𝑥 ∈ 𝐵}  

 
𝑨 ∪ 𝑩 
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As in the case of the intersection, we can consider: 

 
We see that: 

𝑥 ∉ 𝐴 ∪ 𝐵 <===> 𝑥 ∉ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵 

 

3. The Difference 
𝐴 − 𝐵 = {𝑥 │ 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵}  

 
We retain that: 

𝑥 ∉ 𝐴 − 𝐵 <===> 𝑥 ∉ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵 

 

4. The Complement  
The complement of a set 𝐴 is the difference between the 

total set and 𝐴.  

𝐶𝑇𝐴 = { 𝑥 | 𝑥 ∈ 𝑇 𝑎𝑛𝑑 𝑥 ∉ 𝐴} =  { 𝑥 |  𝑥 ∉ 𝐴} 

The complement of a set is noted with 𝐶𝐴 or with �̅�. 

 
𝑪𝑨 

Let’s observe that 

𝑥 ∉ 𝐶𝐴 <===> 𝑥 ∈ 𝐴 

More generally, we can talk about the complement of a set to 

another, random set. Thus, 
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𝐶𝐴𝐵 = { 𝑥 | 𝑥 ∈ 𝐵 𝑎𝑛𝑑 𝑥 ∉ 𝐴} 

is the complement of set 𝐵 to set 𝐴. 

 

5. The Symmetrical Difference 
𝐴∆𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴) 

 
𝑨∆𝑩 

We have 𝑥 ∉ 𝐴∆𝐵 <===> 𝑥 ∉ 𝐴 − 𝐵  and 𝑥 ∉ 𝐵 − 𝐴 . 

 

6. The Cartesian Product 
𝐴 × 𝐵 = {(𝑥, 𝑦)│𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵}   

The Cartesian product of two sets is a set of an ordered 

pairs of elements, the first element belonging to the first set and the 

second element belonging to the second set. 

For example, ℝ × ℝ = {(𝑥, 𝑦)|𝑥 ∈ ℝ , 𝑦 ∈ ℝ} , and an 

intuitive representation of this set is provided in Figure 1.1. 

 
By way of analogy, the Cartesian product of three sets is a 

set of triplets: 
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𝐴 × 𝐵 × 𝐶 = {(𝑥, 𝑦, 𝑧)|𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶}. 

An intuitive image of ℝ3 = ℝ × ℝ × ℝ is given in the figure 

below. 

 
 More generally, 

𝑛
𝑋

𝑖 = 1
𝐴𝑖 = {(𝑋1, 𝑋2, … , 𝑋𝑛)| 𝑋𝑖  ∈ 𝐴𝑖  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖 ∈ 1, 𝑛̅̅ ̅̅̅}. 

 

 

Methods for Proving the Equality 
of Two Sets 

The difficulties and surprises met on the process of trying to 

rigorously define the notion of sets are not the only ones we 

encounter in the theory of sets. 

Another surprise is that the well-known (and the obvious, by 

intuition) method to prove the equality of two sets using the 

double inclusion is – at the level of a rigorous definition of sets –  

just an axiom.  

𝐴 = 𝐵 <===> 𝐴 ⊆ 𝐵 𝑎𝑛𝑑 𝐵 ⊆ 𝐴   (1.1) 

By accepting this axiom, we will further exemplify two 

methods to prove the equality of sets: 
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 (A) THE DOUBLE INCLUSION [expressed through the 

equivalence (1.1)]; 

 (B) UTILIZING THE CHARACTERISTIC FUNCTION 

OF A SET. 

We will first provide a few details of this second method that 

is much faster in practice, hence more convenient to use than the 

first method. 

DEFINITION. We call a characteristic function of the set 𝐴 

the function 𝜑𝐴: 𝑇 ⟶ {0,1} defined through: 

𝜑𝐴(𝑥) = {
1     𝑖𝑓 𝑥 ∈ 𝐴
0     𝑖𝑓 𝑥 ∉ 𝐴

 

As we can observe, the numbers 0 and 1 are used to divide 

the elements of the total set 𝑇 in two categories: 

(1) one category contains those elements 𝑥  in which the 

value of 𝜑𝐴 is 1 (the elements that belong to 𝐴); 

(2) all the elements in which the value of 𝜑𝐴 is 0 (elements 

that do not belong to 𝐴) belong to the second category. 

Method (B) of proving the equality of two sets is based on 

the fact that any set is uniquely determined by its characteristic 

function, in the sense that: there exists a bijection from set𝝋(𝑻) 

of the subsets of 𝑻  to the set 𝜸(𝑻)  of the characteristic 

functions defined on 𝑻 (see Exercise VII). 

Hence, 

𝐴 = 𝐵 <===> 𝜑𝐴 = 𝜑𝐵.    

 (1.2) 

Properties of the Characteristic 
Function 

𝜑1) 𝜑𝐴∩𝐵(𝑥) =  𝜑𝐴(𝑥). 𝜑𝐵(𝑥) 

𝜑2) 𝜑𝐴∪𝐵(𝑥) =  𝜑𝐴(𝑥) + 𝜑𝐵(𝑥) − 𝜑𝐴∩𝐵(𝑥) 

𝜑3) 𝜑𝐴−𝐵(𝑥) =  𝜑𝐴(𝑥) − 𝜑𝐴∩𝐵(𝑥) 

𝜑4) 𝜑𝐶𝐴(𝑥) =  1 − 𝜑𝐴(𝑥) 
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𝜑5) 𝜑𝐴∆𝐵(𝑥) =  𝜑𝐴(𝑥) + 𝜑𝐵(𝑥) − 2. 𝜑𝐴∩𝐵(𝑥)  

𝜑6) 𝜑𝐴×𝐵(𝑥, 𝑦) = 𝜑𝐴(𝑥) × 𝜑𝐵(𝑦) 

𝜑7) 𝜑𝐴
2(𝑥) = 𝜑𝐴(𝑥)  

𝜑8) 𝜑∅(𝑥) ≡ 0,  𝜑𝑇(𝑥) ≡ 1  

𝜑9) 𝐴 ⊆ 𝐵 <===> 𝜑𝐴(𝑥) ≤ 𝜑𝐵(𝑥) for any 𝑥 ∈ 𝑇. 

Let’s prove, for example 𝜑1). For this, let’s observe that the 

total set 𝑇 is divided by sets 𝐴 and 𝐵 in four regions, at most: 

1) for the points 𝑥 that do belong to neither 𝐴, nor 𝐵, we 

have 𝜑𝐴(𝑥) = 𝜑𝐵(𝑥) = 0 and 𝜑𝐴∩𝐵(𝑥) = 0. 

2) for the points 𝑥 that are in 𝐴 but are not in 𝐵, we have 

𝜑𝐴(𝑥) = 1, 𝜑𝐵(𝑥) = 0 𝑎𝑛𝑑 𝜑𝐴∩𝐵(𝑥) = 0 . 

3) if 𝑥 ∉ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵,        

    the equalities follow analogously.  

4) if 𝑥 ∈ 𝐵 𝑎𝑛𝑑 𝑥 ∉ 𝐴  

 

Exercises 
I. Using methods (A) and (B) show that: 

 

 

 

 

 

 

 

 

 
 

SOLUTIONS: 

(A) (the double inclusion) 

Let’s notice that solving a mathematical problem requires we 

successively answer two groups of questions: 



C. Dumitrescu ■ F. Smarandache  

18 

 

(q) WHAT DO WE HAVE TO PROVE? 

(Q) HOW DO WE PROVE? 

Answering question (Q) leads us to a new (q) question. Thus, 

for exercise 1, the answer to the question (q) is: 

(r1): We have to prove an equality of sets, 

and the answer to the question (Q) is: 

(R1): We can prove this equality using two methods: using 

the double inclusions or using the properties of the characteristic 

function. 

We choose the first method and end up again at (q). This 

time the answer is: 

(r2): We have to prove two inclusions, 

and the answer to the corresponding question (Q) is: 

(R2): We prove each inclusion, one at a time. 

Then, 

(r3): We have to prove one inclusion; 

(R3): We prove that an arbitrary element belonging to the 

“included set” belongs to the “set that includes”. 

It is obvious that this entire reasoning is mental, the solution 

starts with: 

a) Let 𝑥 ∈ 𝐴 − (𝐵 − 𝐶), irrespective [to continue we will read the 

final operation (the difference)], <===> 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵 ∩ 𝐶  [we will 

read the operation that became the last (the union)] <===> 

𝑥 ∈ 𝐴 and {
𝑥 ∉ 𝐵

𝑜𝑟
𝑥 ∉ 𝐶

   <===> {
𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵 

𝑜𝑟
𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐶 

             (1.3) 

From this point on we have no more operations to explain 

and we can regroup the enunciation we have reached in several 

ways (many implications flow from (1.3), but we are only interested 

in one - the conclusion of the exercise), that is why we have to 

update the conclusion: 

𝑥 ∈ (𝐴 − 𝐵) ∪ (𝐴 − 𝐶) <===> 𝑥 ∈ 𝐴 − 𝐵 𝑜𝑟 𝑥 ∈ 𝐴 − 𝐶. 
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We observe from (1.3) that this conclusion follows 

immediately, so the inclusion is proven. 

For the second inclusion: Let 𝑥 ∈ (𝐴 − 𝐵) ∪ (𝐴 − 𝐶), [we 

will read the final operation (the reunion)] <===> 

{
𝑥 ∈ 𝐴 − 𝐵

𝑜𝑟
𝑥 ∈ 𝐴 − 𝐶 

<===> [we will read the operation that became the last]           

<===> 

{
𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵 

𝑜𝑟
𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐶 

     <===> 𝑥 ∈ 𝐴 and {
𝑥 ∉ 𝐵

𝑜𝑟
𝑥 ∉ 𝐶

 (1.4) 

We have no more operations to explain, so we will describe 

in detail the conclusion we want to reach: 𝑥 ∈ 𝐴 − (𝐵 ∩ 𝐶), i.e. 𝑥 ∈

𝐴 and 𝑥 ∉ 𝐵 ∩ 𝐶, an affirmation that immediately issues from (1.4). 

5. (r1): We have to prove an equality of sets; 

 (R1): We prove two inclusions; 

 (r2): We have to prove an inclusion; 

 (R2): We prove that each element belonging to the included 

set is in the set that includes. 

Let  𝑥 ∈ 𝐴 − (𝐴 − 𝐵) , irrespective [we will read the final 

operation (the difference)], <===> 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐴 − 𝐵 [we will 

read the operation that became the last] <===> 

𝑥 ∈ 𝐴 and {
𝑥 ∉ 𝐴

𝑜𝑟
𝑥 ∈ 𝐵.

     (1.5) 

We have no more operations to explain, so we update the 

conclusion: 

𝑥 ∈ 𝐴 ∩ 𝐵 𝑖. 𝑒. 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵. 

We observe that (1.5) is equivalent to: 

{
𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐴 

𝑜𝑟
𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵.

 

The first affirmation is false, and the second one proves 

that𝑥 ∈ 𝐴 ∩ 𝐵. 



C. Dumitrescu ■ F. Smarandache  

20 

 

We will solve the same exercises using the properties of the 

characteristic function and the equivalence (1.2). 

1. We have to prove that 𝜑𝐴−(𝐵∩𝐶) = 𝜑(𝐴−𝐵)∪(𝐴−𝐶); 

(r1): We have to prove an equality of functions; 

(R1): As the domain and codomain of the two functions 

coincide, we have to further prove that their values coincide, i.e. 

(r2): 𝜑𝐴−(𝐵∩𝐶)(𝑥) = 𝜑(𝐴−𝐵)∪(𝐴−𝐶)(𝑥) for any 𝑥 ∈ 𝑇. 

The answer to the corresponding (Q) question is 

(R2): We explain both members of the previous equality. 

𝜑𝐴−(𝐵∩𝐶)(𝑥) =  [we will read the final operation (the 

difference) and we will apply property 𝜑3 ] = 𝜑𝐴(𝑥) −

𝜑𝐴∩(𝐵∩𝐶)(𝑥) = [we will read the operation that became the last and 

we will apply property𝜑1]  = 

 𝜑𝐴(𝑥) − 𝜑𝐴(𝑥). 𝜑𝐵(𝑥). 𝜑𝐶(𝑥)   (1.6) 

The second member of the equality becomes successive: 

 

 

 

 

 

 

 

 
5. In order to prove the equality 𝜑𝐴−(𝐴−𝐵)(𝑥) − 𝜑𝐴∩𝐵(𝑥) 

we notice that: 
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II. Prove that:  

 

 

 

 

 

 
 

SOLUTIONS. 

Method (A) (the double inclusion) 

1. Let 𝑥 ∈ (𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷) , irrespective [we explain the 

final operation (the scalar product)] <===> 𝑥 = (𝛼, 𝛽), with 𝛼 ∈ 𝐴 ∩

𝐵 and 𝛽 ∈ 𝐶 ∩ 𝐷 <===>[we explain the operations that became the last 

ones] <===> 𝑥 = (𝛼, 𝛽)  with 𝛼 ∈ 𝐴 , 𝛼 ∈ 𝐵  and 𝛽 ∈ 𝐶 , 𝛽 ∈ 𝐷 

[we have no more operations to explain so we update the conclusion: 𝑥 ∈ (𝐴 ×

𝐶) ∩ (𝐵 × 𝐷), so 𝑥 belongs to an intersection (the last operation)] <===

> 𝑥 = (𝛼, 𝛽) with 𝛼 ∈ 𝐴 , 𝛽 ∈ 𝐶  and 𝛼 ∈ 𝐵 , 𝛽 ∈ 𝐷  <===> 𝑥 ∈

𝐴 × 𝐶 and 𝑥 ∈ 𝐵 × 𝐷. 

3. Let 𝑥 ∈ (𝐴 − 𝐵) × 𝐶 , irrespective <===> 𝑥 ∈ (𝛼, 𝛽) 

with 𝛼 ∈ 𝐴 − 𝐵  and 𝛽 ∈ 𝐶  <===> 𝑥 ∈ (𝛼, 𝛽)  with 𝛼 ∈ 𝐴  and 

𝛼 ∉ 𝐵 and 𝛽 ∈ 𝐶 [by detailing the conclusion we deduce the following steps] 

<===> 𝑥 = (𝛼, 𝛽), 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐶  and 𝑥 = (𝛼, 𝛽), 𝛼 ∉ 𝐵 , 𝛽 ∈ 𝐶 

===> 𝑥 ∈ 𝐴 × 𝐶 and 𝑥 ∉ 𝐵 × 𝐶. 

Reciprocally, let 𝑥 ∈ (𝐴 × 𝐶) − (𝐵 × 𝐶) , irrespective 

<===> 𝑥 = (𝛼, 𝛽)  with (𝛼, 𝛽) ∈ 𝐴 × 𝐶  and × 𝐶 <===>  𝑥 =

(𝛼, 𝛽), 𝛼 ∈ 𝐴 and 𝛽 ∈ 𝐶 and 
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{
𝛼 ∉ 𝐵

𝑜𝑟
𝛽 ∉ 𝐶

 <===> {
𝛼 ∈ 𝐴 𝑎𝑛𝑑 𝛽 ∈ 𝐶 𝑎𝑛𝑑 𝛼 ∉ 𝐵

𝑜𝑟
𝛼 ∈ 𝐴 𝑎𝑛𝑑 𝛽 ∈ 𝐶 𝑎𝑛𝑑 𝛽 ∉ 𝐶  (𝑓𝑎𝑙𝑠)

 

===> (𝛼, 𝛽) ∈ (𝐴 − 𝐵) × 𝐶. 

Method (B) (using the characteristic function) 

  

 

  

 

 

 

 

 

 

 

 

 

 

  
Explaining 𝜑(𝐴∆𝐵)∆𝐶(𝑥), in an analogue manner, we obtain 

the desired equality. If we observe that the explanation 

of 𝜑(𝐴∆𝐵)∆𝐶(𝑥)  from above is symmetrical, by utilizing the 

commutativity of addition and multiplication, the required equality 

follows easily. 
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Equalities 4)-5) were easy to prove using the characteristic 

function; they are, however, more difficult to prove using the first 

method. The characteristic function is usually preferred, due to the 

ease of use and the rapidity of reaching the result.  

 

III. Prove the following equivalences: 

 

 

 

 

 
SOLUTIONS: 

1. r1: We have to prove an equivalence; 

 R1: We prove two implications; 

 r2: 𝐴 ∪ 𝐵 ⊂ 𝐶 => 𝐴 ⊂ 𝐶 𝑎𝑛𝑑 𝐵 ⊂ 𝐶 

 R2: We prove that 𝐴 ⊂ 𝐶 𝑎𝑛𝑑 𝐵 ⊂ 𝐶 (two inclusions). 

Let 𝑥 ∈ 𝐴  irrespective [we have no more operations to 

explain, therefore we will update the conclusion: 𝑥 ∈ 𝐶; but this is 

not evident from 𝑥 ∈ 𝐴, but only with the help of the hypothesis] 

𝑥 ∈ 𝐴 =>  𝑥 ∈ 𝐴 ∪ 𝐵 =

>  [𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑡ℎ𝑖𝑠 𝐴 ∪ 𝐵 ⊂ 𝐶]  =

> 𝑥 ∈ 𝐶  

Let  𝑥 ∈ 𝐵 irrespective => 𝑥 ∈ 𝐴 ∪ 𝐵 ⊂ 𝐶 => 𝑥 ∈ 𝐶. 

Reciprocally (the second implication): 
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r1: We have to prove that 𝐴 ∪ 𝐵 ⊂ 𝐶 (an inclusion) 

R1: Let 𝑥 ∈ 𝐴 ∪ 𝐵  irrespective (we explain the last 

operation): 

=> {
𝑥 ∈ 𝐴 => 𝑥 ∈ 𝐶 (𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)

𝑜𝑟
𝑥 ∈ 𝐵 => 𝑥 ∈ 𝐶(𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)

 

5. r1: We have to prove an equivalence; 

 R1: We prove two implications; 

 r2: (𝐴 − 𝐵) ∪ 𝐵 = 𝐴 => 𝐵 ⊂ 𝐴; 

 R2: We prove the conclusion (an inclusion), using the 

hypothesis. 

Let 𝑥 ∈ 𝐵 irrespective => 𝑥 ∈ (𝐴 − 𝐵) ∪ 𝐵 => 𝑥 ∈ 𝐴 

r3: We have to prove the implication: 𝐵 ⊂ 𝐴 => (𝐴 − 𝐵) ∪

𝐵 = 𝐴; 

R3: We prove an equality of sets (two inclusions). 

For the first inclusion, let 𝑥 ∈ (𝐴 − 𝐵) ∪ 𝐵 irrespective [we 

explain the last operation] => 

=> {
𝑥 ∈ 𝐴 − 𝐵

𝑜𝑟
𝑥 ∈ 𝐵

 => {
𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵    (𝑎)

𝑜𝑟
𝑥 ∈ 𝐵                        (𝑏)

 

[We have no more operation to explain, so we update the 

conclusion]. We thus observe that from (a) it follows that 𝑥 ∈ 𝐴, 

and from (b), with the help of the hypothesis,  𝐵 ⊂ 𝐴 , we also 

obtain 𝑥 ∈ 𝐴. 

Method 2: 

  
 We have to prove two inequalities among functions. 

Through the hypothesis, 𝜑𝐴∪𝐵 < 𝜑𝐶  and, moreover 𝜑𝐴 < 𝜑𝐴∪𝐵 

(indeed, 𝜑𝐴 < 𝜑𝐴∪𝐵 <=> 𝜑𝐴 < 𝜑𝐴 + 𝜑𝐵 − 𝜑𝐴𝜑𝐵 <=> 𝜑𝐵(1 −

𝜑𝐴) > 0  – true, because the characteristic functions take two 

values: 0 and 1). 
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  It follows that 𝜑𝐴 < 𝜑𝐴∪𝐵 < 𝜑𝐶  and, analogously 𝜑𝐵 <

𝜑𝐴∪𝐵 < 𝜑𝐶 . 

 Reciprocally, for the inverse implication, we have to prove 

that: 𝜑𝐴∪𝐵 < 𝜑𝐶 , i.e. 

 𝜑𝐴(𝑥) + 𝜑𝐵(𝑥) − 𝜑𝐴∩𝐵(𝑥) < 𝜑𝐶(x)  (1.7) 

 in the hypothesis: 

 𝜑𝐴 < 𝜑𝐶 and 𝜑𝐵 < 𝜑𝐶    (1.8) 

 But 𝜑𝐴, 𝜑𝐵, 𝜑𝐶  can take only two values: 0 and 1. From 

the eight possible cases in which (1.7) must be checked, due to (1.8), 

there remain only four possibilities: 

 

 

 

 
In each of these cases (1.7) checks out. 

5. We have to prove that 

 
But 

 

 

 

 

 
 For the direct implication, through the hypothesis, we 

have: 
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Consequently: 

{
𝜑𝐵(𝑥) = 0 =>  𝜑𝐵(𝑥) < 𝜑𝐴(𝑥) (𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 0 𝑎𝑛𝑑 1 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝜑 𝑡𝑎𝑘𝑒𝑠)

𝑜𝑟
1 − 𝜑𝐴(𝑥) = 0 =>  𝜑𝐴(𝑥) = 1 𝑠𝑜 𝜑𝐵(𝑥) < 𝜑𝐴(𝑥)

 

Reciprocally, if  𝜑𝐵(𝑥) < 𝜑𝐴(𝑥), we cannot have 𝜑𝐵(𝑥) =

1 and 𝜑𝐴(𝑥) = 0, and from (1.9) we deduce: 

 

 
- equality that is true for the three remaining cases: 

 

 

 
 

IV. Using the properties of the characteristic function, solve 

the following equations and systems of equations with sets: 

 

 

 

 
 

SOLUTION: 
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We have to analyze the following cases: 

a) if 𝑥 ∉ 𝐴 and 𝑥 ∉ 𝐵, we have: 

𝜑𝐶(𝐴∩𝐵)(𝑥) = 1  and 𝜑𝐴∩𝐶𝐵(𝑥) = 1 , so for (1.10) to be 

accomplished we must have 𝜑𝑥(𝑥) = 0. So, any point that doesn’t 

belong to 𝐴 or 𝐵, doesn’t belong to 𝑋 either. 

b) if 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵, we have: 

𝜑𝐶(𝐴∩𝐵)(𝑥) = 1  and 𝜑𝐴∩𝐶𝐵(𝑥) = 1 , so for (1.10) to be 

accomplished we must have 𝜑𝑥(𝑥) = 1. Therefore, any point from 

𝐴 − 𝐵 is in 𝑋. 

c) if 𝑥 ∉ 𝐴 and 𝑥 ∈ 𝐵 and for (1.10) to be accomplished, we 

must have 𝜑𝑥(𝑥) = 0, consequently no point from 𝐵 − 𝐴 is not in 

𝑋. 

d) if 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵 we can have 𝜑𝑥(𝑥) = 0 or 𝜑𝑥(𝑥) =

1. 

So any point from 𝐴 ∩ 𝐵 can or cannot be in 𝑋. Therefore 

𝑋 = (𝐴\𝐵) ∪ 𝐷, where 𝐷 ⊂ 𝐴 ∩ 𝐵, arbitrarily.  

 

 

 

 

 

 
We have to analyze four cases, as can be seen from the 

following table:  
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So 𝑋 = (𝐴 − 𝐵) ∪ 𝐶. 

V. Determine the following sets: 

 

 

 

 

 

 
 7. Let 𝑷 ∈ ℤ(𝒙)  a 𝒏  degree polynomial and 𝒒 ∈ ℤ . 

Knowing that 𝑷(𝒒) = 𝟏𝟓, determine the set: 

  

 
INDICATIONS: 

1. An integer maximal part is highlighted. This is obtained 

making the divisions: 

 



Methods of Solving Calculus Problems 

29 

 

10 is dividable by 2𝑛 + 1 <=> 𝑛 ∈ {0, 1, −2} 

 
so 𝐸 ∈ ℤ <=> 27  is dividable by 2𝑥 + 1  and 4𝑥2 − 2𝑥 − 11 +

27

2𝑥+1
 is a multiple of 8 <=> 𝐴 ∈ {−14, −5, −2, −1, 0,1, 4, 13}.  

 
so 𝑥 and 𝑦 are integer solutions of systems the shape of: 

{
3𝑦 − 𝑥 − 1 = 𝑢
3𝑦 + 𝑥 + 1 = 𝑣

  with 𝑢 and 𝑣 as divisors of 32. 

 

 

So 
𝑃(𝑥)

𝑥−𝑞
∈ ℤ <=> 15 is dividable by 𝑥 − 𝑞. 

8. Method 1: For 𝑎 ≠ −1 we have  

  

 

 

so, we must have 𝑥2 + 6𝑥 − 3 > 0 .  As 𝑥1,2 =  −3 ± 2√3 , we 

deduce: 

 

Method 2: We consider the function 𝑓(𝑎) =
𝑎2−𝑎+1

𝑎+1
 and 𝐴 =

𝑓(𝐷), with 𝐷 = ℝ{−1} the domain of 𝑓. 𝐴 is obtained from the 

variation table of 𝑓. 

VI. Determine the following sets, when 𝑎, 𝑏 ∈ ℕ: 



C. Dumitrescu ■ F. Smarandache  

30 

 

 

 

 
where [𝑡] is the integer part of 𝑡. 

 

SOLUTIONS: We use the inequalities: [𝑡] < 𝑡 < [𝑡] + 1, so: 

 

 

 

 

 
VII. The application 𝑓: 𝒫(𝑇) ⟶ ℱ𝑇 defined through 

𝑓(𝐴) =  𝜑𝐴 is a bijection from the family of the parts belonging to 

𝑇 to the family of the characteristic functions defined on 𝑇. 

 

SOLUTION: To demonstrate the injectivity, let 𝐴, 𝐵 ∈ 𝒫(𝑇) 

with 𝐴 ≠ 𝐵 . From 𝐴 ≠ 𝐵  we deduce that there exists 𝑥0 ∈ 𝑇  so 

that: 

a) 𝑥0 ∈ 𝐴 and 𝑥0 ∉ 𝐵 or b) 𝑥0 ∈ 𝐵 and 𝑥0 ∉ 𝐴 

In the first case 𝜑𝐴(𝑥0) = 1 , case 𝜑𝐵(𝑥0) = 0 , so 𝜑𝐴 ≠

𝜑𝐵. In the second case, also, 𝜑𝐴 ≠ 𝜑𝐵. 

The surjectivity comes back to: 

 
Let then 𝜑 ∈ ℱ𝑇  irrespective. Then for 𝐴 = {𝑥|𝜑(𝑥) = 1} 

we have 𝜑 = 𝜑𝐴. 
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II. Functions 
 

Function definition 
A function is determined by three elements 𝐷, 𝐸 and 𝑓, with 

the following significations: 𝐷  and 𝐸  are sets, named the domain 

and the codomain, respectively, of the function, and 𝑓  is a 

correspondence law from 𝐷 to 𝐸 that causes: 

each element 𝒙 ∈ 𝑫 to have one,  

and only one corresponding element 𝒚 ∈ 𝑬.  (F) 

So we can say a function is a triplet (𝐷, 𝐸, 𝑓), the elements of 

this triplet having the signification stated above. 

We usually note this triplet with 𝑓: 𝐷 → 𝐸. Two functions 

are equal if they are equal also as triplets, i.e. when their three 

constitutive elements are respectively equal (not just the 

correspondence laws). 

To highlight the importance the domain and codomain have 

in the definition of functions, we will give some examples below, in 

which, keeping the correspondence law 𝑓 unchanged and modifying 

just the domain or (and) the codomain, we can encounter all 

possible situations, ranging from those where the triplet is a 

function to those where it is a bijective function. 

In order to do this, we have to first write in detail condition 

(𝐹) that characterizes a function. 

We can consider this condition as being made up of two sub 

conditions, namely:  

(𝑓1) each element 𝑥 from the domain has a corresponding element, in the 

 sense of “at least one element”, in the codomain. 

Using a diagram as the one drawn below, the proposition can 

be stated like this: 
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“(At least) one arrow can be drawn from each point of 

the domain.”  

 

 
More rigorously, this condition is expressed by: 

 
The second sub condition regarding 𝑓 in the definition of a 

function is: 

(𝑓2) the element from the codomain that corresponds to 𝑥 is unique. 

For the type of diagram in fig. 2.1, this means that the arrow 

that is drawn from one point is unique. 

This condition has the equivalent formulation: 

“If two arrows have the same starting point then they 

also have the same arrival point.” 

Namely, 

. 

Conditions (𝑓1) and (𝑓2) are necessary and sufficient for any 

correspondence law 𝑓 to be a function. These conditions are easy to 

use in practice. 
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In Figure 2.1, the correspondence law from a) satisfies (𝑓1) 

and doesn’t satisfy (𝑓2); in b) the correspondence law doesn’t satisfy 

(𝑓1) , but satisfies (𝑓2) . In diagram c), neither(𝑓1) , nor (𝑓2)  are 

satisfied, and in d) the correspondence law satisfies both (𝑓1) and 

(𝑓2), so it is the (only) function. 

A function is therefore a triplet ( 𝐷, 𝐸, 𝑓 ), in which the 

correspondence law 𝑓 satisfies (𝑓1) and (𝑓2). 

Let’s observe that these two condition only refer to the 

domain of the function: 

(𝑓1) – from each point of the domain stems at least one arrow; 

 (𝑓2)  – the arrow that stems from one point of the domain is 

unique. 

It is known that the graphic of a function is made up of the 

set of pairs of points (𝑥, 𝑓(𝑥)), when 𝑥 covers the domain of the 

function. 

 
HOW CAN WE RECOGNIZE ON A GRAPHIC IF A 

CORRESPONDANCE LAW IS A FUNCTION [if it satisfies (𝑓1) 

and (𝑓2)] ? 

In order to answer this question we will firstly remember (for 

the case 𝐷, 𝐸 ⊂ 𝑅) the answer to two other questions: 

1. Given 𝑥, how do we obtain – using the graphic – 𝑓(𝑥) 

[namely, the image of 𝑥 (or images, if more than one, and in this case 

the correspondence law 𝑓 is, of course, not a function)] ? 

Answer: We trace a parallel from 𝑥  to 0𝑦  to the point it 

touches the graphic, and from the intersection point (points) we 

then trace a parallel (parallels) to 0𝑥 . The intersection points of 

these parallels with 0𝑦 are the images 𝑓(𝑥) of 𝑥. 

2. Reciprocally, given 𝑦, to obtain the point (points) 𝑥 having 

the property 𝑓(𝑥) = 𝑦, we trace a parallel to 0𝑥  through 𝑦 , and 
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from the point (points) of intersection with the graphic, we then 

trace a parallel (parallels) to 0𝑦. 

Examples 
1. A circle with the center at the origin and with the radius 𝑟 

is not the graphic of a function 𝑓: ℝ ⟶ ℝ, because it does not 

satisfy condition (𝑓1) (there are points in the domain that do not have any 

image, namely, all the points through which the parallel 0𝑦 doesn’t 

intersect the graphic) or (𝑓2), because there are points in the domain that 

have more than one image (all the points 𝑥 ∈ (−𝑟, 𝑟) have two images). 

 
2. A circle with the center at the origin and with the radius 𝑟 

is not the graphic of a function 𝑓: [−𝑟, 𝑟] ⟶ ℝ, because it does not 

satisfy condition (𝑓2)(this time there are no more points in the 

domain that do not have an image, but there are points that have two 

images). 

3. A circle with the center at the origin and with the radius 𝑟 

is not the graphic of a function 𝑓: ℝ ⟶ [0, ∞), because it does not 

satisfy condition (𝑓1). With the codomain [0, ∞), the points have 

one image at most. There are points, however that don’t have an image. 
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4. A circle with the center at the origin and with the radius 𝑟 

is the graphic of a function 𝑓: [−𝑟, 𝑟] ⟶ [0,1], because all the points 

in the domain have one, and only one image. 

5. A circle with the center at the origin and with the radius 𝑟 

is the graphic of a function 𝑓: [−𝑟, 𝑟] ⟶ [0,1]. 

In all these examples, the correspondence law has remained 

unchanged (a circle with the center at the origin and with the radius 

𝑟, having therefore the equation 𝑥2 + 𝑦2 = 𝑟2 , which yields 𝑦 =

±(𝑟2 − 𝑥21/2
). 

By modifying just the domain and (or) the codomain, we 

highlighted all possible situations, starting from the situation where 

none of the required conditions that define a function were fulfilled, 

to the situation where both conditions were fulfilled. 

WITH THE HELP OF THE PARALLELS TO THE 

COORDINATES AXES, WE RECOGNIZE THE 

FULFILLMENT OF THE CONDITIONS (𝑓1) and (𝑓2), THUS: 

a) A graphic satisfies the condition (𝑓1) if and only if any parallel to 

0𝑦 traced through the points of the domain touches the graphic in at least one 

point. 

b) A graphic satisfies the condition (𝑓2) if and only if any parallel to 

0𝑦 traced through the points of the domain touches the graphic in one point at 

most. 

 

 

The inverse of a function 
We don’t always obtain a function by inverting the 

correspondence law (inverting the arrow direction) for a randomly 

given function 𝑓: 𝐷 ⟶ 𝐸. Hence, in the Figure 2.3, 𝑓 is a function, 

but 𝑓−1 (obtained by inverting the correspondence law 𝑓) is not a 

function, because it does not satisfy (𝑓2) (there are points that have 

more than an image). 
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With the help of this diagram, we observe that the inverse 

doesn’t satisfy (𝑓2) every time there are points in the codomain of 𝑓 

that are the image of at least two points from the domain of 𝑓. 

In other words, 𝑓−1  doesn’t satisfy (𝑓2)  every time there are 

different points that have the same image through 𝑓.  

Therefore, as by inverting the correspondence law, the 

condition 𝒇 still be satisfied, it is necessary and sufficient for 

the different points through the direct function have different 

images, namely 

 
A second situation where 𝑓−1 is not a function is when it 

does not satisfy condition (𝑓1) : 

 
We observe this happens every time there are points in the 

codomain through the direct function that are not the images of any 

point in the domain. 

So as by inverting the correspondence law, the condition 

(𝑓1) still be satisfied, it is necessary and sufficient for all the points in 

the codomain be consummated through the direct function, namely 
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In conclusion, 

𝑓−1 satisfies (𝑓2) if and only if 𝑓 satisfies (𝑓3) 

𝑓−1 satisfies (𝑓1) if and only if 𝑓 satisfies (𝑓4) 

𝑓−1 is a function if and only if 𝑓 satisfies (𝑓3) + (𝑓4). 

As it is known, a function that satisfies (𝑓3 ) is called an 

injective function, a function that satisfies (𝑓4 ) is called a 

surjective function, and a function that satisfies (𝑓3) + (𝑓4 ) is 

called a bijective function. 

We see then that the affirmation: “A function has an inverse 

if and only if it is bijective”, has the meaning that the inverse 𝑓−1 

(that always exists, as a correspondence law, even if 𝑓  is not 

bijective) is a function if and only if 𝑓 is bijective. 

With the help of the parallels to the axes of coordinates, we 

recognize if a graphic is the graphic of an injective or surjective 

function; thus: 

c) a graphic is the graphic of an injective function if and only if any 

parallel to 0𝑥 traced through the points of the codomain touches the graphic in 

one point, at most [namely 𝑓−1 satisfies (𝑓2)]. 

d) a graphic is the graphic of a surjective function if and only if any 

parallel to 0𝑥 traced through the points of the codomain touches the graphic in 

at least one point [namely 𝑓−1 satisfies (𝑓1)]. 

 

Examples 
1. A circle with the center at the origin and with the radius 𝑟 

is the graphic of a function 𝑓: [0, 𝑟] ⟶ [0, ∞) that is injective but 

not surjective. 

2. A circle with the center at the origin and with the radius 𝑟 

is the graphic of a function 𝑓: [−𝑟, 𝑟] ⟶ [0, 𝑟) that is surjective 

but not injective. 

3. A circle with the center at the origin and with the radius 𝑟 

is the graphic of a bijective function 𝑓: [0, 𝑟] ⟶ [0, 𝑟). 
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So, by only modifying the domain and the codomain, using a 

circle with the center at the origin and with the radius 𝑟 , all 

situations can be obtained, starting from the situation where none 

of the two required conditions that define a function were fulfilled, 

to a bijective function. 

 

Observation 
𝑓−1 is obtained by inverting the correspondence law 𝐹, namely 

 
in other words 

 
In the case of the exponential function, for example, the 

equivalence (2.1) becomes: 

 
because the inverse of the exponential function is noted by 

𝑓−1(𝑦) = 𝑙𝑜𝑔𝛼𝑦. The relation (2.2) defines the logarithm: 

The logarithm of a number 𝑦 in a given base, 𝑎, is the exponent 𝑥 to 

which the base has to be raised to obtain 𝑦. 

 

 

The Graphic of the Inverse Function 
If 𝐷 and 𝐸 are subsets of 𝑅 and the domain 𝐷 of 𝑓 (so the 

codomain of 𝑓−1) is represented on the axis 0𝑥, and on the axis 

0𝑦, the codomain 𝐸 (so the domain of 𝑓−1), then the graphic of 𝑓 

and 𝑓−1 coincides, because 𝑓−1 only inverses the correspondence 

law (it inverses the direction of the arrows). 

But if we represent for 𝑓−1 the domain, horizontally, and the 

codomain vertically, so we represent 𝐸  on 0𝑥  and 𝐷 on 0𝑦, then 

any random point on the initial graphic 𝐺𝑓 (that, without the 
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aforementioned convention is the graphic for both 𝑓  and 𝑓−1 ), 

such a point (𝑥, 𝑓(𝑥)) becomes (𝑓(𝑥), 𝑥). 

The points (𝑥, 𝑓(𝑥))  and (𝑓(𝑥), 𝑥)  are symmetrical in 

relation to the first bisector, so we obtain another graphic 𝐺𝑓
𝑎 

besides 𝐺𝑓 if the domain of 𝒇−𝟏 is on 𝟎𝒙. 

Agreeing to represent the domains of all the functions on 

0𝑥 it follows that 𝐺𝑓
𝑎 is a graphic of 𝑓−1. 

With this convention, the graphics of 𝑓  and 𝑓−1  are 

symmetrical in relation to the first bisector. 

 

 

Methods to show that a function 
is bijective 

1. Using the definition 
- to study the injectivity, we verify if the function 

fulfills the condition (𝑓3); 

- to study the surjectivity, we verify if the condition 

(𝑓4) is fulfilled. 

2. The graphical method 
- to study the injectivity we use proposition c); 

- to study the surjectivity we use proposition d). 

Important observation 
If we use the graphical method, it is essential, for functions 

defined on branches, to trace as accurately as possible the graphic 

around the point (points) of connection among branches. 
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Examples 

1. The function 𝑓: ℝ ⟶ ℝ, 𝑓(𝑥) = {
2𝑥 + 1   𝑖𝑓 𝑥 ≤ 1
𝑥 + 3  𝑖𝑓 𝑥 > 1

   is 

injective, but is not surjective. The graphic is represented in Figure 

2.5 a). 

2. The function 𝑓: ℝ ⟶ ℝ , 𝑓(𝑥) = {
3𝑥 − 1   𝑖𝑓 𝑥 ≤ 2
2𝑥 − 1  𝑖𝑓 𝑥 > 2

  is 

surjective, but is not injective. The graphic is in Figure 2.5 b). 

3. The function 𝑓: ℝ ⟶ ℝ, 𝑓(𝑥) = {
2𝑥 + 1   𝑖𝑓 𝑥 ≤ 1
𝑥 + 2  𝑖𝑓 𝑥 > 1

   is 

bijective. The graphic is represented in Figure 2.5 c). 

 

3. Using the theorem 
A strictly monotonic function is injective. 

To study the surjectivity, we verify if the function is 

continuous and, in case it is, we calculate the limits at the 

extremities of the domain. 
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Example 
Let’s show that 𝑓(𝑥) = 𝑡𝑔 𝑥, 𝑓: (−

𝜋

2
,

𝜋

2
) ⟶ ℝ  is bijective. 

(i) injectivity: because 𝑓(𝑥) =
1

𝑐𝑜𝑠2𝑥
 is strictly positive, we 

deduce that the function is strictly ascending, so, it is injective. 

(ii) surjectivity: the function is continuous on all the definition 

domain, so it has Darboux’s property and 

 
from where it follows that it is surjective. 

4. Using the proposition 1 
The function , 𝑓: 𝐷 ⟶ 𝐸  is bijective if and only if 

⩝ 𝑦 ∈ 𝐸 the equation 𝑓(𝑥) = 𝑦 has an unique solution 

(see the Algebra workbook grade XII) 

Example 
Let 𝐷 = ℚ × ℚ and the matrix 𝐴 = (3

4
1
2
). Then the function  

 
is bijective (Algebra, grade XII). 

Let’s observe that in the proposition used at this point, the 

affirmation “the equation 𝑓(𝑥) = 𝑦  has a solution” ensures the 

surjectivity of the function and the affirmation “the solution is 

unique” ensures the injectivity.  

5. Using the proposition 2 
If 𝑓, 𝑔: 𝐷 ⟶ 𝐷  and 𝑔. 𝑓 = 1𝐷 then 𝑓  is injective and 𝑔  is 

surjective (Algebra, grade XII). 

Example 
Let 𝐷 = ℤ × ℤ  and 𝐴 = ( 2

−1
3

−2
) . Then the function 

𝑓𝐴: 𝐷 ⟶ 𝐷 defined through 
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satisfies 𝑓𝐴 ∘ 𝑓𝐴 = 1𝐷, so it is bijective ( algebra, grade XII). 

Let’s observe that the used proposition can be generalized, at 

this point, thus: 

“Let 𝑓: 𝐷 ⟶ 𝐸, 𝑔: 𝐸 ⟶ 𝐹, so that 𝑔 ∘ 𝑓 is bijective. Then 𝑓 

is injective and 𝑔 is surjective.” 

 

Exercises 
I. Trace the graphics of the following functions and specify, 

in each case, if the respective function is injective, surjective or 

bijective. 
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SOLUTIONS. 

It is known that: 

 

 
In order to more easily explain the conditions from the 

inequalities over 𝑢, 𝑣 𝑎𝑛𝑑 𝑤 we will proceed as follows: 

1. we draw the table with the signs of the functions 𝑢 −

𝑣, 𝑢 − 𝑤 and 𝑣 − 𝑤 

2. using the table we can easily explain the inequalities, 

because for example 𝑢(𝑥) ≤ 𝑣(𝑥) <===> 𝑢(𝑥) ≤ 0. 

1. For 𝑢(𝑥) = 𝑥 + 1 , 𝑣(𝑥) = 𝑥2 + 2  and 𝑤(𝑥) = 3𝑥  we 

have the following table: 

 
So: 
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Therefore, 

 
5. To explain 𝑓 we proceed as follows: 

(1) we draw the variation table of the function 𝑦(𝑡) = 𝑡2 

(2) considering 𝑥  in the first monotonic interval (deduced 

from the table), at the right of −1 (because we are only interested in 

the values 𝑡 ≥ −1 ), we calculate the minimum of 𝑦(𝑡)  on the 

interval 𝑡 ∈ [−1, 𝑥] etc. 

 
a) for the first monotonic interval, 𝑥 ∈ (−1,0), the function 

𝑦(𝑡) = 𝑡2  has a single minimum point on the interval [−1, 𝑥] , 

situated in 𝑡 = 𝑥; its values is 𝑦(𝑥) = 𝑥2. Being a single minimum 

point it is also the global minimum (absolute) of 𝑦(𝑡)  on the 

interval [−1, 𝑥], so, the value  of 𝑓 is 𝑓(𝑥) = 𝑥2 for 𝑥 ∈ (−1,0]. 

b) for the second monotonic interval, 𝑥 ∈ (0, ∞) , the 

function 𝑦(𝑡) = 𝑡2  has a single minimum point on the interval 

[−1, 𝑥], in 𝑡 = 0; its value is 𝑦(0) = 0. Being a single minimum 

point, we have 𝑓(𝑥) = 0 for 𝑥 ∈ (0, ∞), so 

 
Let’s observe that using the same variation table we can 

explain the function 𝑔(𝑥) = 𝑚𝑎𝑥
1≤1≤𝑥

𝑡2. Hence: 
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a) for 𝑥 ∈ (−1,0] , the function 𝑦(𝑡) = 𝑡2 , has only one 

maximum, namely [−1, 𝑥] in 𝑡 = −1; its value is 𝑀 = 𝑦(1) = 1. 

So 𝑔(𝑥) = 1, for 𝑥 ∈ (1,0]. 

b) for 𝑥 ∈ (0, +∞), 𝑦(𝑡) = 𝑡2 has two maximum points, in 

𝑡1 = −1  and 𝑡2 = 𝑥 ; their values are 𝑀1 = 𝑦(1) = 1  and 𝑀2 =

𝑦(𝑥) = 𝑥2. The values of 𝑓 is the global maximum, so: 

𝑔(𝑥) = max (1, 𝑥) for 𝑥 ∈ (0, +∞). 

It follows that 𝑔(𝑥) = {
1                  𝑖𝑓 𝑥 ∈ [−1,0]

max(1, 𝑥2)      𝑖𝑓 𝑥 > 0
 

   

 

9. From the variation table of 𝑦(𝑡) =
𝑡4

(𝑡+7)3 

 
1. for 𝑥 ∈ (−2, 𝑜] , 𝑦(𝑡)  has a single minimum on the 

interval [−2, 𝑥], in 𝑡 = 𝑥; its value is 𝑚 = 𝑦(𝑥) =
𝑥4

(𝑥+7)3 

2. for 𝑥 > 0, 𝑦(𝑡) has a single minimum, namely [−2, 𝑥], in 

𝑡 = 0; its value is 𝑚 = 𝑦(0) = 0. So 
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Analogously, for 

 

 
10. From the variation table of 𝑦(𝑡) = 𝑡2 in 𝑡 

 
we deduce: 

(a) if 𝑥 ∈ (0,
1

√𝑒
] , the function 𝑦(𝑡) = 𝑡2 in 𝑡  has, for 𝑡 ∈

(0, 𝑥], a single supremum 𝑆 =
𝑙𝑖𝑚

𝑡 → 𝑜  
𝑡 > 0

𝑦(𝑡) = 0 . 

(b) 𝑥 ∈ (
−1

√𝑒
, ∞], the function 𝑦(𝑡) has two supreme values: 

𝑆1 = 0 and 𝑀1 = 𝑦(𝑥) = 𝑥21𝑛 𝑥. 

So: 

 
II. Study the bijectivity of: 
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2. 𝑓(𝑥) = 𝑃(𝑥), 𝑃 being an uneven degree polynomial. 

 

 

   

 

   

 

  

 
III. Study the irreversibility of the hyperbolic functions: 

 

 

 

 
and show their inverses. 

IV. 1. Show that the functions 𝑓(𝑥) = 𝑥2 − 𝑥 + 1 , 

𝑓: [
1

2
, ∞) ⟶ ℝ and 
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are inverse one to the other. 

2. Show that 𝑓(𝑥) =
1−𝑥

1+𝑥
 coincides with its inverse. 

3. Determine the parameters 𝑎, 𝑏, 𝑐, 𝑑 so that 𝑓(𝑥) =
𝑎𝑥+𝑏

𝑐𝑥+𝑑
 

coincides with its inverse. 

4. Show that the function 𝑓: (0,1] ⟶ ℝ  defined 

through𝑓(𝑥) =
4

3𝑛 − 𝑥, if 𝑥 ∈ [
1

3𝑛 ,
1

3𝑛−1] is bijective. 

5. On what subinterval is the function 𝑓: [−
1

2
, ∞) ⟶ ℝ 

𝑓(𝑥) = √𝑥 − √2𝑥 − 1 bijective? 

 

INDICATIONS. 

4. To simplify the reasoning, sketch the graphic of function 

𝑓. 

5. Use the superposed radical decomposition formula: 

 

where 𝐶 = √𝐴2 − 𝐵. 

 

 

Monotony and boundaries 
for sequences and functions 

A sequence is a function defined on the natural numbers’ set. 

The domain of such a function is, therefore, the set of natural 

numbers ℕ . The codomain and the correspondence law can 

randomly vary. 

Hereinafter, we will consider just natural numbers’ 

sequences, i.e. sequences with the codomain represented by the set 

of real numbers, ℝ. 
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𝑓: ℕ ⟶ ℝ REAL NUMBERS SEQUENCE 

For this kind of function, with the same domain and 

codomain each time, only the correspondence law 𝑓  should be 

added, which comes down to specifying the set of its values: 

𝑓(0), 𝑓(1), 𝑓(2), … , 𝑓(𝑛), … 

 
For the ease of notation, we write, for example: 

 
So, to determine a sequence, it is necessary and sufficient to know 

the set of its values: 𝑎0, 𝑎1, … , 𝑎𝑛, ….  This set is abbreviated by 

(𝑎𝑛)𝑛∈ℕ. 

Consequently, a sequence is a particular case of function. 

The transition from a function to a sequence is made in this 

manner: 

(𝑠1) by replacing the domain 𝐷with ℕ 

(𝑠2) by replacing the codomain 𝐸 with ℝ 

(𝑠3) by replacing the variable 𝑥 with 𝑛 (or 𝑚, or 𝑖, etc) 

(𝑠4) by replacing 𝑓(𝑥) with 𝑎𝑛 

 



C. Dumitrescu ■ F. Smarandache  

50 

 

 DOMAIN CODOMAIN VARIABLE CORRESP. 
LAW 

Function D E x 𝑓(𝑥) 
Sequence ℕ ℝ n 𝑎𝑛 

 

Hereinafter we will use this transition method, from a 

function to a sequence, in order to obtain the notations for 

monotony, bounding and limit of a sequence as particular cases 

of the same notations for functions. 

  We can frequently attach a function to a sequence (𝑎𝑛)𝑛∈ℕ , 

 obtained by replacing 𝑛  with 𝑥  in the expression of 𝑎𝑛  ( 𝑎𝑛 

 becomes 𝑓(𝑥)). 

 

Example 
We can attach the function 𝑓(𝑥) =

𝑥+3

2𝑥+1
 to the sequence 

𝑎𝑛 =
𝑛+3

2𝑛+1
. 

However, there are sequences that we cannot attach a 

function to by using this method. For example: 

 
It is easier to solve problems of monotony, bounding and 

convergence of sequences by using the function attached to a 

sequence, as we shall discover shortly. 

Using functions to study the monotony, the bounding and 

the limits of a sequence offers the advantage of using the derivative 

and the table of variation. 

On the other hand, it is useful to observe that the monotony, 

as well as the bounding and the limit of a sequence are particular 

cases of the same notion defined for functions. This 

particularization is obtained in the four mentioned steps ( 𝑠1) −

(𝑠4) . 
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Here is how we can obtain the particularization, first for the 

monotony and bounding, then for the limit. 

MONOTONIC FUNCTIONS MONOTONIC SEQUENCES 

a) the function 𝑓: 𝐷 ⟶ ℝ, 𝐷 ⊆
ℝ is monotonically increasing if: 

⩝ 𝑥1. 𝑥2 ∈ 𝐷, 𝑥1 ≤ 𝑥2 → 𝑓(𝑥1)
≤ 𝑓(𝑥2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) the sequence 𝑓: ℕ ⟶ ℝ  is 
monotonically increasing if: 

⩝ 𝑛1, 𝑛2  ∈ ℕ, 𝑛1 ≤ 𝑛2 →
 𝑎𝑛1

≤ 𝑎𝑛2
                            (1) 

If condition (1) is fulfilled, 

taking, particularly 𝑛1 = 𝑛  and 

𝑛2 = 𝑛 + 1, we deduce 

𝑎𝑛 ≤ 𝑎𝑛+1 for any 𝑛            (2) 

In conclusion (1) ⟶ (2) 
The reciprocal implication also 
stands true. Its demonstration 
can be deduced from the 
following example: 

If (2)  is fulfilled and we take 

𝑛1 = 7, 𝑛2 = 11 , we have 

𝑛1 ≤ 𝑛2  and step by step 

 
and 𝑎7 ≤ 𝑎11. 

Consequently, (1) ⟷ (2). 

Because conditions (1) and (2) 
are equivalent, and (2) is more 
convenient, we will use this 
condition to define the 
monotonically increasing 
sequence. But we must loose 
from sight the fact that it is 
equivalent to that particular 
condition that is obtained from 
the definition of monotonic 
functions, through the 

particularizations ( 𝑠1) − (𝑠4) , 
that define the transition from 
function to sequence. 
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b) the function 𝑓: 𝐷 ⟶ ℝ, 𝐷 ⊆
ℝ is monotonically decreasing if: 

⩝ 𝑥1, 𝑥2 ∈ 𝐷, 𝑥1 ≤ 𝑥2 → 𝑓(𝑥1)
≥ 𝑓(𝑥2) 

 
 
 
 

b) the sequence 𝑓: ℕ ⟶ ℝ  is 
monotonically decreasing if: 

⩝ 𝑛1, 𝑛2  ∈ ℕ, 𝑛1 ≤ 𝑛2 →  𝑎𝑛1

≥ 𝑎𝑛2
 

It can be shown that this 
condition is equivalent to: 

𝑎𝑛 ≥ 𝑎𝑛+1 for any 𝑛 ∈ ℕ  (4)  

LIMITED FUNCTIONS LIMITED SEQUENCES 

a) 𝑓: 𝐷 ⟶ ℝ , 𝐷 ⊆ ℝ  is of 
inferiorly bounded if it doesn’t 

have values towards −∞ , i.e. 

∃𝑎 ∈ ℝ,⩝ 𝑥 ∈ 𝐷, 𝑓(𝑥) ≥ 𝑎 

b) 𝑓: 𝐷 ⟶ ℝ , 𝐷 ⊆ ℝ  is of 
superiorly bounded if it doesn’t 

have values towards +∞  

i.e. ∃𝑏 ∈ ℝ,⩝ 𝑥 ∈ 𝐷, 𝑓(𝑥) ≤ 𝑏 

c) 𝑓: 𝐷 ⟶ ℝ , 𝐷 ⊆ ℝ  is 
bounded, if it is inferiorly and 
superiorly bounded, i.e. 

∃𝑎, 𝑏 ∈ ℝ,⩝ 𝑥 ∈  ℕ 𝑎 ≤ 𝑓(𝑥) ≤
𝑏. 
In other words, there exists an 

interval [𝑎, 𝑏]  that contains all 
the values of the function. This 
interval is not, generally, 
symmetrical relative to the origin, 
but we can consider it so, by 
enlarging one of the extremities 

wide enough. In this case [𝑎, 𝑏] 
becomes [−𝑀, 𝑀]  and the 
limiting condition is: 

∃ 𝑀 > 0, ,⩝ 𝑥 ∈ 𝐷   −𝑀 ≤
𝑓(𝑥) ≤ 𝑀 i.e. 

∃ 𝑀 > 0, ,⩝ 𝑥 ∈ 𝐷  |𝑓(𝑥)| ≤ 𝑀 
 

a) the sequence 𝑓: ℕ ⟶ ℝ is of 
inferiorly bounded if it 
doesn’t have values towards 

−∞ , i.e. 

∃𝑎 ∈ ℝ,⩝ 𝑛 ∈ ℕ, 𝑎𝑛 ≥ 𝑎 

b) the sequence 𝑓: ℕ ⟶ ℝ is of 
superiorly bounded if it 
doesn’t have values towards 

+∞ , i.e. 

∃𝑏 ∈ ℝ,⩝ 𝑛 ∈ ℕ, 𝑎𝑛 ≥ 𝑏 

c) the sequence 𝑓: ℕ ⟶ ℝ  is 
bounded if it is inferiorly and 
superiorly bounded, i.e 

∃𝑎, 𝑏 ∈ ℝ,⩝ 𝑛 ∈  ℕ  𝑎 ≤ 𝑎𝑛 ≤
𝑏 
OR 

∃ 𝑀 > 0,⩝ 𝑛 ∈  ℕ  |𝑎𝑛| ≤ 𝑀 
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Methods for the study of monotony 
and bounding 

METHODS FOR 
FUNCTIONS 

METHODS FOR 
SEQUENCES 

The study of monotony 

1. Using the definition: 

We consider 𝑥1 ≤ 𝑥2 and we 

compare the difference 𝑓(𝑥1) =
𝑓(𝑥2) to zero. This can be done 
through successive minorings 
and majorings or by applying 
Lagrange’s theorem to function 

𝑓 on the interval [𝑥1, 𝑥2]. 
 
2. Using the variation table (in 
the case of differentiable 
functions) 
As it is known, the variation 
table of a differentiable 
function offers precise 
information on monotonic and 
bounding functions. 
 
 
 
3. Using Lagrange’s theorem 
It allows the replacement of the 

difference 𝑓(𝑥2) − 𝑓(𝑥1) with 

𝑓(𝑐) that is then compared to 
zero. 

1. Using the definition: 
We compare the difference 

𝑎𝑛+1 − 𝑎𝑛 to zero, and for 
sequences with positive terms 
we can compare the quotient 

𝑎𝑛+1/𝑎𝑛  to one. We can make 
successive minorings and 
majorings or by applying 
Lagrange’s theorem to the 
attached considered sequence. 
2. Using the variation table 
for the attached function 
We study the monotony of the 
given sequence and, using the 
sequences criterion, we 
deduce that the monotony of 
the sequence is given by the 
monotony of this function, on 

the interval [0, ∞), (see 
Method 10 point c) 
3. Using Lagrange’s theorem 
for the attached function. 

The study of bounding 

1. Using the definition 
2. Using the variation table 

1.. Using the definition 
2. Using the variation table 
for the attached function 
3. If the sequence 
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decomposes in a finite 
number of bounded 
subsequences, it is bounded. 
4. Using the monotony. 
If a sequence is monotonic, at 
least half of the bounding 
problem is solved, namely: 
a) if the sequence is 
monotonically increasing, it is 
inferiorly bounded by the first 
term and only the superior 
bound has to be found. 
b) if the sequence is 
monotonically decreasing, it 
is superiorly bounded by the 
first term, and only the inferior 
bound must be found. 
c) IF THE SEQUENCE IS 
MONOTONICALLY 
DECREASING AND HAS 
POSITIVE TERMS, IT IS 
BOUNDED.  

Exercises 
I. Study the monotony and the bounding of the functions: 
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ANSWERS: 

3. We can write 𝑓(𝑥) = 𝑒𝑙𝑛×ln (ln 𝑥) and we have the 

variation table: 

 

so the function is decreasing on the interval (1, 𝑒1/𝑒) and increasing 

on (𝑒1/𝑒, ∞) . It is inferiorly bounded, its minimum being 𝑚 =

𝑒−1/𝑒 and it is not superiorly bounded. 

5. We use the superposed radicals’ decomposition formula: 

 

 

6. Let 𝑥1 < 𝑥2. In order to obtain the sign of the difference 

𝑓(𝑥1) − 𝑓(𝑥2)  we can apply Lagrange’s theorem to the given 

function, on the interval [𝑥1, 𝑥2] (the conditions of the theorem are 

fulfilled): 𝑐 ∈ ℝ exists, so that: 

 

 
so the function is increasing. 

II. Study the monotony and the bounding of the sequences: 
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also determine the smallest term of the sequence. 

 
also determine the smallest term of the sequence. 

 

 

 

 
𝛾𝑛  being the intermediary value that is obtained by applying 

Lagrange’s theorem to the function 𝑓(𝑥) = ln 𝑥  on the intervals 

[𝑛, 𝑛 + 1]. 

 

ANSWERS: 

2. The function attached to the sequence is 𝑓(𝑥) = 𝑥1/𝑥 . 

From the variation table: 

 
we deduce, according to the sequence criterion (Heine’s criterion, 

see Method 10, point c), the type of monotony of the studied 

sequence. The sequence has the same monotony as the attached 

function, so it is decreasing for 𝑛 ≥ 3 . Because the sequence is 

decreasing if 𝑛 ≥ 3, in order to discover the biggest term, we have 

to compare 𝑎2  and 𝑎3 . We deduce that the biggest term of the 

sequence is:  

 
3. The function attached to the sequence is 𝑓(𝑥) = 𝑥𝑎𝑥 . 

From the variation table for 𝑎 ∈ (0,1): 
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using point c) from Method 10, we deduce that the given sequence 

is increasing for 𝑛, smaller or equal to the integer part of (− ln 𝑎)−1 

and is decreasing for 𝑛 ≥ [(− ln 𝑎)−1] + 1. 

Because 

 

we deduce that the interval [1, [(− ln 𝑎)−1]], in which the sequence 

is increasing, can be no matter how big or small. 

6. The sequence of the general term 𝑎𝑛  is increasing, the 

sequence of the general term 𝑏𝑛 is decreasing, and the sequence 𝑐𝑛 

is increasing if 𝑎 ∈ [0, 𝑛 − 𝛾𝑛]  and is decreasing for 𝑎 ∈ [, 𝑛 −

𝛾𝑛, 1]. 

III. Using Lagrange’s theorem. 

1. Prove the inequality | sin 𝑥| ≤ |𝑥|  for any real 𝑥 , then 

show that the sequence 𝑎1 = sin 𝑥, 𝑎2 = sin sin 𝑥, … , 𝑎𝑛 =

sin sin … sin 𝑥, is monotonic and bounded, irrespective of 𝑥, and 

its limit is zero. 

2. Study the monotony and the bounding of the sequences: 

 

 

 
 

ANSWERS: 
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From Lagrange’s theorem applied to the function 𝑓(𝑛) = 𝑠𝑖𝑛 𝑡 on 

the interval [𝑥, 0] or [0, 𝑥], depending on 𝑥 being either negative or 

positive, we obtain |
sin 𝑥

𝑥
| = | cos 𝑐| ≤ 1. The sequence satisfies the 

recurrence relation: 𝑎𝑛+1 = sin 𝑎𝑛, so if sin 𝑥 > 0, we deduce that 

the sequence is decreasing, and if sin 𝑥 < 0  the sequence is 

increasing. It is evidently bounded by −1 and 1. Noting with 𝐿 its 

limit and passing to the limit in the recurrence relation, we obtain 

𝐿 = sin 𝐿, so 𝐿 = 0. 

 

 

where 𝑓(𝑥) = (1 +
1

𝑥
)𝑥  defines the function attached to the 

sequence. 

b) Applying Lagrange’s theorem to the function attached to 

the sequence, on the interval [𝑛, 𝑛 + 1], we deduce𝑎𝑛+1 − 𝑎𝑛 =

𝑓(𝑐𝑛). We have to further determine the sign of the derivation: 

 
namely, the sign of  

 
From the table below we deduce 𝑔(𝑥) > 0 for 𝑥 > 0, so 𝑎𝑛+1 −

𝑎𝑛 > 0. 

 
IV. 1. Let I be a random interval and 𝑓: 𝐼 → 𝐼 a function. 

Show that the sequence defined through the recurrence relation 

𝑎𝑛+1 = 𝑓(𝑎𝑛), with 𝑎𝑜 being given, is: 

a) increasing, if 𝑓(𝑥) − 𝑥 > 0 on 𝐼 

b) decreasing if 𝑓(𝑥) − 𝑥 < 0 on 𝐼. 
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2. If the sequence (𝑎𝑛)𝑛∈ℕ is increasing, and the sequence 

(𝑏𝑛)𝑛∈ℕ is decreasing and 𝑎𝑛 ≤ 𝑏𝑛 for any 𝑛, then: 

a) the two sequences are bounded, and so convergent. 

b) if 𝑙𝑖𝑚
𝑛→∞

(𝑏𝑛 − 𝑎𝑛) = 0 then they have the same limit. 

c) apply these results to the sequences given by the 

recurrence formulas: 

 
with 𝑎𝑜 and 𝑏𝑜 being given. 

 

SOLUTIONS: 

1. 𝑎𝑛+1 − 𝑎𝑛 = 𝑓(𝑎𝑛) − 𝑎𝑛 > 0 in the first case. 

2. the two sequences are bounded between 𝑎1 and 𝑏1, so the 

sequences are convergent, because they are also monotonic. Let 𝑙1 

and 𝑙2  represent their limits. From the hypothesis from (b) it 

follows that 𝑙1 = 𝑙2. 

(c) the sequences have positive terms and: 

 
V. Study the bounding of the sequences: 
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ANSWER: Each sequence is decomposed in two bounded 

subsequences (convergent even, having the same limit), so they are 

bounded (convergent). 
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III. The limits of sequences 
and functions  

 

The definition of monotony and bounding of sequences has 

been deduced from the corresponding definitions of functions, 

using the method shown, in which 𝑥 is replaced with 𝑛 and 𝑓(𝑥) is 

replaced with 𝑎𝑛 . We will use the same method to obtain the 

definition of the limit of a sequence from the definition of the limit 

of a function. This method of particularization of a definition of 

functions with the purpose of obtaining the analogous definition for 

sequences highlights the connection between sequences and 

functions. Considering that sequences are particular cases of 

functions, it is natural that the definitions of monotony, bounding 

and the limit of a sequence are particular cases of the corresponding 

definitions of functions. 

 

The limits of functions 
The definition of a function’s limit is based on the notion of 

vicinity of a point. 

Intuitively, the set 𝑉 ⊂ ℝ is in the vicinity of point 𝑥𝑜 ∈ ℝ, 

if (1) 𝑥 ∈ 𝑉, and, moreover, (2) 𝑉 also contains points that are in 

the vicinity of 𝑥𝑜 (at its left and right). 

Obviously, if there is any open interval (𝑎, 𝑏), so that 𝑥𝑜 ∈

(𝑎, 𝑏) ⊂ 𝑉, then the two conditions are met. 

Particularly, any open interval (𝒂, 𝒃)  that contains 𝒙𝒐 

satisfies both conditions, so it represents a vicinity for 𝒙𝒐. 

For finite points, we will consider as vicinities open intervals 

with the center in those points, of the type: 
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and sets that contain such intervals. 

For (+∞), 𝑉∞ = (∞ − 𝜀, ∞ + 𝜀) doesn’t make sense, so we 

have to find a different form for the vicinities of +∞. In order to 

accomplish this, we observe that to the right of +∞ we cannot 

consider any points, so ∞ + 𝜀  has to be replaced with +∞ . 

Furthermore, because ∞ − 𝜀 = ∞, we replace ∞ − 𝜀 with 𝜀. So, we 

will consider the vicinities of +∞ with the form: 

𝑉∞ = (𝜀, ∞) 

and sets that contain such intervals. 

Analogously, the vicinities of −∞ have the form: 

𝑉−∞ = (− ∞, 𝜀) 

The definition of a function’s limit in a point expresses the 

condition according to which when 𝑥  approaches 𝑥𝑜 , 𝑓(𝑥)  will 

approach the value 𝑙 of the limit. 

With the help of vicinities, this condition is described by: 

  

 
As we have shown, for the vicinities 𝑉𝑙  and 𝑉𝑥𝑜

from the 

definition (∗∗∗), there exist three essential forms, corresponding to 

the finite points and to + ∞ and − ∞ respectively. 

 

 

CONVENTION:  

We use the letter 𝜀 to write the vicinities of 𝑙, and the letter 𝛿 

designates the vicinities of 𝑥𝑜. 

We thus have the following cases: 
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and condition 𝑥 ∈ and 𝑉𝑥𝑜

 becomes 𝑥 > 𝛿 

 
and condition 𝑥𝑜 ∈ and 𝑉𝑥𝑜

 becomes 𝑥 < 𝛿 

 

 

 

 

 

 

 

 

 
All these cases are illustrated in Table 3.1. 

Considering each corresponding situation to 𝑥𝑜 and 𝑙, in the 

definition (∗∗∗) , we have 9 total forms for the definition of a 

function. we have the following 9 situations: 
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Exercises 
I. Using the definition, prove that: 

 

 

 

 

 

 

 

ANSWERS: 

In all cases, we have 𝑥𝑜 − 𝑓𝑖𝑛𝑖𝑡𝑒. 

2. We go through the following stages: 

a) we particularize the definition of limit 

 

 

 
(taking into account the form of the vicinity). 

b) we consider 𝜀 > 0, irrespective; we therefore search for 

𝛿𝜀 . 

c) we make calculation in the expression |𝑓(𝑥) − 𝑙| , 

highlighting the module |𝑥 − 𝑥𝑜|. 
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d) we increase (decrease) the obtained expression, keeping in 

mind we are ony interested in those values of 𝑥  for which |𝑥 −

𝑥𝑜| < 𝛿𝜀 . 

So:  

e) if the expression that depends on 𝑥  is bounded 

(continuous) in a vicinity of 𝑥𝑜, we can further increase, to eliminate 

𝑥. We have: 

 
because in the interval [0,2], for example, that is a vicinity of 𝑥𝑜 =

1 , the function 𝑔(𝑥) =
1

|3𝑥+2|
 is continuous, and therefore 

bounded: 𝑔(𝑥) ∈ [
1

5
,

1

2
], if 𝑥 ∈ [0,2]. 

f) we determine 𝛿𝜀 , setting the condition that the expression 

we have reached (and that doesn’t depend on 𝑥 , just on 𝛿𝜀 ) be 

smaller than 𝜀: 

 
Any 𝛿𝜀  that fulfills this condition is satisfactory. We can, for 

example, choose 𝛿𝜀
3

2
𝜀 or 𝛿𝜀 = 𝜀 etc. 

In order to use the increase made to function 𝑔, we must 

also have 𝛿𝜀 ≤ 1, so, actually 𝛿𝜀 = min (1,
3

2
𝜀 ) (for example). 

It follows that: 
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b) let 𝜀 > 0; we search for 𝛿𝜀 

 

 

 
because in the interval [1,3], for example, the function: 

 
is bounded by: 

 

f) we determine 𝛿𝜀  from the condition: 
𝛿𝜀

3
< 𝜀 . We obtain 

𝛿𝜀 < 3𝜀, so we can, for example, take 𝛿𝜀 = 𝜀. But in order for the 

increase we have made to function 𝑔 to be valid, we must also have 

𝛿𝜀 ≤ 1, so, actually 𝛿𝜀 = min(1, 𝜀).  

It follows that:  

 

 
so the condition from the definition of the limit is in this case, also, 

fulfilled. 
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b) let 𝜀  any (not necessarily positive, because 𝑙 = +∞ , so 

𝑉𝑙 = (𝜀, +∞)only makes sense for any 𝜀, not just for 𝜀 positive). 

 

 

 

 

so we can take  𝛿𝜀 =
1

2√𝜀
 

Then:  

 

 
II. Using the definition, prove that: 

 

 
 

ANSWERS: 
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b) let 𝜀 > 0 any; we search for 𝛿𝜀 . 

c) because 𝑥𝑜 isn’t finite anymore, we cannot highlight |𝑥 −

𝑥𝑜 |. We will proceed differently: we consider the inequality 

|𝑓(𝑥) − 𝑙| < 𝜀 as an inequation in the unknown 𝑥 (using also the 

fact that 𝑥 → ∞ , so, we can consider |2𝑥 + 1| = 2𝑥 + 1 ). We 

have: 

 

 

 

  

 

 

 

 

 
b) let 𝜀 > 0 any; we determine 𝛿𝜀 . 

c) we express 𝑥  from the inequality 𝑓(𝑥) > 𝜀 : 
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If 𝑥1 and 𝑥2 are the roots of the attached second degree equation 

and we assume 𝑥1 < 𝑥2, we have 𝑓(𝑥) > 𝜀 ⟺ 𝑥 > max (100, 𝑥2). 

So we can take 𝛿𝜀 = max (100, 𝑥2). 

 

 

The limits of sequences  
The definition of a sequence’s limit is deduced from the 

definition of a function’s limit, making the mentioned 

particularizations: 

(1) 𝑥 is replaced with 𝑛, 

(2) 𝑓(𝑥) is replaced with 𝑎𝑛, 

(3) 𝑥𝑜 is replaced with 𝑛𝑜. 

Moreover, we have to observe that 𝑛𝑜 = −∞ and finite 𝑛𝑜 

don’t make sense (for example 𝑛 → 3 doesn’t make sense, because 

𝑛, being a natural number, cannot come no matter how close to 3). 

So, from the nine forms of a function’s limit, only 3 are 

particularized: the ones corresponding to 𝑥𝑜 = +∞. 

We therefore have: 

(𝑙10) 𝑙 − 𝑓𝑖𝑛𝑖𝑡𝑒 (we transpose the definition (𝑙2))  

 

 
Because in the inequality 𝑛 > 𝛿𝜀, 𝑛 is a natural number, we 

can consider 𝛿𝜀 as a natural number also. To highlight this, we will 

write 𝑛𝜀 instead of 𝛿𝜀 . We thus have:  

 

 
(𝑙11) 𝑙 = +∞ (we transpose the definition (𝑙5)) 
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(𝑙12) 𝑙 = −∞ (we transpose the definition (𝑙8)) 

 

 
 

Examples 
I. Using the definition, prove that: 

 

 

 

 
ANSWERS: 

1. We adapt the corresponding stages for functions’ limits, in 

the case of 𝑥𝑜 = +∞. 

 

 
b) let 𝜀 > 0 any; we determine 𝑛𝜀 ∈ ℕ. 

c) we consider the inequality: |𝑎𝑛 − 𝑙| < 𝜀 as an inequation 

with the unknown 𝑛: 
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so, 𝑛𝜀 = [
2−𝜀

3𝜀
] + 1 

 

 
b) let 𝜀 > 0 any; we determine 𝑛𝜀 ∈ ℕ as follows: 

 

 
Let 𝑛1and 𝑛2 represent the solutions to this second degree 

equation (𝑛1 < 𝑛2). Then, for 𝑛1 > 𝑛2, the required inequality is 

satisfied. So, 𝑛𝜀 = [𝑛2] + 1. 

 

 

Calculation methods for the limits of 
functions and sequences 

Let’s now look at the most common (for the high school 

workbook level) calculation methods of the limits of functions and 

sequences. 

Joint methods for sequences and functions 

1. Definition 
In the first chapter, we have shown how to use the definition 

to demonstrate the limits of both functions and sequences. We will 

add to what has already been said, the following set of exercises: 
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I. Using the definition, find out if there limits to the 

following sequences and functions: 

 

 

 

 

 

 

2. Giving the forced common factor 
The method is frequently used to eliminate the 

indeterminations of type: 
∞

∞
, ∞ − ∞ , 

0

0
. By removing the forced 

common factor we aim at obtaining as many expressions as possible 

that tend towards zero. For this, we commonly employ the 

following three limits: 

 

 

 
In order to have expressions that tend towards zero we aim 

therefore to: 
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 obtain as many terms as possible with the form 𝑥𝛼, with 

𝛼 < 0, if 𝑥 → ∞. 

 obtain as many terms as possible with the form 𝑥𝛼, with 

𝛼 > 0, if 𝑥 → 0. 

Examples 
I.  Calculate: 
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ANSWERS: 

2. Given the common factor 9𝑛 we obtain terms that have 

the form 𝑥𝑛, with sub unitary 𝑥. 

 

 

 

expression that tends to 
1

5
 when 𝑥 tends to infinity. 

II. Trace the graphics of the functions: 
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8. For any rational function, non-null, 𝑅  with real 

coefficients, we have: 

 

3. Amplification with the conjugate 
It is used to eliminate the indeterminations that contain 

radicals. If the indetermination comes from an expression with the 

form: 

 

than we amplify with: 

 
with the purpose of eliminating the radicals from the initial 

expression. The sum from (3.1) is called a conjugate of order 𝑝. 

If the indetermination comes from an expression with the 

form: 

 
with 𝑝 − uneven number, the conjugate is: 

  
An example of application for this formula is exercise 5, 

below. 
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Exercises 

 

 

 

 

 

 

 

 
 

ANSWERS: 

7. We replace, for example 𝑎0 = −𝑎1 − 𝑎2 − ⋯ − 𝑎𝑘, in the 

given sequence and we calculate 𝑘 limits of the form: 

 
 

4. Using fundamental limits 
Hereinafter, we will name fundamental limits the following 

limits: 
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OBSERVATION: 

From (a) we deduce that: 

 

 

From (b) we deduce that: 

 

From (c) we deduce that: 

 

Exercises 
I. Calculate: 
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ANSWERS: 

12. Noting with 𝛼 = arcsin 𝑥 − 𝑎𝑟𝑐𝑡𝑔 𝑥, we observe that 𝛼 

tends to zero when 𝑥 tends to zero, so we aim to obtain 
𝛼

sin 𝛼
. To 

accomplish this we amplify with: 

 

 

 
Noting with: 

 
it follows:  
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II. Calculate: 

 

 

 

 

 

 

 

 
 

ANSWERS: 

6. In the limits where there are indeterminations with 

logarithms, we aim to permute the limit with the logarithm: 
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= (we permute again the limit with the logarithm) = 

 
 

 

 
III. Calculate: 

 

 



Methods of Solving Calculus Problems 

83 

 

 

 

 

 

 

 

 
 

ANSWERS: 

 
and noting 𝑥 − 𝑎 = 𝛼, we obtain: 

 
4. We consider the function: 

 
obtained from 𝑎𝑛, by replacing 𝑛 with 𝑥. We calculate: 

 
According to the criterion with sequences (see Method 10, 

point c), we also have: 
𝑙𝑖𝑚

𝑛 → ∞
𝑎𝑛 = ln 2. 
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5. Something that is bounded multiplied with 
something that tends to zero, tends to zero 

(A) If (𝑎𝑛)𝑛∈ℕ is bounded and 
𝑙𝑖𝑚

𝑛 → ∞
𝑏𝑛 = 0, then: 

𝑙𝑖𝑚
𝑛 → ∞

𝑎𝑛. 𝑏𝑛 = 0 

(B) If 𝑓 is bounded in a vicinity of 𝑥0 and 
𝑙𝑖𝑚

𝑥 → 𝑥0
𝑔(𝑥) = 0, 

then 
𝑙𝑖𝑚

𝑥 → 𝑥0
𝑓(𝑥). 𝑔(𝑥) = 0. 

 

Examples 

 

because (−1)𝑛 is bounded by −1 and 1 and 
1

𝑛
 tends to zero; 

 

because 1 − cos 𝑥 is bounded by 0 and 2 and 
1

𝑥2 tends to zero; 

 

 
where 𝑎𝑛 is the nth decimal fraction of the number 𝜋; 

 
where 𝛽𝑛 is the approximation with 𝑛 exact decimal fractions of the 

number 𝑒. 
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INDICATIONS: 

4. (𝑎𝑛)𝑛∈ℕ  is bounded by 0  and 9 , being composed of 

numbers; 

5. (𝛽𝑛)𝑛∈ℕ is bounded by 2 and 3; 

 

6. The majoring and minoring method 
(A) If functions 𝑔 and ℎ exist, so that in a vicinity of 𝑥𝑜 we 

have: 

 
then: 

 
Schematically: 

 



C. Dumitrescu ■ F. Smarandache  

86 

 

(B) If the sequences (𝑏)𝑛∈ℕ and (𝑐𝑛)𝑛∈ℕ exist so that: 𝑏𝑛 ≤

𝑎𝑛 ≤ 𝑐𝑛, starting from the rank 𝑛0 and 
𝑙𝑖𝑚

𝑛 → ∞
𝑏𝑛 =

𝑙𝑖𝑚
𝑛 → ∞

𝑐𝑛 = 𝑙, 

then: 
𝑙𝑖𝑚

𝑛 → ∞
𝑎𝑛 = 𝑙. 

Schematically: 

 
 

OBSERVATION: 

If 𝑙 = +∞ , we can eliminate ℎ  ( (𝑐𝑛)𝑛∈ℕ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) , 

and if 𝑙 = −∞, we can eliminate 𝑔 ((𝑏𝑛)𝑛∈ℕ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦). 

This method is harder to apply, due to the majorings and 

minorings it presupposes. These have to lead to expressions, as least 

different as the initial form as possible, not to modify the limit.  

We mention a few methods, among the most frequently 

used, to obtain the sequences (𝑏𝑛)𝑛∈ℕ and (𝑐𝑛)𝑛∈ℕ. 

Examples 
1. We put the smallest (biggest) term of the sequence 

(𝑎𝑛)𝑛∈ℕ, instead of all the terms. 

 

  
ANSWERS: 

a) In the sum that expresses the sequence (𝑎𝑛)𝑛∈ℕ, there are: 

the smallest term 
1

√𝑛2+𝑛
 and the biggest term 

1

√𝑛2+1
. By applying 

Method 1, we have: 
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2. We minorate (majorate) the terms that make up the 

sequence 𝑎𝑛 with the same quantity. 

  

 
 

ANSWERS: 

a) This time there isn’t a smallest (biggest) term in the sum 

that makes up the sequence 𝑎𝑛 . This is due to the fact that the 

function 𝑓(𝑥) = sin 𝑥 isn’t monotonic. Keeping into consideration 

that we have: −1 ≤ sin 𝑥 ≤ 1 , we can majorate, replacing sin 𝑥 

with 1, all over. We obtain: 

 
Analogously, we can minorate, replacing sin 𝑥  with −1 , 

then, by applying the first method it follows that: 
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3. We minorate (majorate), eliminating the last terms that 

make up the sequence 𝑎𝑛. 

 

 
 

ANSWERS: 

 
 

Exercises 
I. Calculate the limits of the sequences: 
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ANSWERS:  

 

 
We majorate using the smallest and the biggest denominator. 

Thus, we obtain common denominators for the sum. 

 
and we make majorings and minorings using the biggest and the 

smallest denominator. 

 

7. Exercises that feature the integer part  
The most common methods to solve them is: 

(A) The minoring and majoring method using the double inequality: 

 
that helps to encase the function (the sequence) whose limit we 

have to calculate, between two functions (sequences) that do not 

contain the integer part. 

Using this method when dealing with functions, most of the 

times, we don’t obtain the limit directly, instead we use the lateral 

limits. 

Example: For the calculation of the limit: 
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we proceed as follows: 

(a) We use the inequalities (3.2) to obtain  expressions that 

do not contain the integer part: 

 
(b) To obtain the function whose limit is required, we 

amplify the previous inequalities with 
𝑥2+2𝑥

7
, keeping into 

consideration that: 

- on the left of −2 we have: 
𝑥2+2𝑥

7
> 0, so: 

  

 

- on the right of −2 we have: 
𝑥2+2𝑥

7
< 0, so:  

 

 
(c) Moving on to the limit in these inequalities(the majoring 

and minoring method), we obtain the limit to the left:𝑙𝑠(−2) =
2

7
  

and the limit to the right: 𝑙𝑟(−2) =
2

7
, so 𝑙 =

2

7
. 

(B) If the double inequality cannot be used (3.2), for 

𝑙𝑖𝑚
𝑥 → 𝑛

𝑓(𝑥) , with 𝑛 ∈ ℤ , we calculate the lateral limits directly, 

keeping into consideration that: 
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Example: For 
𝑙𝑖𝑚

𝑛 → ∞
(−1[𝑥])/(𝑥 − 1)  we cannot use (3.2) 

because the expressions obtained for the calculation of the lateral 

limits don’t have the same limit. That is why we use the fact that an 

the left of 1 we have [𝑥] = 0, and on the right of 1 we have [𝑥] =

1, so: 

 

 
It follows that 𝑙 = −∞ 

(C) If 𝑥 → ∞, we can replace [𝑥], keeping into consideration 

that for 𝑥 ∈ [𝑚, 𝑚 + 1) , we have: [𝑥] = 𝑚  (obviously, 𝑥 → ∞ 

implies 𝑚 → ∞). 

Example: 

 
The variable 𝑥 that tends to infinity is certainly between two 

consecutive numbers: 𝑚 ≤ 𝑥 ≤ 𝑚 + 1, so: 
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Exercises 

 

 

 

 

 

 

 

 

 

 
 

8. Using the definition of the derivative 
As it is known, the derivative of a function is: 

 
if this limit exists and is finite. It can be used to (A) eliminate the 

indeterminations 
0

0
 for limits of functions that can be written in the 

form: 
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𝑥𝑜 being a point in which 𝑔 is differentiable. 

Example:  

 
We notice that by noting 𝑔(𝑥) = 𝑎𝑥 , we have 𝑔(𝑎) = 𝑎𝑎 

and the limit becomes: 

 
This limit has the value 𝑔,(𝑎)  because 𝑔  is a function 

differentiable in 𝑎. 

We have thus reduced the calculation of the given limit to 

the calculation of the value of 𝑔,(𝑎), calculation that can be made 

by deriving 𝑔: 

 
Observation: this method can be used like this: “let 𝑔(𝑥) =

𝑎𝑥 . We have 𝑔,(𝑥) = 𝑎𝑥 ln 𝑎 . 𝑔,(𝑎) = 𝑎𝑎 ln 𝑎 = 𝑙 . We don’t 

recommend this synthetic method for the elaboration of the 

solution at exams because it can misguide the examiners. That is 

why the elaboration: “We observe that by noting 𝑔(𝑥) = ⋯, we 

have 𝑔(𝑎) = ⋯  and the limit becomes … = 𝑔,(𝑎)  because 𝑔  is 

differentiable in 𝑎 …”is much more advisable. 

(B) The calculation of the limits of sequences, using attached 

functions. The function attached to the sequence is not obtained, 

this time, by replacing 𝑛 with 𝑥, in the expression of 𝑎𝑛, because for 

𝑥 → ∞ we can’t calculate the derivative, but by replacing 𝑛 with 
1

𝑥
 

(which leads to the calculation of the derivative in zero). 

Example: For 
𝑙𝑖𝑚

𝑛 → ∞
𝑛( √2

𝑛
− 1)  we consider the function 

𝑓(𝑥) =
2𝑥−1

𝑥
 obtained by replacing 𝑛  with 

1

𝑥
 in the expression of 
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𝑎𝑛 . We calculate 
𝑙𝑖𝑚

𝑛 → 0
𝑓(𝑥). For this we observe that by noting 

𝑔(𝑥) = 𝑥2 , we have 𝑔(𝑜) = 1  and the limit 

becomes:  
𝑙𝑖𝑚

𝑛 → 0
𝑔(𝑥)−𝑔(𝑜)

𝑥−0
= 𝑔,(0) , because 𝑔  is a differentiable 

function in zero. We have: 𝑔,(𝑥) = 2𝑥 ln 2, so 𝑔,(0) = ln 2. Then , 

according to the criterion with sequences, we obtain 
𝑙𝑖𝑚

𝑛 → ∞
𝑎𝑛 =

ln 2. 

 

Exercises 
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II. For 𝑎 > 0 calculate: 

 

 

 

 

 

 

 
ANSWER: 

4. We divide the numerator and the denominator with 𝑥 − 𝑎. 

 

III. Show that we cannot use the definition of the derivative 

for the calculation of the limits: 
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ANSWERS: 

2. We consider the function 𝑓(𝑥) =
2𝑥−1

3𝑥−1
, obtained by 

replacing the sequence 𝑎𝑛  on 𝑛  with 
1

𝑥
. We calculate 

𝑙𝑖𝑚
𝑥 → 0

𝑓(𝑥) . 

To use the definition of the derivative, we divide the numerator and 

the denominator with 𝑥, so: 

 
We observe that by noting 𝑔(𝑥) = 2𝑥 , we have 𝑔(0) = 1 

and the limit from the numerator becomes: 
𝑙𝑖𝑚

𝑥 → 0
𝑔(𝑥)−𝑔(0)

𝑥
=

𝑔,(𝑥) because 𝑔 is differentiable in zero. 
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𝑔,(𝑥) = 2𝑥 ln 2 , so, according to the criterion with 

sequences 𝑙1 = 𝑔,(0) = ln 2 . Analogously, by noting ℎ(𝑥) = 3𝑥 , 

the limit from the numerator becomes: 
𝑙𝑖𝑚

𝑥 → 0
ℎ(𝑥)−ℎ(0)

𝑥
= ℎ,(0) , 

because ℎ is differentiable in zero. 

ℎ(𝑥) = 3𝑥 ln 3 , so, according to the criterion with 

sequences𝑙2 = ℎ,(0) = ln 3, and 𝑙 =
ln 2

ln 3
. 

5. The limit contains an indetermination with the form 1∞, 

so we will first apply method 4. 

  

 

  

 

We now consider the function 𝑓(𝑥) =
1

𝑥
 (𝑎1

𝑥 + 𝑎2
𝑥 − 2) 

obtained by replacing 𝑛  with 
1

𝑥
 in the expression above. We 

calculate 
𝑙𝑖𝑚

𝑥 → 0
𝑓(𝑥). For this, we observe that by noting 𝑔(𝑥) =

𝑎1
𝑥 + 𝑎2

𝑥  we have 𝑔(0) = 2  and the limit can be written: 

𝑙𝑖𝑚
𝑥 → 0

𝑔(𝑥)−𝑔(0)

𝑥
= 𝑔,(0) because 𝑔 is differentiable in zero. 
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Now 𝑔,(𝑥) = 𝑎1
𝑥 ln 𝑎1 + 𝑎2

𝑥 ln 𝑎2, so 𝑔,(0) = ln 𝑎1 + ln 𝑎2   

According to the criterion with sequences: 

 
and the initial limit is √𝑎1. 𝑎2. 

 

9. Using L’Hospital’s theorem 
The theorem. [l’Hospital (1661-1704)] If the functions 𝑓  and 𝑔 

fulfill the conditions: 

1. are continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏){𝑥𝑜} 

2. 𝑓(𝑥𝑜) = 𝑔(𝑥𝑜) = 0 

3. 𝑔, is not annulled in a vicinity of 𝑥𝑜 

4. there exists 
𝑙𝑖𝑚

𝑥 → 𝑥𝑜

𝑓,(𝑥)

𝑔,(𝑥)
= 𝛼 , finite or infinite, 

then there exists 
𝑙𝑖𝑚

𝑥 → 𝑥𝑜

𝑓(𝑥)

𝑔(𝑥)
= 𝛼. 

This theorem can be used for: 

(A) The calculation of limits such as 
𝑙𝑖𝑚

𝑥 → 𝑥𝑜

𝑓(𝑥)

𝑔(𝑥)
 when these 

contain an indetermination of the form 
0

0
 or 

∞

∞
. 

(B) The calculation of limits such as 
𝑙𝑖𝑚

𝑥 → 𝑥𝑜
𝑓(𝑥). 𝑔(𝑥) 

when these contain an indetermination of the form ∞. 0. 

This indetermination can be brought to form (A) like this: 

 

(indetermination with the form 
∞

∞
) 

 

(indetermination with the form 
0

0
) 
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Observation: sometimes it is essential if we write the 

indetermination 
0

0
 or 

∞

∞
. 

Example: 

 
If we write: 

 

(indetermination 
0

0
) and we derive, we obtain: 

 

(indetermination with the form 
0

0
 with a higher numerator degree). 

If we highlight the indetermination 
∞

∞
: 

 
and we derive, we obtain 𝑙 = 0. 

(C) The calculation of limits such as 
𝑙𝑖𝑚

𝑥 → 𝑥𝑜
(𝑓(𝑥) − 𝑔(𝑥)), 

with indetermination ∞ − ∞. 

This indetermination can be brought to form (B) giving 𝑓(𝑥) 

or 𝑔(𝑥) as forced common factor. 

We have, for example: 
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and because 

 
we distinguish two cases: 

 

(namely, 
𝑔(𝑥)

𝑓(𝑥)
 doesn’t tend to 1), we have: 

 

 
the indetermination is of the form (B). 

(D) The calculation of limits such as 
𝑙𝑖𝑚

𝑥 → 𝑥𝑜
𝑓(𝑥)𝑔(𝑥), with 

indeterminations 1∞, 00, ∞0. 

These indeterminations can be brought to the form (C), 

using the formula:  

 

that for 𝑎 = 𝑒, for example, becomes 𝐴 = 𝑒ln 𝐴, so: 

 

 
The last limit contains an indetermination of the form (C). 

For sequences, this method is applied only through one of 

the two functions attached to the sequence (obtained by replacing 𝑛 

with 𝑥 or by replacing 𝑛 with 
1

𝑥
 in the expression of 𝑎𝑛). According 
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to the criterion with sequences it follows that the limit of the 

sequence is equal to the limit of the attached function. 

Attention: by replacing 𝑛 with 𝑥 we calculate the limit in ∞, 

and by replacing 𝑛 with 
1

𝑥
, we calculate the limit in 0. 

 

Exercises 
I. Calculate: 

 

 
(a polynomial increases faster to infinity than a logarithm) 

 
(a polynomial increases slower to infinity than an exponential) 
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II. Show that l’Hospital’s rule cannot be applied for: 

 

ANSWER: 

1.  For 𝑓(𝑥) = 𝑥2𝑠𝑖𝑛
1

𝑥
 and 𝑔(𝑥) = sin 𝑥 we have: 

 
- doesn’t exist, so the condition 4 from the theorem isn’t 

met. Still, the limit can be calculated observing that: 

 

 
 

10. Using the criterion with sequences (the Heine 
Criterion) 

The criterion enunciation: 

 
with the properties: 
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Observation: If 𝑥0 = ∞ , condition 𝑐)  doesn’t make sense 

anymore. 

This criterion cannot be used to eliminate indeterminations 

because the sequence (𝑥𝑛)𝑛∈ℕ from the enunciation is random, so, 

by modifying the sequences (an infinite number of sequences), we 

cannot eliminate the indetermination. Still, the criterion can be used 

at: 

(A) The calculation of limits that don’t contain indeterminations. 

 

Example: Using the criterion with sequences, show that: 

 
Solution:  (a) we have to show that: 

⩝ (𝑥𝑛)𝑛∈ℕ , with the properties: 

 
  (b) let (𝑥𝑛)𝑛∈ℕ  be any sequence with the 

properties 𝑎), 𝑏), 𝑐) 

  (c) in 
𝑙𝑖𝑚

𝑛 → ∞
𝑓(𝑥𝑛) we use the properties of the 

operations of limits of sequences to highlight 
𝑙𝑖𝑚

𝑛 → ∞
𝑥𝑛  (it is 

possible because there are no indeterminations), then we use the 

fact that 
𝑙𝑖𝑚

𝑛 → ∞
𝑥𝑛 = 𝑥0: 
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(B) To show that a function doesn’t have a limit in a point.  

To accomplish this we can proceed as follows: 

1𝐵 . we find two sequences: (𝑥𝑛)𝑛∈ℕ  and (𝑦𝑛)𝑛∈ℕ with the 

properties 𝑎), 𝑏), 𝑐) so that: 

 
or: 

2𝐵. we find a single sequence with the properties 𝑎), 𝑏), 𝑐) 

so that  
𝑙𝑖𝑚

𝑛 → ∞
𝑓(𝑥𝑛) doesn’t exist. 

 

Example: 
𝑙𝑖𝑚

𝑥 → ∞
sin 𝑥 doesn’t exist 

1𝐵. let 𝑥𝑛 = 2𝑛𝜋 and 𝑦𝑛 = 2𝑛𝜋 +
𝜋

2
. We have: 

 

 

 
So the limit doesn’t exist. 

2𝐵. let𝑥𝑛 =
𝑛𝜋

2
. We have: 
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(C) The criterion with sequences can be used in the calculation of the 

limits of sequences as follows: 

(a) let 𝑓(𝑥) be the function attached to the sequence, by the 

replacement of, for example, 𝑛 with 𝑥 in the expression of 𝑎𝑛 ( or 

of 𝑛 with 
1

𝑥
, but then we calculate 

𝑙𝑖𝑚
𝑥 → 0

𝑓(𝑥)) 

(b) we calculate 
𝑙𝑖𝑚

𝑥 → ∞
𝑓(𝑥) = 𝑙 (

𝑙𝑖𝑚
𝑛 → 0

𝑓(𝑥), respectively). 

(c) according to the criterion with sequences lim 𝑓(𝑥) = 𝑙 

means: for any sequence (𝑥𝑛)𝑛∈ℕ with the properties: 

 

we have 
𝑙𝑖𝑚

𝑛 → ∞
𝑓(𝑥𝑛) = 𝑙 

We observe that the sequence 𝑥𝑛 = 𝑛 fulfills the conditions 

𝑎) and 𝑏) and, moreover, for this sequence we have:  

 

Exercises 
I. Using the criterion with sequences, calculate: 

 

 

 

 

 
II. Show that the following don’t exist: 
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7. If 𝑓has a limit to its left (right) in 𝑥0, then: 

 

 

8. If 
𝑙𝑖𝑚

𝑛 → ∞
𝑓(𝑥) = 𝑙 , then 

𝑙𝑖𝑚
𝑛 → ∞

𝑓(𝑛) = 𝑙 , but not the 

other way around. 

9. 
𝑙𝑖𝑚

𝑥 → ∞
𝑓(𝑥) doesn’t exist if 𝑓: 𝐷 → ℝ is a periodic, non-

constant function. Consequences: the following do not exist: 

 
Answer: 9. This exercise is the generalization of exercises 1.-6. 

For the solution, we explain the hypothesis: 

 

 
We now use method 1𝐵 . The following sequences fulfill 

conditions 𝑎) and 𝑏): 
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and: 

 

 
III. Determine the limit points of the functions: 𝑓, 𝑔, 𝑓 ∘

𝑔, 𝑔 ∘ 𝑓, for: 

 

 

 

 

 

 
Answer: let 𝑥0 ∈ 𝐷 = ℝ randonm. We check if 𝑓 has a limit 

in 𝑥0. For this we observe it is essential if (𝑥𝑛)𝑛∈ℕ  is rational or 

irrational. We firstly consider the situation where the sequence 

(𝑥𝑛)𝑛∈ℕ  is made up only of rational points (or only of irrational 

points). 

Let (𝑥𝑛)𝑛∈ℕ  be a sequence of rational points with the 

properties 𝑎), 𝑏), 𝑐). We have: 
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So the function doesn’t have a limit in any point 𝑥0  for 

which 𝑥0
2 ≠ 2, i.e. 𝑥0 and ±2. For 𝑥0 = √2 we consider a random 

sequence (𝑥𝑛)𝑛∈ℕ with the properties 𝑎), 𝑏), 𝑐). 𝐸1decomposes in 

two subsequences: (𝑥𝑛
, )𝑛∈ℕ  made up of solely rational terms and 

(𝑥𝑛
, )𝑛∈ℕ made up of irrational terms. Because: 

 

 
we deduce that: 

 

The same goes for 𝑥 = −√2. 

 

Specific methods for sequences 

11. Any bounded and monotonic sequence 
is convergent 

Applying this method comes back to the study of monotony 

and bounding, and for the determination of the limit we pass over 

to the limit in the recurrence relation of the given sequence. If such 

a relation is not initially provided, it can be obtained at the study of 

the monotony. 

Example: 𝑎𝑛 =
𝑛!

𝑛𝑛 

(a) For the study of monotony and bounding we cannot 

apply the method of the attached function (𝑓(𝑥) =
𝑥!

𝑥𝑥 doesn’t make 

sense). We employ the method of the report (we begin by studying 

the monotony because (1) if the sequence is monotonic, at least 

half of the bounding problem is solved, as it has been already 

proven; (2)  if the sequence isn’t monotonic, we can’t apply the 

method so we won’t study the bounding. 



Methods of Solving Calculus Problems 

109 

 

We therefore have: 

 

 
So the sequence is decreasing. 

(b) The bounding. The sequence is bounded between 0 and 

𝑎1, being decreasing and with positive terms. Therefore 
𝑙𝑖𝑚

𝑛 → ∞
𝑎𝑛 

exists. 

(c) For the calculation of 𝑙  we observe that studying the 

monotony we have obtained the recurrence relation: 

 
Moving on to the limit in this equality, we obtain: 

 
EXERCISES: 
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where (𝑏𝑛)𝑛∈ℕ fulfills conditions: 

 

 

 
 

ANSWERS: 

3. We observe the recurrence relation: 

 
a) The monotony:  

 
In order to compare this difference to zero, we make a 

choice, for example 𝑎𝑛+1 ≥ 𝑎𝑛 , that we then transform through 

equivalences: 

 

 

 
So 𝑎𝑛+1 ≥ 𝑎𝑛𝑎𝑛 ∈ (−1,2). 
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We have thus reached the conclusion that the sequence is 

increasing if and only if it is bounded between −𝟏 and 𝟐. We 

obviously have 𝑎𝑛 > 0 > −1 so we still have to prove that 𝑎𝑛 < 2. 

This inequality can be proven by induction: 

 
Verification: 

 

 

 

 
So we have proven the monotony and the bounding. 

Therefore 𝑙 =
𝑙𝑖𝑚

𝑛 → ∞
𝑎𝑛 exists. To determine 𝑙 we move on to the 

limit in the recurrence relation (this time this type of relation is 

given initially): 

 

 

 
As 𝑙 = −1 is impossible, because 𝑎𝑛 > 0, we deduce 𝑙 = 2. 

6. We decompose the fraction 
2𝑘+3

5𝑘  in a difference of 

consecutive terms: 

 
To determine the four parameters: 

a) we use the identification method and 
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b) we state the condition that the terms from the right 

member in (3.4) be consecutive. 

 
c) the denominators are consecutive, so we state the 

condition that the numerators be in the same relation as 

consecutives; the denominator of the first fraction is obtained from 

the denominator of the second one, by replacing 𝑘 with 𝑘 − 1, so 

we must have the same relation between the numerators: 

 
We have thus obtained the system: 

 
with the solution: 

 
It follows that: 

 

 

 



Methods of Solving Calculus Problems 

113 

 

 

 

 
consequently: 

 
7. We have: 

 
so: 

 

 
8. We apply the conclusion from 7. 

II. Study the convergence of the sequences defined through: 
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Indications: 

4. sequence with positive terms (induction) and decreasing. 

 

 
Let 𝑙1 and 𝑙2 be the limits of the subsequences of even and 

uneven value. Show that 𝑙1 = 𝑙2. 

 

12. Using the Cesaro-Stolz and Rizzoli Lemmas 
Lemma:    (Cesaro-Stolz) Let (𝛼𝑛)𝑛∈ℕ be a random sequence and  

 (𝛽𝑛)𝑛∈ℕ a strictly increasing sequence, having the limit 

infinite. If 
𝑙𝑖𝑚

𝑛 → ∞
𝛼𝑛+1−𝛼𝑛

𝛽𝑛+1−𝛽𝑛
= 𝑙 exists – finite or infinite, 

then:  

𝑙𝑖𝑚
𝑛 → ∞

𝛼𝑛

𝛽𝑛
= 𝑙. 

 

This lemma can be used to calculate the limits of sequences 

that can be expressed as a fraction: 

 
and of the limits of the form: 

 
presupposing that this limit exists and (𝛽𝑛)𝑛∈ℕ  is strictly 

monotonic. 
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CONSEQUENCES: 

 
Indeed, 

 

 

 
 

Example:  

 
because for 𝑎𝑛 = 𝑛, we have: 

 
(B) The limits of the arithmetic, geometric and harmonic 

averages of the first 𝑛 terms of a sequence having the limit 𝑙, have 

the value 𝑙 also: 

 

 
 Observation: a variant for the Cesaro-Stolz lemma for the case 

when 𝑎𝑛, 𝛽𝑛 → 0 has been proven by I.Rizzoli [Mathematic Gazette, 

no 10-11-12, 1992, p. 281-284]: 
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Lemma: (I.Rizzoli) If (𝛼𝑛)𝑛∈ℕ, (𝛽𝑛)𝑛∈ℕ are two sequences 

  of natural numbers that fulfill the conditions: 

 
(ii) the sequence (𝛽𝑛)𝑛∈ℕ  is strictly monotonic 

(increasing or decreasing) 

(iii) there exists: 

 

Then: 
𝑙𝑖𝑚

𝑛 → ∞
𝛼𝑛

𝛽𝑛
= 𝑙. 

 

EXERCISES: 

 

 

 

 

 

 

 

8.  𝑎𝑛 =
1∙2∙ ….∙𝑘+2∙3∙…∙(𝑘+1)+⋯+(𝑛−𝑘+1)∙(𝑛−𝑘+2)∙… ∙𝑛

𝑛𝑘  
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(Indications: amplification with the conjugate, the 

minoring/majoring method, the Cesaro-Stolz lemma). 

5. Let 𝑥𝑛+1 = ln(1 + 𝑥𝑛),  𝑥0 > 0. Using the Cesaro-Stolz 

lemma show that 
𝑙𝑖𝑚

𝑛 → ∞
𝑛. 𝑥𝑛 = 2. 

(Indications: 𝑛𝑥𝑛 =
𝑛
1

𝑥𝑛

) 

III. Calculate the limits of the following sequences, 

presupposing they exist: 

 

 

 

 
knowing that: 
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where 𝑝 > 0 and 𝑐 is Euler’s constant. 

 

Answers: 

1.  We apply the Cesaro-Stolz lemma for: 

 
We have: 

 
and through the hypothesis it follows that: 

 
6. We consider: 

 We have: 
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and keeping into account that: 

 
(we can use the attached function), we obtain: 

 
 

13. Utilization of Lagrange’s theorem 
Theorem:  (Lagrange, (1736-1813)). If 𝑓: [𝑎, 𝑏] → ℝ is 

    continuous on [𝑎, 𝑏] and differentiable on 

(𝑎, 𝑏),  

then: ∃⊂∈ (𝑎, 𝑏)𝑎. 𝑖.
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
= 𝑓 ,(𝑐). 

 This theorem can be used for: 

(A) The calculation of the limits of sequences in which we 

can highlight an expression with the form: 

 
for the attached function. 

Example: 

 
Solution: 

a) we highlight an expression of the form (3.6), considering: 
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b) we apply Lagrange’s theorem on function 𝑓  on the 

interval [𝑛, 𝑛 + 1]: 

 

c) we replace in 𝑎𝑛 the expression 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 with 𝑓 ,(𝑐𝑛). We 

obtain: 

 
d) we use the inequalities: 𝑛 < 𝑐𝑛 < 𝑛 + 1  to obtain 

convenient majorings (minorings). In our case, we have: 

 
It follows that: 

 

 

 
(B) The calculation of the limits of sequences that can be put 

under one of the formulas: 

 

 
𝑓  being a function that is subject to Lagrange’s theorem on the 

intervals: [𝑛, 𝑛 + 1], 𝑛 ∈ ℕ. 

Observation: the sequences of the form 𝟐𝑩 are always 

monotonic and bounded (so convergent) if 𝒇  is a function 
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differentiable on ℝ  and so that 𝒇  and 𝒇,  have different 

monotonies. 

Demonstration: to make a choice, let’s assume 𝑓 is increasing 

and 𝑓 , is decreasing: 

1. the monotony: 

 

 

 
2. we apply Lagrange’s theorem to function 𝑓 on the interval 

[𝑛, 𝑛 + 1]: 

 

 

 
so: 

 
(𝑓 ,- decreasing), wherefrom we deduce the sequence is decreasing. 

3. the bounding: being decreasing, the sequence is superiorily 

bounded by 𝑎1. We have only to find the inferior bound. For this, 

we write (3.8)  starting with 𝑛 = 1  and we thus obtain the 

possibility of minoring (majoring) the sequence 𝑎𝑛. 
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We obtain a convenient replacement for the sum: 

 
We write the relation (3.7) starting 𝑛 = 1 and we add the 

obtained equalities: 

 

 

 

 

 

 
it follows that: 

 
consequently, the sequence is inferiorly bounded. It is thus 

convergent. Its limit is a number between −𝑓(1) and 𝑎1. 

 

Exercises 
I. Using Lagrange’s theorem, calculate the limits of the 

sequences: 
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II. Study the convergence of the sequences: 

 
(the limit of this sequence is called Euler’s constant 𝑐 ∈

(0,1)) 

 

(the partial sums of the harmonic sequence ∑
1

𝑖

∞
𝑖=1 ) 

 
(the partial sums of the generalized harmonic sequence) 

 

 

 

 
Indication: 4. In order to have one of the forms 1𝐵 or 2𝐵, we 

determine 𝑓, keeping into account that: 
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We apply for this function the steps from the demonstration 

at the beginning of this paragraph. 

III. Show that: 

 

 

 

 

 

 

 

 
Indication: 1. we must show that: 

 
for: 

 

The harmonic sequence 

 The sequence 1 +
1

2
+

1

3
+ ⋯ +

1

𝑛
 is called a harmonic 

sequence because it has the property: any three consecutive terms 

are in a harmonic progression. Indeed, if we note 𝑏𝑛 =
1

𝑛
, we have: 
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For a long time, it was believed that this sequence has a 

defined sum 𝑠. In antiquity they sought to obtain the approximate 

value of 𝑠, by calculating the sum of as many terms of the sequence 

as possible. Today it is a fact that 𝑠 = ∞ (the harmonic sequence is 

divergent). We mention a few of the methods that help prove this, 

methods that use exercises from high school manuals, or exercises 

of high school level: 

 

1. Lagrange’s theorem (exercise I.2) 

 

2. The inequality: 

 
that is proven by induction in the X grade. Indeed, if 𝑠 had a finite 

value: 

 
then, by noting: 

 
we would have: 

 

and because 𝑠 =
𝑙𝑖𝑚

𝑛 → ∞
𝑎𝑛, we deduce 

𝑙𝑖𝑚
𝑛 → ∞

𝑅𝑛 = 0. 

But: 
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so 𝑅𝑛 doesn’t tend to zero. Therefore, 𝑠 isn’t finite either. 

 

3. Using the limit studied in the XII grade: 

 
4. Using the inequality: 

 
 

5. Using the definition of the integral (Riemann sums) (see 

method 16, exercise II). 

 

14. Sequences given by recurrence relations 

(A) The linear Recurrence 

1. The first degree linear recurrence 
Is of the form: 

 
The expression of the general term follows from the 

observation that: 

 
so: 

 
Example: 

 
We have: 
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2. Second degree linear recurrence 
Is of the form: 

 
In order to find the expression of the general term, in this 

case, we will use the expression of the general term from the first 

order recurrence. We saw that for this recurrence we have: 𝑎𝑛 =

𝑎0𝑞𝑛. For the second order recurrence, we search for the general 

term with the same form: 

𝑎𝑛 = 𝑐 ∙ 𝑞𝑛, 𝑐 being an undetermined constant. 

By replacing in the recurrence relation, we obtain: 

 
from where, dividing by 𝑞𝑛−1 , we obtain the characteristic 

equation: 

 
We consider the following cases: 

a) ∆> 0  (the characteristic equation has real and distinct 

roots 𝑞1 and 𝑞2) 

In this case, having no reason to neglect one of the roots, we 

modify the expression 𝑎𝑛, considering it of the form: 

 
and we determine the constants 𝑐1  and 𝑐2  so that the first two 

terms of the sequence have the initially given values.  

Example:  

 
(Fibonacci’s sequence). The characteristic equation is: 

 
with the roots: 
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Considering 𝑎𝑛 of the form: 

from the system: 

we obtain: 

so: 

Observation: 𝑞2 =
1+√5

2
 is known from antiquity as the golden 

ratio. It is the limit of the sequence: 

(𝑛  radical) (method 11 applies). This number is often found in 

nature (the arrangement of branches on trees, the proportion of the 

human body etc. (For details, see, for example Matila Ghika: 

Esthetics and art theory, Encyclopedic and Scientific Press, Bucharest, 

1981). 

b) ∆= 0  (the characteristic equation has equal roots 𝑞1 =

𝑞2). In this case we consider 𝑎𝑛 of the form: 

(namely 𝑎𝑛 = 𝑞1
𝑛 ∙ 𝑃1(𝑛), with 𝑃1- first degree polynomial) and we

determine 𝑐1and 𝑐2, stating the same condition, that the first two 

terms have the same initially given values. 
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Example: 

 
Taking 𝑎𝑛 = 𝑐 ∙ 𝑞𝑛, we obtain the characteristic equation: 

 
Considering: 

 
from the system: 

 
we obtain: 𝑐1 = −4, 𝑐2 = 6, so: 

 
c) ) ∆< 0 (the characteristic equation has complex roots) 

Let these be:  

 
We have: 

 
but, in order to use only natural numbers, we show that we can 

replace 𝑞1
𝑛 and 𝑞𝑧

𝑛 respectively with: 

 
Then we can write: 
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3. Linear recurrence of degree h (bigger than 2)
Is of the form: 

with the first ℎ terms given. 

Proceeding as with the second order recurrence, we combine 

𝑎𝑛 = 𝑐 ∙ 𝑞 and we state the condition that the recurrence relation

be met. We obtain the characteristic equation: 

We distinguish the following cases: 

a) if the characteristic equation has all the roots real and

distinct: 𝑞1, 𝑞2, … , 𝑞ℎ, we will consider 𝑎𝑛 of the form:

and we determine the constants 𝑐𝑖 , 𝑖 ∈ 1, ℎ̅̅ ̅̅̅, stating the condition

that the first 𝑘 terms of the sequence have the initially given values. 

b) if a root, for example, 𝑞1  is multiple of order 𝑠 , (𝑞1 =

 𝑞2 = ⋯  = 𝑞𝑠), we replace the sum: 

from the expression of 𝑎𝑛 with: 

𝑃𝑠−1  being a polynomial of degree 𝑠 − 2 , whose coefficient is 

revealed by stating the condition that the first 𝑠  terms have the 

initially given values. 

c) if a root, for example, 𝑞1, is complex, then its conjugate is

also a root of the characteristic equation (let for example, 𝑞2 = 𝑞1̅̅̅). 

In this case, we replace in the expression of 𝑎𝑛 the sum: 

with: 
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and if the root 𝑞1 is a multiple of order 𝑠 (𝑞1 =  𝑞2 = ⋯ 𝑞𝑠 and 

we replace in the expression of 𝑎𝑛  the terms that contain the 

complex root with: 

EXERCISES: 

I. Determine the expression of the general term and calculate 

the limit for: 
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II. 1. Determine 𝛼  so that the sequence given by the 

recurrence relation: 

has a limit and calculate that limit. 

2. Write the recurrence relations and the general terms of the

sequences for which: 𝑎1 = 1 , 𝑎2 = 2 , and the roots of the 

characteristic equation are: 

3. Let : 𝑎𝑛 = 𝐴 ∙ 𝛼𝑛 + 𝐵 ∙ 𝛽𝑛 , with 𝑎, 𝐵, 𝛼, 𝛽 ∈ ℝ  and

𝐴, 𝐵 ≠ 0, |𝛼| ≠ | 𝛽|. Determine 𝛼 𝑎𝑛𝑑 𝛽so that: 

a) the sequence (𝑥𝑛) is convergent;

b) 
𝑙𝑖𝑚

𝑛 → ∞
𝑥𝑛 = ∞ 

c) 
𝑙𝑖𝑚

𝑛 → ∞
𝑥𝑛 = −∞ 

4. Let 𝑎𝑛 = 𝐴 ∙ 𝛼𝑛 + 𝐵 ∙ 𝑛 ∙ 𝛽𝑛 , 𝑛 ≥ 1, with 𝑎, 𝐵, 𝛼, 𝛽 ∈ ℝ

and 𝐴, 𝐵 ≠ 0 . Determine 𝛼 𝑎𝑛𝑑 𝛽 so that the sequence is 

convergent. 

(B) Nonlinear recurrence 

1. Recurrence of the form 𝑎𝑛+1 = 𝛼 ∙ 𝑎𝑛 + 𝛽,

with 𝑎0 given 
The expression of the general term is obtained by observing 

that if 𝑙  is a root for the equation 𝑙 = α ∙ l + β  (obtained by 
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replacing an+1and an  with 𝑙  in the recurrence relation), then the

sequence (an − 𝑙)
𝑛∈ℕ

 is a geometric progression.

Example: 

From the equation 𝑙 =
𝑙+1

2
 we deduce 𝑙 = 𝑙.

Then the sequence (an − 𝑙)
𝑛∈ℕ

 is a geometric progression.

Let 𝑏𝑛 = 𝑎𝑛 − 1. We have: 

The ratio of the geometric progression is, consequently: 𝑞 =
1

2
. We obtain: 

2. Recurrence of the form 𝑎𝑛+1 = 𝛼 ∙ 𝑎𝑛 + 𝑓(𝑛) (𝑓  being
a random function) 

The general term is found based on the observation that, if 

(𝑏𝑛)𝑛∈ℕ is a sequence that verifies the same recurrence relation, 

then any sequence (𝛼𝑛)𝑛∈ℕ  verifies the given relation of the form: 

In practice we chose 𝑏𝑛 of the form: 
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the coefficients of 𝑓  being undetermined. We determine these 

coefficients by stating the condition that (𝑏𝑛)𝑛∈ℕ  verifies the 

recurrence relation. 

Particular case: a recurrence with the form: 

 
with 𝑃 a polynomial of degree 𝑠. 

Example: 

 
We search for the sequence 𝑏𝑛 with the form: 

 
We state the condition that (𝑏𝑛)𝑛∈ℕ  verifies the given 

recurrence relation: 

 
We obtain: 

 

 
By identification, it follows that: 

 
so: 

 

 

 
 

 

 



Methods of Solving Calculus Problems 

135 

3. Recurrence of the form 𝑎𝑛+1 = 𝑓(𝑎𝑛) (with 𝑓: [𝑎, 𝑏] →
ℝ continuous function) 

Theorem:   1. If the function 𝑓: [𝑎, 𝑏] → ℝ is 

continuous and  increasing on [𝑎, 𝑏], then: 

a) if 𝑎1 > 𝑎0, the sequence (𝛼𝑛)𝑛∈ℕ is increasing,

b) if 𝑎1 < 𝑎0, the sequence (𝛼𝑛)𝑛∈ℕ is decreasing.

The limit of the sequence is a fixed point of 𝑓, i.e. a 

characteristic equation 𝑓(𝑥) = 𝑥. 

2. If 𝑓 is decreasing on [𝑎, 𝑏], then the subsequences of

even and uneven value, respectively, of (𝛼𝑛)𝑛∈ℕ  are 

monotonic and of different monotonies. If these two 

subsequences have limits, then they are equal. 

Example: 

We have: 

from the variation table we deduce that 𝑓 is decreasing on (0, √2) 

and increasing on  (√2, ∞). By way of induction, we prove that 

𝛼𝑛 > √2 , and, because 𝑎2 = 5,1 < 𝑎1 , then the sequence is 

decreasing. 

The bounding can be deduced from the property of 

continuous functions defined on closed intervals and bounded of 

being bounded. 

The characteristic equation 𝑓(𝑥) = 𝑥  has the roots 𝑥1,2 =

±√2, so 𝑙 = √2. 

Particular case: the homographic recurrence: 
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We have: 

 
called a homographic function and: 

 
so the monotony of 𝑓 depends on the sign of the expression 𝛼 ∙

𝛿 − 𝛽 ∙ 𝛾. 

If 𝑥1 ≠ 𝑥2  are the roots of the characteristic equation 

𝑓(𝑥) = 𝑥, by noting:  

 
it can be shown that the general term 𝛼𝑛 of the sequence is given by 

the relation: 

 
Example: 

 
Prove that:  

 
From here it follows that the sequence is convergent (it 

decomposes in two convergent sequences). It is deduced that the 

limit of the sequence is 1. 

 

Exercises 
I. Determine the general term and study the convergence of 

the sequences: 
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Determine coefficients 𝑎 and 𝑏 so that the sequence has a 

finite limit. Calculate this limit. 
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15. Any Cauchy sequence of natural numbers 
is convergent 

One of the recapitulative exercises from the XI grade 

analysis manual requires to be shown that if a sequence (𝛼𝑛)𝑛∈ℕ of 

real numbers is convergent, then:  

 
A sequence that satisfies condition (3.8) is called a Cauchy 

sequence or a fundamental sequence. It is proven that a natural 

numbers’ sequence is convergent if and only if it is a Cauchy 

sequence. This propositions enables the demonstration of the 

convergence of sequences, showing that they are Cauchy sequences. 

In this type of exercises the following condition is used: 

 

 
which is equivalent to (3.9) but easier to use. 

Example: 

 
It has to be proven that: 

 

 
(b) let 𝜀 > 0. We check to see if 𝑛𝜀 exists so that property 

(𝑎) takes place. 

(c) we have: 

 

 

 



Methods of Solving Calculus Problems 

139 

 

 

 

(d) we state the condition: 
2

𝑛
< 𝜀 and we obtain 𝑛 > : 

2

𝑛
, so 

we can take: 𝑛𝜀 = [ 
2

𝑛
] + 1. 

 

Exercises 
I. Show that the following sequences are fundamental: 
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Show that |𝑎𝑛+𝑝 − 𝑎𝑛| < 𝑏𝑛+1  for any 𝑛, 𝑝 ∈ ℕ . Deduce 

from this that the sequence is a Cauchy sequence. 

INDICATIONS: 

 

 
and we decompose in simple fractions. 

 

 

 
If 𝑝 is uneven, we deduce: 

 

 
and if it is even: 

 

 
So: 

 

From the condition: 
1

𝑛+1
< 𝜀, we obtain: 𝑛𝜀 = [

1

𝜀
− 1] + 1. 
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9. We proceed as we did in the previous exercise, where we 

had: 

 
 

16. Using the definition of the integral  
It is known that the Riemann sum attached to the function 

𝑓: [𝑎, 𝑏] → ℝ, corresponding to a division: 

 
and to the intermediate points: 

 
is: 

 
If the points 𝑥𝑖 are equidistant, then: 

 
and we have: 

 

 
A function is integrable if: 

 
exists and is finite. The value of the limit is called the integral of 

function 𝑓 on the interval [𝑎, 𝑏]: 

 
To use the definition of the integral in the calculation of the 

limits of sequences, we observe that for divisions ∆ formed with 

equidistant points, we have: 
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So we can proceed as follows: 

a) we show that the general term 𝑎𝑛 can be written in the

form: 

with 𝑓 as a continuous function on [𝑎, 𝑏], and 𝜉𝑖  being the points

of an equidistant division. 

b) 𝑓 , being continuous, it is also integrable, and:

Example: 

a) we write 𝑎𝑛 in the form:

highlighting the common factor 
1

𝑛
. We have: 

b) in:
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we make the equidistant points: 
(𝑏−𝑎)𝑖

𝑛
 appear: 

 
and we deduce the function 𝑓. We have: 

 
c) we arrange the equidistant points on a straight line: 

 
and we deduce the division: 

 
and the interval [𝑎, 𝑏]. 

d) we observe that 𝑎𝑛 is the Riemann sum corresponding to 

function 𝑓 (continuous, thus integrable) and to the deduced division 

∆, on interval [𝑎, 𝑏]. As the points of ∆ are equidistant, we have: 

 

 
 

Exercises: 
I. Using the definition of the integral, calculate the limits of 

the following sequences: 
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Indications: 

 

 
6. By making logarithms, we obtain: 

 

 

 

 

 
II. a) Write the Riemann sum 

  
corresponding to the function:  

https://en.wiktionary.org/w/index.php?title=logarithmizing&action=edit&redlink=1
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the division: 

 
and the intermediate points: 

 
b) Calculate: 

 
c) Calculate: 

 
and deduce that: 
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IV. Continuity and derivability

Continuity 
DEFINITION: the function 𝑓: 𝐷 → ℝ is continuous in 𝑥0 ∈

𝐷 if: 

1. it has a limit in 𝑥0 ∈,

2. the limit is equal to 𝑓(𝑥0),

i.e. 

THE CONSEQUENCE: Any continuous function in a 

point has a limit in that point. 

(A) Methods for the study of continuity 

1. Using the definition
Example: 

is continuous in 𝑥 = 1. 

Indeed, let’s show that: 

Let there be any 𝜀 > 0. We must determine 𝛿𝜀 . We have: 
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because on the interval [0,2], for example, [2𝑥 + 3]  is bounded 

between 3 and 7. We determine 𝛿𝜀 from the condition: 

 
We can take, for example 𝛿𝜀 = 2𝜀. Then: 

 

 
therefore 𝑓 is continuous in 𝑥 = 1. 

2. Using the criterion with the lateral limits 
𝒇 is continuous in: 

 
where  

 
are the left and right limit, respectively in 𝑥0. 

EXAMPLE: Let’s study the continuity of the function: 

 
for 𝛼 ∈ [0, 2𝜋]. 

SOLUTION: Because we are required to study the 

continuity, with a certain point being specified, we must make the 

study on the whole definition domain. The points of the domain 

appear to belong to two categories: 

1. Connection points between branches, in which continuity 

can be studied using the lateral limits. 
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2. The other points, in which the function is continuous, 

being expressed by continuous functions (elementary) (but this 

must be specified each time). 

In our case: 

(a) in any point 𝑥0 ≠ 1, the function is continuous being 

expressed through continuous functions. 

(b) we study the continuity in 𝑥0 ≠ 1. We have: 

 

 

 

 

The value of the function in the point is 𝑓(1) =
1

2
, so 𝑓  is 

continuous in: 

 
To explain the module we use the table with the sign of the 

function sin 𝛼 −
1

2
: 

 

1. if 𝛼 ∈ [0,
𝜋

6
] ∪ [

5𝜋

6
, 2𝜋], the equation becomes: 

 

 

2. if 𝛼 ∈ (
𝜋

6
,

5𝜋

6
), we obtain sin  𝛼 = 1, so 𝛼 =

𝜋

2
. 

For this four values of 𝛼 the function is continuous also in 

point 𝑥 = 1, so it is continuous on ℝ. 
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3. Using the criterion with sequences 
This criterion is obtained from the criterion with sequences 

for the limits of functions, by replacing 𝑙  with 𝑓(𝑥0)  and 

eliminating the condition 𝑥𝑛 ≠ 𝑥0 (which is essential in the case of 

limits, because we can study the limit of a function in a point where 

𝑓(𝑥) doesn’t exist). 

EXAMPLE: 

 
Proceeding as we did with Method 10, with the two 

adaptations mentioned just above, it follows that 𝑓 is continuous in 

the points 𝑥0 for which: 

 
 

(B) Types of discontinuity points 
The point 𝑥0 ∈ 𝐷 in which 𝑓 is not continuous is said to be 

a first order discontinuity point if the lateral limits in 𝑥0 exist and 

are finite. 

Any other discontinuity point is said to be of a second order. 

 

(C) The extension through continuity 
To extend the function 𝑓: 𝐷 → ℝ means to add new points 

to the domain 𝐷, where we define the correspondence law willingly.  

If 𝑀 is the set of added points and ℎ is the correspondence 

law on 𝑀, the extension will be: 
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For example: 

 
can be extended to the entire set ℝ by putting: 

 
There are many extensions to a function. Nevertheless, if 𝑓 

is continuous on 𝐷 and has a finite limit in a point 𝑥0 ∈ 𝐷, there is 

only one extension: 

 
that is continuous, named the extension through continuity of 𝑓 in 

point 𝑥0. 

So, for our example, because 
𝑙𝑖𝑚

𝑥 → 0
sin 𝑥

𝑥
= 1, the function: 

 
is the only extension of sin 𝑥/𝑥 that is continuous on ℝ. 

 

(D) The continuity of composite functions 
If 𝑓 is continuous in 𝑥0 and 𝑔 is continuous in  𝑓(𝑥0), then 

𝑔 ∘ 𝑓 is continuous in 𝑥0. 

 
So the composition of two continuous functions is a 

continuous function. Reciprocally it isn’t true: it is possible that 𝑓 

and 𝑔 are not continuous and 𝑔 ∘ 𝑓 is. 

For example: 



Methods of Solving Calculus Problems 

151 

 

 
isn’t continuous in any point, but the function 𝑔(𝑥) = (𝑓 ∘ 𝑓)(𝑥) 

is the identically equal function to 1, so it is continuous in any point 

from ℝ. 

 

Exercises 
I. Study, on the maximum definition domain, the continuity 

of the functions defined by: 
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II. Specify the type of discontinuity points for the functions: 

 

 

 

 

 
Determine the extensions using the continuity, where 

possible. 

III. Study the continuity of the functions𝑓, 𝑔, 𝑓 ∘ 𝑔, 𝑔 ∘ 𝑓 , 

for: 
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IV. 1. Let 𝑓, 𝑔: ℝ → ℝ  be a continuous function so that 

𝑓(𝑥) = 𝑔(𝑥) for any 𝑥 ∈ ℚ. Show that 𝑓 = 𝑔. (Manual) 

2. Let 𝑓: 𝐼 → ℝ , 𝐼 ⊆→ ℝ  be a function with Darboux’s 

property. If 𝑓 has lateral limits in any point 𝐼, then 𝑓 is continuous 

on 𝐼. (Manual) 

3. 𝑓: ℝ → ℝ so that: 

 
for any 𝑥, 𝑦 ∈ ℝ. Prove that 𝑎 > 0 exists so that for any 𝑥  with 

|𝑥| ≤ 𝑎 we have |𝑓(𝑥)| < 𝑎. Deduce the existence of a fixed point 

for 𝑓. (𝑥0 is a fixed point for 𝑓 if 𝑓(𝑥0) = 𝑥0). (Manual) 

4. Let 𝑓: [𝑎, 𝑏] → ℝ, continuous. Then: 

 

 
(Manual) 

A function with the property (4.1) is called an uniform 

continuously function on [𝒂, 𝒃]. 

The uniform continuity is therefore defined on an interval, 

while continuity can be defined in a point. 

Taking 𝑦 = 𝑥0  in (4.1)  it is deduced that any uniform 

continuous function on an interval is continuous on that interval. 

Exercise 4 from above affirms the reciprocal of this 

proposition, which is true if the interval is closed and bounded. 
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Derivability 
 

(A) Definition. Geometric interpretation. 
Consequences 
 

Definition 
The function 𝑓: 𝐷 → ℝ   is differentiable in 𝑥0 ∈ 𝐷  if the 

following limit exists and is finite: 

 
The value of this limit is noted by 𝑓 ,(𝑥0) and it is called the 

derivative of 𝑓 in 𝑥0. 

Geometric interpretation 
The derivative of a function in a point 𝑥0 is the slope of the 

tangent to the graphic of 𝒇in the abscissa point 𝒙𝟎. 

 

When 𝑥  tends to 𝑥0 , the chord 𝐴𝐵  tends towards the 

tangent in 𝐴 to the graphic, so the slope of the chord 
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tends to the slope of the tangent. Therefore, 𝑓 ,(𝑥0) is the slope of 

the tangent in the abscissa point 𝑥0 to the graphic. 

The geometric interpretation of the derivative thus follows 

from the next sequence of implications: 

 

 

Consequences 
1. Any function differentiable in a point is continuous in that 

point. 

2. The equation of the tangent to the graphic of a 

differentiable function. 

It is known that equation of a straight line that passes 

through the point (𝑥0, 𝑓(𝑥0)) is: 

 
3. The equation of the normal (the perpendicular on the 

tangent) is deduced from the condition of perpendicularity of two 

straight lines (𝑚1 ∙ 𝑚2 = −1) and it is: 

 

(B) The derivation of composite functions 

 
From formula (4.2) it is deduced that: 

 
So, in order to derive a composite function we will proceed 

as follows: 
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(a) we derive the last function that is composed (in our case 

𝑓3)  and we replace in this function the variable 𝑥  with the 

expression issuing from the composition of the other function (in 

our case 𝑓2 ∘ 𝑓1). 

(b) by neglecting the derived function in the previous step (in 

our case 𝑓3), we derive the function that became last (for us 𝑓2) and 

we also replace the variable 𝑥 with the expression that resulted from 

the composition of the functions that have no yet been derived (in 

this step we only have 𝑓1(𝑥). 

(c) we continue this procedure until all the functions are 

derived.  

EXAMPLE: 

 
1. By applying formula (4.2) we have: 

 

 

 

 

 

 
We can obtain the same results much faster, using the 

generalization of formula (4.2) presented above. 

Therefore, the composite functions are: 
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CONSEQUENCES: 

1. The derivative of the inverse function. 

From 𝑓−1(𝑓(𝑥)) = 𝑥, by applying formula (4.2), it follows 

that: 

 
or by noting 𝑦 = 𝑓(𝑥): 

 
EXAMPLE: For 𝑓(𝑥) = ln 𝑥, 𝑓: (0, ∞) → ℝ we have: 

 
and as 𝑦 = ln 𝑥 => 𝑥 = 𝑒𝑦 we obtain: 

 
2. High order derivatives of composite functions. 

From (𝑓(𝑢(𝑥)) = 𝑓 ,(𝑢(𝑥)). 𝑢,(𝑥) , deriving again in 

relation to 𝑥 it follows that: 
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We have therefore obtained the second order derivative of 

the composite function and the procedure can go on.  

EXAMPLE: Let’s calculate 𝑓 ,,(𝑥)  if 𝑓(𝑥) = 𝑔(𝑔−𝑥) , 𝑔 

being a function two times differentiable on ℝ.  

We have: 

 
and 

 

 

(C) Derivatives of order 𝑛 
For the calculation of the derivative 𝑓(𝑛)(𝑥) we can use one 

of the following methods: 

1.  We calculate a few derivatives (𝑓 ,, 𝑓 ,,, 𝑓 ,,,, … ) in order to 

deduce the expression of  𝑓(𝑛), which we then demonstrate by way 

of induction. 

2. We use Leibniz formula for the derivation of the product 

of two functions: 

 
The formula can be applied to a random quotient, because: 

 

(D) The study of derivability 
In order to study the derivability of a function: 

(a) we distinguish two categories of points that the domain 

has: points in which we know that the function is differentiable 

(being expressed by differentiable functions) and points in which we 

pursue the study of derivability (generally connection points 

between branches). 
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(b) for the study of derivability in this second category of 

points, we use one of the following methods: 

(1) we calculate the lateral derivatives using the 

definition 

(2) we calculate the lateral derivatives using the 

Corollary of Lagrange’s theorem: If 𝑓  is 

differentiable in a vicinity of 𝑥0  and if it 

continues in 𝑥0 and if there exists: 

 

 
then, 𝑓 has a derivative on the left (on the right, 

respectively) in 𝑥0 and: 

 

 
The continuity condition in 𝒙𝟎 that is required in the 

hypothesis of the corollary is essential for its application, but it 

doesn’t constitute a restriction in the study of derivability, 

because if 𝑓 isn’t continuous in 𝑥0, it isn’t differentiable either. 

 

EXAMPLE:  Let’s determine the parameters 𝛼, 𝛽 ∈ ℝ  so 

that the function: 

 
is differentiable. What is the geometric interpretation of the result? 

Answer: Method 1. (using the lateral derivatives) 

a) in any point 𝑥 ≠ 𝑒 , the function is differentiable, being 

expressed through differentiable functions. 

b) we study the derivability in 𝑥 = 𝑒. 
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Because of the proposition: 𝒇 non continuous ==> 𝒇 non 

differentiable, we study the continuity first. 

 

 

 
so: 𝑓 continuous in 𝑒 <=> 𝛼𝑒 + 𝛽 = 1.  (4.3) 

If the continuity condition in 𝑥 = 𝑒 isn’t met, the function is 

also not differentiable in this point, so we study the derivability 

assuming the continuity condition is fulfilled. 

 

 

 

 
For the calculation of this limit we can: 

(1) apply the definition of the derivative, 

(2) permute the limit with the logarithm, 

(3) use l’Hospital’s rule. 

(1) We observe that by noting 𝑔(𝑥) = 𝑙𝑛2𝑥 , we have 

𝑔(𝑒) = 1 and the limit becomes: 

 
(because 𝑔 is differentiable in 𝑒) 
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Therefore, 𝑓 is differentiable in: 

and from the continuity condition we obtain 𝛽 = −1 . We thus 

have: 

The geometric interpretation of the result: the straight 

line 𝑦 =
2

𝑒
𝑥 − 1 is tangent to the curve 𝑦 = ln 𝑥2.

If the branch of a function is expressed through a 

straight line (𝒚 = 𝜶𝒙 + 𝜷) , the function is 

differentiable in the point 𝒙𝟎  of connection 

between the branches, if and only if the 

respective straight line is tangent in the point of 

abscissa 𝒙𝟎  to the graphic of the other branch. 
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Method 2: (Using the corollary of Lagrange’s theorem) 

(a) In any point 𝑥 ≠ 𝑒, the function is differentiable, being 

expressed by differentiable function and we have: 

 
(b) We study the derivability in 𝑥 = 𝑒 . We first state the 

continuity condition: 

 
In order to use the corollary of Lagrange’s theorem we 

calculate the lateral limits of the derivative: 

 
From the corollary we deduce 𝑓 ,(𝑒) = 𝛼. Analogously: 

 

If 𝑓 is differentiable in 𝑥 = 𝑒 if and only if𝛼 =
2

𝑒
. From the 

continuity condition we deduce 𝛽 = −1. 

 

(E) Applications of the derivative 
in economics  

(See the Calculus manual, IXth grade) 

1. Let 𝛽(𝑥) be the benefit obtained for an expenditure of 𝑥 

lei. For any additional expenditure of ℎ  lei, the supplementary 

benefit on any spent leu is: 

 
If  ℎ is sufficiently small, this relation gives an indication of 

the variation of the benefit corresponding to the sum of 𝑥 lei. 

If this limit exists: 
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it is called the bound benefit corresponding to the sum of 𝒙 lei. 

2. Let 𝛾(𝑝) be the total cost for the production of 𝑝 units of 

a particular product. Then, the cost per each supplementary unit of 

product is: 

 
and the limit of this relation, when ℎ tends to zero, if it exists, is 

called a bound cost of production for 𝑝 units of the considered 

product. 

EXAMPLE: The benefit obtained for an expenditure of 𝑥 

lei is: 

 
For any additional expenditure of ℎ lei, calculate the 

supplementary benefit per spent leu and the bound benefit 

corresponding to the sum of 1000 lei. 

Answer: The supplementary benefit per spent leu is: 

 
For 𝑥 = 1000 this is equal to 1997 + ℎ and 

 

Exercises 
I. The following are required: 

1. The equation of the tangent to the graphic 𝑓(𝑥) =

ln √1 + 𝑥2 in the abscissa point 𝑥0 = 1. 

2. The equation of the tangent to the curve 𝑓(𝑥) =

√𝑥2 − 𝑘2, that is parallel to 0𝑥. 
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3. The equation of the tangent to the curve 𝑓(𝑥) = 𝑥3 , 

parallel to the first bisector. 

4. The equation of the tangent to the curve 𝑦 =
3𝑥+2

2𝑥+6
, that is 

parallel to the chord that unites the abscissae points 𝑥 = 1 and 𝑥 =

3. 

5. Determine 𝛼 and 𝛽  so that 𝑦 = 𝛼𝑥 + 𝛽 and 𝑦 =
𝑥−1

𝑥
 are 

tangent in 𝑥 = 1. Write down their common tangent. 

6. Show that the straight line 𝑦 = 7𝑥 − 2 is tangent to the 

curve 𝑦 = 𝑥2 + 4𝑥. (Manual) 

 

II. 1. Calculate the derivative of the function: 

 
2. Let 𝑓: (−∞, 0) → ℝ , 𝑓(𝑥) = 𝑥2 − 3𝑥 . Determine a 

subinterval 𝐽 ⊆ ℝ, so that 𝑓: (−∞, 0) → 𝐽 is bijective. Let 𝑔 be its 

inverse. Calculate 𝑔,(−1) and 𝑔,,(−1). (Manual) 

3. If: 

 
with 𝛼 > 0 for any 𝑥, 𝑦 ∈ 𝐼, the function 𝑓 is constant on 𝐼. 

4. If 𝑓 has a limit in point 𝑎, then the function: 

 
is differentiable in 𝑎. 

5. If 𝑓  is bounded in a vicinity of 𝑥0 , then 𝑔(𝑥) =

(𝑥 − 𝑥0)2𝑓(𝑥) is differentiable in 𝑥0. Particular case: 

 
Indications: 

1. Let 𝑓 be a primitive of the function: 
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We have: 

 
3. For 𝑥 ≠ 𝑦  the inequality from the enunciation is 

equivalent to: 

 
from where, for 𝑦 ⟶ 𝑥 we obtain 𝑓(𝑥) = 0, so 𝑓 is constant on 𝐼. 

 

III. Calculate the derivatives of order 𝑛 for: 

 

 

 

 

 

 

 

 

 

10. 𝑓(𝑥) = 𝑒𝑎𝑥 + 𝑒𝑏𝑥 from the expression of the derivative 

of order 𝑛, deduce Newton's binomial formula. 
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IV. 1. Show that: 

 

 
2. Applying Leibniz’s formula for: 

 
show that: 

 

 
Find similar formulas, using the functions: 

 
3. Let 𝐼 = (0,1)  and the functions 𝑢, 𝑣: 𝐼 ⟶ ℝ , 𝑢(𝑥) =

𝑢(𝑥) =
𝑖𝑛𝑓

𝑦 ∈ 𝐼
(𝑥 − 𝑦)2 , 𝑣(𝑥) ==

𝑠𝑢𝑝
𝑦 ∈ 𝐼(𝑥 − 𝑦)2 . Study the 

derivability of the functions 𝑢  and 𝑣  and calculate 
𝑠𝑢𝑝

𝑥 ∈ 𝐼
𝑢(𝑥) , 

𝑖𝑛𝑓
𝑥 ∈ 𝐼

𝑣(𝑥). (Manual) 

4. If 𝑓𝑛(𝑥) is a sequence of differentiable function, having a 

limit in any point 𝑥, then: 

 
 

V. Study the derivability of the functions: 
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is indefinitely differentiable on ℝ and: 
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𝑎 ∈ ℝ.  
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V. Fermat, Rolle, Lagrange, 
Cauchy Theorems 

 

(A) Fermat’s theorem  

1. Enunciation  
If 𝑓: [𝑎, 𝑏] → ℝ  is continuous on [𝑎, 𝑏]  and differentiable 

on (𝑎, 𝑏), then in any point of extremum from (𝑎, 𝑏) (from 

the interior of the interval), the derivative is annulled. 

(Fermat, 1601-1665) 

Observation: 𝑥0 ∈ (𝑎, 𝑏) point of extremum ==>  𝑓 ,(𝑥0) =

0. If 𝑥0  is a point of extremum at the ends of the interval, it is 

possible that the derivative isn’t annulled in 𝑥0. 

Example:  

 
has two points of extremum: in 𝑥1 = −1 and in 𝑥2 = 2, and: 

 
 

2. Geometric and algebraic interpretation 
a) The geometric interpretation results from the 

geometrical interpretation of the derivative: if the conditions of 

Fermat’s theorem are fulfilled in any point from the interior of the 

interval, the tangent to the function’s graphic is parallel to the axis 

0𝑥. 

b) The algebraic interpretation: if the conditions of 

Fermat’s theorem are fulfilled on [𝑎, 𝑏] , any point of extremum 

from (𝑎, 𝑏) is a root to the equation 𝑓 ,(𝑥) = 0. 
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Exercises 
1. If 𝑎1, 𝑎2, … 𝑎𝑛 are positive numbers, so that: 

 
for any 𝑥 ∈ ℝ, then we have: 

 
2. Let 𝑎1, 𝑎2, … 𝑎𝑛, 𝑏1, 𝑏2, … 𝑏𝑛 be positive real numbers, so 

that: 

 
for any 𝑥 ∈ ℝ. Then : 

 
(generalization of the previous exercise) 

3. If 𝑓 is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), 

and 𝑓(𝑎) = 𝑓(𝑏) = 0, then: 

(i) if 𝑓 , is increasing, it follows that 𝑓(𝑥) ≤ 0 on [𝑎, 𝑏]; 

(ii) ) if 𝑓 ,, is decreasing, it follows that 𝑓(𝑥) ≥ 0 on [𝑎, 𝑏]. 

4. If 𝑎𝑥 ≥ 𝑥𝑎 for any 𝑥 > 0, then 𝑎 = 𝑒. 

5. 
𝑡𝑔 𝑎

𝑡𝑔 𝑏
<

𝑎

𝑏
 if 0 < 𝑎 < 𝑏 <

𝜋

2
. 

SOLUTIONS: 

1. The exercise is a particular case of exercise 2. 

2. We highlight a function that has a point of extremum 

(global) on ℝ, observing that the inequality from the hypothesis can 

be written: 

 

 
Because this inequality is true for any real 𝑥, it follows that 𝑥 = 0 is 

a global point of minimum for 𝑓. According to Fermat’s theorem, 

in this point the derivative is annulled, so 𝑓 ,(0) = 0. We have: 
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3. (i) Let’s assume there exists 𝑐 ∈ (𝑎, 𝑏) so that 𝑓(𝑐) > 0. 

We can even assume that 𝑐 is a point of maximum, because such a 

point exists, according to Rolle’s theorem, so we have 𝑓 ,(𝑐) = 0. 

Between 𝑐  and 𝑏  at least one point 𝑑  exists in which 

𝑓 ,(𝑑) < 0 , because, if, let’s say 𝑓 ,(𝑥) ≥ 0  for any 𝑥 ∈ (𝑐, 𝑏) , it 

follows that 𝑓  is increasing on (𝑐, 𝑏)  and so 𝑓(𝑐) < 𝑓(𝑏) = 0 

implies 𝑓(𝑐) = 0. Then, from 𝑓 ,(𝑑) =≤ 0 = 𝑓 ,(𝑐) we deduce the 

contradiction: 

 

4. 𝑎𝑥 ≥ 𝑥𝑎 <=> 𝑥. ln 𝑎 ≥ 𝑎. ln 𝑥 <=>
ln 𝑎

𝑎
≥

ln 𝑥

𝑥
 (for any 

𝑥 > 0). So 𝑎 is the abscissa of the maximum of the function: 

 
We have: 

 

 

 

It is sufficient to prove that 𝑓(𝑥) =
𝑡𝑔 𝑥

𝑥
 is increasing, i.e. 

𝑓 ,(𝑥) > 0. 

 

 

 

 



C. Dumitrescu ■ F. Smarandache  

172 

 

(B) Rolle’s theorem  

1. Enunciation 
If 𝑓: [𝑎, 𝑏] → ℝ is continuous on [𝑎, 𝑏], differentiable 

on (𝑎, 𝑏) and 𝑓(𝑎) = 𝑓(𝑏), then there exists 𝑐 ∈

(𝑎, 𝑏) so that 𝑓 ,(𝑐) = 0. (Rolle, 1652-1719) 

Fermat’s theorem states that in a point of extremum from 

the interior of an interval the derivative is annulled, but it doesn’t 

mention when such a point exists. 

Rolle’s theorem provides a sufficient condition for the 

existence of at least one such point, adding to the hypothesis from 

Fermat’s theorem the condition: 𝑓(𝑎) = 𝑓(𝑏). 

2. Geometric and algebraic interpretation 
a) The geometric interpretation: if the conditions of 

Rolle’s theorem are met, there exists at least one point in the 

interval (𝑎, 𝑏)in which the tangent to the graphic is parallel to 0𝑥. 

b) The algebraic interpretation: if the conditions of 

Rolle’s theorem are met, the equation 𝒇,(𝒙) = 𝟎 has at least one 

root in the interval (𝑎, 𝑏). 

The algebraic interpretation of the theorem highlights a 

method used to prove that the equation 𝑓(𝑥) = 0 has at least one 

root in the interval (𝑎, 𝑏). For this, it is sufficient to consider a 

primitive 𝐹 of 𝑓, for which the conditions of Rolle’s theorem are 

fulfilled on [𝑎, 𝑏]. It results that the equation 𝐹,(𝑥) = 0 has at least 

one root in the interval (𝑎, 𝑏), i.e. 𝑓(𝑥) has a root in the interval 

(𝑎, 𝑏). 

A second method to show that the equation 𝑓(𝑥) = 0 has 

at least one root in the interval (𝑎, 𝑏)  is to show just that 𝑓  is 

continuous and 𝑓(𝑎). 𝑓(𝑏) < 0. 
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3. Consequences 
1. Between two roots of a differentiable function on an 

interval, there exists at least one root of the derivative. 

2.  Between two roots of a function’s derivative on an 

interval, there exists, at most a root of the function. 

Consequence 2. allows us to determine the number of roots of 

a function on an interval with the help of its derivative’s roots 

(Rolle’s sequence): 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be the derivative’s roots. 

Then 𝑓 has as many real, simple roots as there are variations 

of sign in the sequence: 

 
(if we have 𝑓(𝑥𝑖) = 0, then 𝑥𝑖 is a multiple root) 

Exercises 
I. Study the applicability of Rolle’s Theorem for the 

functions: 

 

 

 
What is the geometric interpretation of the result? 
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Indication: 1. We obtain 𝑐 ∈ [4,5] . In any point from the 

interval [4,5], the graphic coincides with the tangent to the graphic. 

II. Given: 

 
Show that the equation: 

 
has at least one solution in the interval (0, 2𝜋). (Manual) 

2. If: 

 
then the equation: 

 
has at least one root in the interval (0,1). 

3. (i) If: 

 
then the equation: 

 
has at least one root in the interval (0,1). 

(ii) in what conditions the same equation has at least one 

root in the interval (−1,0)? 

(iii) The same question for the equations: 

 

 
on the interval (−1,1). 

4. Let 𝑓: ℝ → ℝ be differentiable and 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 , 

roots of 𝑓. Show that 𝑓 ,has at least 𝑛 − 1 roots. 

(Manual) 
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Consequences: 

a) A polynomial function of degree 𝑛 has, at most, 𝑛 real, 

distinct zeros. 

b) If all the roots of a polynomial are real and distinct, its 

derivative has the same property. 

c) If all the roots of a polynomial are real, then its derivative 

has the same property. 

5. Given: 

 
Show that the equation 𝑓𝑛(𝑥) = 0  has 𝑛  distinct roots in 

the interval (−1,1). 

6. If 𝑓 is 𝑛 times differentiable on 𝐼 and it has 𝑛 + 1 distinct 

roots on 𝐼, then 𝑓𝑛(𝑥) has at least one root on 𝐼. 

7. Let 𝑓, 𝑔: [𝑎, 𝑏] → ℝ, continuous on [𝑎, 𝑏], differentiable 

on (𝑎, 𝑏) with 𝑔(𝑥) ≠ 0 and 𝑔,(𝑥) ≠ 0 on [a,b], and 
𝑓(𝑎)

𝑔(𝑎)
=

𝑓(𝑏)

𝑔(𝑏)
. 

Show that 𝑐 ∈ (𝑎, 𝑏) exists, so that: 

 
8. Let𝑓: [𝑎, 𝑏] → ℝ, continuous on (𝑎, 𝑏), differentiable on 

(𝑎, 𝑏). Then between two roots of 𝑓 there exists at least a root of 

𝛼. 𝑓 + 𝑓 ,. 

9. If the differentiable functions 𝑓 and 𝑔 have the property: 

 
on an interval, then between two of its roots there is a root of 𝑔 and 

vice versa.  

Consequence: If 𝑓 ,(𝑥). cos 𝑥 + 𝑓(𝑥). sin 𝑥 ≠ 0 , in any 

length interval bigger than 𝜋 there is at least one root of 𝑓. 

10. If 𝑓, 𝑔: [𝑎, 𝑏] → ℝ, continuous on [𝑎, 𝑏], differentiable 

on (𝑎, 𝑏) , 𝑔(𝑥) ≠ 0, 𝑔,(𝑥) ≠ 0 and 𝑓(𝑎) = 𝑓(𝑏) = 0, then 𝑐𝑛 ∈

(𝑎, 𝑏) so that: 
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SOLUTIONS: 

7. The required equality can also been written: 

 
This equality appears in points 𝑐  that are roots of the 

derivative of ℎ(𝑥) =
𝑓(𝑥)

(𝑥)𝑔
, so it is sufficient to demonstrate that the 

function ℎ fulfills the conditions of Rolle’s theorem on [𝑎, 𝑏]. 

8. The equation 𝛼. 𝑓(𝑥) + 𝑓 ,(𝑥) = 0  comes from the 

equalizing with zero the derivative of the function 𝐹(𝑥) =

𝑒𝛼𝑥𝑓(𝑥), so it is sufficient to show that 𝐹 satisfies the conditions of 

Rolle’s theorem. 

9. Let 𝑥1, 𝑥2 be roots of 𝑓. By hypothesis, we have𝑔(𝑥1) ≠

0 and 𝑔(𝑥2) ≠ 0. If, for example, there can be found a root of 𝑔 

between 𝑥1, 𝑥2 , this means that the function ℎ(𝑥) =
𝑓(𝑥)

(𝑥)𝑔
 satisfies 

the conditions of Rolle’s theorem and so ℎ,(𝑥) is annulled in at least 

one point between 𝑥1 and 𝑥2, which contradicts the hypothesis. 

 

 

 

 
has at least one root in (𝑎, 𝑏) <=> ℎ,(𝑥) = 0 has at least one root 

in (𝑎, 𝑏), where ℎ(𝑥) =
𝑓(𝑥)

𝑔𝑛(𝑥)
. 

We will present next, two methods for the study of an 

equation’s roots. The first of these uses Rolle’s Theorem and the 

other is a consequence of the fact that any continuous function has 

Darboux’s property. 
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Methods for the study of an equation’s 
roots 

1. Using Rolles’s theorem (its algebraic 
interpretation) 
2. Using Darboux’s properties (if 𝑓 has Darboux’s 

property (particularly if it is continuous) on [𝑎, 𝑏]  and: 

𝑓(𝑎). 𝑓(𝑏) ≤ 0, then 𝑓 has a root in [𝑎, 𝑏]). 

Examples:  

1) If 𝑓: [𝑎, 𝑏] → [𝑎, 𝑏] is a continuous function, then 𝑢, 𝑣 ∈

[𝑎, 𝑏] exists so that 𝑓(𝑢) = 𝑢 and 𝑓(𝑣) = 𝑣.  (Manual) 

2) Let 𝑓: [0, 2𝜋] → ℝ  be a continuous function so that 

𝑓(0) = 𝑓(2𝜋). Show that 𝑐 ∈ [0, 𝜋] exists so that 𝑓(𝑐) = 𝑓(𝑐 +

𝑛). (Manual) 

Consequences: If a traveler leaves in the morning from spot 

𝐴and arrives, in the evening in spot 𝐵, and the next day he leaves 

and reaches again spot 𝐴, show that there is a point between 𝐴 and 

𝐵 where the traveler has been, at the same hour, in both days. 

Indication: If 𝑆(𝑡) is the space covered by the traveler, we 

have: 𝑆(0) = 𝑆(24)  and so 𝑡0 ∈ [0,12]  exists, so that: 𝑆(𝑡0) =

𝑆(𝑡0 + 12). 

By formulating the problem like this, the result might seem 

surprising, but it is equal to saying that two travelers that leave, one 

from spot 𝐴 heading to spot 𝐵, and the other from 𝐵 to 𝐴, meet on 

the way. 

3. Using Rolle’s sequence 
Example: Let’s study the nature of the equation’s roots: 

 
𝑎 being a real parameter. 

Answer: The derivative’s roots are: 
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and we have: 

 
The results are illustrated in the following table: 

 

4. The graphical method. The equation 𝐹(𝑥, 𝑚) = 0 is 

reduced to the form 𝑓(𝑥) = 𝑎. The number of roots is equal to the 

number of intersection points between the graphics: 𝑦 = 𝑓(𝑥) and 

𝑦 = 𝑚. 

Example: 

 
The number of roots of the given equation is equal to the 

number of intersection points between the graphics: 

 

5. Viette’s relations 
Example: Show that the equation: 

 
with 𝑎, 𝑏, 𝑐 ∈ ℝ has, at most, two real roots. 
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Answer: we have: 

 

 

 

 

 
so the equation has at least two complex roots. 

6. Using the theorem of the average  
Theorem:   If 𝑓: [𝑎, 𝑏] → ℝ is a Riemann integral (so it is       

      bounded), 𝜇 ∈ [𝑚, 𝑀] exists, so that: 

 
Example: Let 𝑓: [0,1] → ℝ be continuous, so that: 

 
Show that the equation 𝑓(𝑥) = 𝑥 has a root 𝑥0 ∈ (0,1). 

Answer:  𝑓(𝑥) = 𝑥 <=> 𝑓(𝑥) − 𝑥 = 0 , so by noting: 

ℎ(𝑥) = 𝑓(𝑥) − 𝑥 we have to show that the equation ℎ(𝑥) = 0 has 

a root in the interval (0,1). We have: 

 

 

But: 𝑓0
2 ℎ(𝑥) = 0, according to the theorem of the average, 

with 𝜇 ∈ (𝑚, 𝑀). The function 𝑓, being continuous, has Darboux’s 

property, so, for 𝜇 there exists 𝑥0 ∈ (0,1)so that 𝜇 = ℎ(𝑥0). 



C. Dumitrescu ■ F. Smarandache  

180 

 

Exercises 
1. The equations: 

 

 

 
can’t all have real roots if 𝛼, 𝛽, 𝛾 ∈ ℝ. 

Indication:  

 

 

 
2. If 𝑓: [0,1] →  ℝ is continuous and with the property: 

 
then, the equation 𝑓(𝑥) − sin 𝜋𝑥 = 0 has one root in (0,1). 

3. If 𝑓: [0,1] →  ℝ is continuous and with the property: 

 
then, the equation 𝑓(𝑥) − 𝑎𝑥2 − 𝑏𝑥 − 𝑐 = 0  has one root in 

(0,1). 

4. If 𝑓: [0,1] →  ℝ is continuous and𝑛 > 1 exists for which: 

 
the equation: (1 − 𝑥)𝑓(𝑥) = 1 − 𝑥𝑛 has one root in (0,1). 

Indication: We apply the theorem of the average to the 

function: 
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(C) Lagrange’s Theorem 
1. Enunciation:  

 Let 𝑓: [𝑎, 𝑏] →  ℝ  be a continuous function 

on [𝑎, 𝑏]  and differentiable on (𝑎, 𝑏) . Then 𝑐 ∈

(𝑎, 𝑏) exists, so that: 

 
(Lagrange, 1736 – 1813) 

2. Geometric and algebraic interpretation 

a) Geometric interpretation:  
If the conditions of the theorem are met, there exists a point 

𝑐 ∈ (𝑎, 𝑏) in which the tangent to the graphic is parallel to the 

chord that unites the graphic’s extremities. 

b) Algebraic interpretation 
If the conditions of the theorem are met, the equation: 

 
has at least one root in the interval (𝑎, 𝑏). 

3. The corollary of Lagrange’s Theorem 
If 𝑓  is continuous on an interval 𝐼  and differentiable on 

𝐼\{𝑥0} and in 𝑥0 there exists the derivative’s limit: 

 
then 𝑓 is differentiable in 𝑥0 and: 

 
This corollary facilitates the study of a function’s derivability 

in a point in an easier manner that by using the lateral derivatives. 

Examples: 

1. Study the derivability of the function: 
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Solution: In any point 𝑥 ≠ 1, the function is differentiable, 

being expressed by differentiable functions. We study the 

derivability in 𝑥 = 1 using the corollary of Lagrange’s theorem. 

- the continuity in 𝑥 = 1: 

 

 
𝑓(1) = ln 1 = 0 , so 𝑓  is continuous on ℝ  (and 

differentiable on ℝ{1}). 

- derivability. For the study of derivability in 𝑥 = 1, we have: 

 
(we know that  𝑓 , exists just on ℝ − (1)). 

 

Exercises 
I. Study the applicability of Lagrange’s theorem and 

determine the intermediary points 𝑐 for: 
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Indication:  

2. The continuity condition in 𝑥 =
𝜋

6
 is: 

 
and the derivability condition (the corollary to  Lagrange’s theorem) 

is: 

 
Point 𝑐 is the solution of the equation: 

 
II. 1. Let 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. Apply the theorem of the 

finite increases on the interval [𝑥1, 𝑥2] , finding the intermediary 

point 𝑐 . Deduce from this a way to build the tangent to the 

parabola, in one of its given points. 

2. We have 𝑚 ≤ 𝑓 ,(𝑥) ≤ 𝑀 for any 𝑥 ∈ 𝐼, if and only if: 
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3. (The generalization of Rolle’s theorem). If 𝑓 is continuous 

on [𝑎, 𝑏]and differentiable on (𝑎, 𝑏), then 𝑐 ∈ (𝑎, 𝑏) exists so that: 

 
4. Supposing 𝑓 is twice differentiable in a vicinity 𝑉 of point 

𝑎, show that for ℎ, small enough, there exists 𝑝, 𝑞 ∈ 𝑉 so that: 

 

 
(Manual) 

5. Let  𝑓: [0, ∞) →  ℝ be a differentiable function so that: 

 
and let 𝑎 > 0 be fixed. Applying the Lagrange theorem on each 

interval: 

 
show there exists a sequence (𝑥𝑛)𝑛∈ℕ, having the limit infinite and 

so that: 

 
6. The theorem of finite increases can also be written: 

 
Apply this formula to the functions: 

 

 
and study the values corresponding to the real point 𝑐. 

SOLUTIONS: 

1. 𝑐 =
𝑥1+𝑥2

2
, so, the abscissa point 𝑐 being given, in order to 

build the tangent in point (𝑐, 𝑓(𝑐)) of the graphic, we consider two 

points, symmetrical to 𝑐: 
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The tangent passes through (𝑐, 𝑓(𝑐)) and is parallel to the 

chord determined by the points: 

 
2. The necessity: For 𝑥 = 𝑦 (𝐿1) is verified, and for 𝑥 ≠ 𝑦, 

we have:  

 

 
inequalities which are true due to the hypothesis. 

Reciprocally, let 𝑥 ∈ 𝐼, randomly. Making 𝑦 tend to 𝑥, for: 

 
we have: 

 
3. We distinguish three cases: 

 
In this case we must prove that 𝑐 ∈ (𝑎, 𝑏)exists, so that: 

𝑓 ,(𝑐) > 0. If we had, let’s say, 𝑓 ,(𝑐) ≤ 0 on (𝑎, 𝑏), it would follow 

that 𝑓 is decreasing, so 𝑓(𝑎) > 𝑓(𝑏). 

 
We are situated within the conditions of Rolle’s theorem. 

(3) The case 𝑓(𝑎) > 𝑓(𝑏) is analogous to (1). 

4. a) We apply Lagrange’s theorem to 𝑓 on [𝑎 − ℎ, 𝑎 + ℎ]. 

b) We apply Lagrange’s theorem twice to the function 

𝑔(𝑥) = 𝑓(𝑎 + 𝑥) − 𝑓(𝑥) on the interval [𝑎 − ℎ, 𝑎]. 

6. a) 𝑐 = 1/2 , c) is obtained 𝑚ℎ = 𝑚ℎ , so 𝑐  cannot be 

determined. 
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(D) Cauchy’s Theorem 
1.Enunciation

Let If 𝑓, 𝑔: [𝑎, 𝑏] →  ℝ be continuous on[𝑎, 𝑏] and 

differentiable on (𝑎, 𝑏) so that: 

Then 𝑐 ∈ (𝑎, 𝑏) exists, so that: 

(Cauchy, 1789-1857) 

2. Geometric and algebraic interpretation
a) The geometric interpretation:  in the conditions of the

theorem, there exists a point in which the relation of the tangents’ 

slopes to the two graphics is equal to the relation  of the chords’ 

slopes that unite the extremities of the graphics. 

b) The algebraic interpretation: in the conditions of the

theorem, the equation: 

has at least one root in (𝑎, 𝑏). 

Exercises 
I. Study the applicability of Cauchy’s theorem and determine 

the intermediary point 𝑐 for: 
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II. If 𝑓 has derivatives of any order on [𝑎, 𝑏], by applying 

Cauchy’s formula to the functions: 

a) 𝑔(𝑥) = 𝑓(𝑥), ℎ(𝑥) = 𝑏 − 𝑥, show that 𝑐 ∈ (𝑎, 𝑏) exists, 

so that: 

 

 
show that 𝑐 ∈ (𝑎, 𝑏) exists, so that: 

 

 

 
show that 𝑐 ∈ (𝑎, 𝑏) exists, so that: 

 

 

 

 
show that 𝑐 ∈ (𝑎, 𝑏) exists, so that: 
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2. Applying the conclusion from point 𝑏) show that there 

exists no functions 𝑓: ℝ → ℝ twice differentiable, so that: 

𝑓(𝑥) ≥ 0 and 𝑓 ,,(𝑥) < 0 

(there are no non-negative and strictly concave functions on the 

entire real axis).  

SOLUTION: 

2. From 𝑓 ,,(𝑥) < 0  for any 𝑥 ∈ ℝ , we deduce that 𝑓 ,  is 

strictly increasing and so we cannot have 𝑓 ,(𝑥) = 0 for any 𝑥 ∈ ℝ. 

Therefore, for any 𝑥0 ∈ ℝ exists, so that 𝑓 ,(𝑥) ≠ 0. 

But then, from the relation: 

 
it follows that: 

 
We have two situations: 

(1) if 𝑓 ,(𝑥0) > 0, making 𝑥 tend to −∞ in (𝐶1), we have: 

 

 
consequently: 

 

2. If 𝑓 ,(𝑥0) < 0, we obtain the same contradiction if we 

make 𝑥 tend to +∞. 

 



Methods of Solving Calculus Problems 

189 

 

VI. Equalities and Inequalities 
 

Equalities 
It is known that if the derivative of a function is equal to 

zero on an interval, the respective function is constant on that 

interval. This observation allows us to prove certain equalities of 

the form: 

𝑓(𝑥) = 𝑔(𝑥) + 𝐶. 

or, in particular, 

𝑓(𝑥) = 𝑔(𝑥) and 𝑓(𝑥) = 𝐶 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Indeed: 

 
and in order to prove this equality it is sufficient to prove that: 

(𝑓(𝑥) − 𝑔(𝑥)) = 0. 

Observation: If the derivative is equal to zero on a reunion of 

disjunctive intervals, the constant may vary from one interval to the 

next. 

To determine the constant 𝐶, we can use two methods: 

1. We calculate the expression 𝑓(𝑥) − 𝑔(𝑥)  in a 

conveniently chosen point from the considered interval. 

2. It the previous method cannot be applied, we can 

calculate: 

 
𝑥0 also being a conveniently chosen point (one end of the interval). 

Example: Show that we have: 
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Solution: For: 

 
we have ℎ,(𝑥) = 0 for any 𝑥 ∈ ℝ(−1), domain that is a reunion of 

disjunctive intervals. We calculate the value of the constant on each 

interval. 

(1) For 𝑥 > −1, we choose the point 𝑥 = 0 where we can 

easily make the calculations: 

 
(2) For 𝑥 < −1 , we can’t find a point in which to easily 

calculate the value of ℎ, but we observe that we can calculate: 

 
 

 

Inequalities 
Method 1. Using Lagrange’s or Cauchy’s 

theorem. 

In some inequalities, we can highlight an expression of the 

form: 

 
𝑓 and the points 𝑎, 𝑏being conveniently chosen. In this case, we can 

use Lagrange’s theorem to prove the respective inequality, by 

replacing the expression: 

 
from the inequality, with 𝑓 ,(𝑐). The new form of the inequality can 

be proven taking into account the fact that 𝑎 < 𝑐 < 𝑏  and the 

monotony of 𝑓 ,. 
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A similar method can be used if in the inequality an 

expression of the following form is highlighted: 

using Cauchy’s theorem. 

EXAMPLES: 

1. Using Lagrange’s theorem, show that:

if 0 < 𝑎 < 𝑏. 

Solution: We go through these steps: 

(a) We highlight an expression of the form: 

observing that: 

and dividing by 𝑏 − 𝑎. The inequality becomes: 

(b) we apply Lagrange’s theorem to the function 𝑓(𝑥) = ln 𝑥 

on the interval [𝑎, 𝑏]. 𝑐 ∈ (𝑎, 𝑏) exists so that: 

(c) the inequality becomes: 

This new form of the inequality is proven considering the 

fact that 𝑎 < 𝑐 < 𝑏 and that 𝑓 ,(𝑥) =
1

𝑥
 is decreasing.

2. Using Lagrange’s theorem, show that 𝑒𝑥 > 1 + 𝑥 for any

𝑥 ≠ 0. 



C. Dumitrescu ■ F. Smarandache  

192 

 

Solution: 

To use Lagrange’s theorem, we search for an interval [𝑎, 𝑏] 

and a function so that we can highlight the relation 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 in our 

inequality. For this we observe that, if 𝑥 ≠ 0 , we have two 

situations: 

(1) 𝑥 > 0. In this case we can consider the interval [𝑜, 𝑥]. 

a) We highlight, in the given inequality, an expression of the 

form: 
𝑓(𝑥)−𝑓(𝑎)

𝑥−0
, observing that, if 𝑥 > 0, we have: 

 
(b) We apply Lagrange’s theorem to the function: 

 
on the interval [0, 𝑥]. 𝑐 ∈ (0, 𝑥) exists so that: 

 
(c) The inequality becomes: 

 
This form of the inequality is proven considering the fact 

that 0 < 𝑐 < 𝑥 and the derivative 𝑓 ,(𝑥) = 𝑒𝑥is increasing (so 𝑒0 <

𝑒𝑐). 

(2) If 𝑥 < 0 the demonstration is done analogously. 

 

Method 2: The method of the minimum 
This method is based on the observation that if 𝑥0 is a global 

point of minimum (the smallest minimum) for a function ℎ on a 

domain 𝐷 and if ℎ(𝑥0) ≥ 0 (the smallest value of ℎ is non-

negative), then ℎ(𝑥)  ≥ 0 for any 𝑥 ∈ 𝐷 (all the values of ℎ are 

non-negative). We can demonstrate therefore inequalities of the 

form 𝑓(𝑥) ≥ 𝑔(𝑥), i.e. 𝑓(𝑥) − 𝑔(𝑥) ≥ 0, in other words, of the 

form: ℎ(𝑥) ≥ 0. 
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Example: Using the method of the minimum, show that 𝑒𝑥 >

1 + 𝑥 for any 𝑥 ≠ 0. 

Solution: In order to use this method, we proceed as follows: 

(a) We write the inequality under the form: ℎ(𝑥) ≥ 0: 

 
(b) Let ℎ(𝑥) = 𝑒𝑥 − 1 − 𝑥 . Using the variation table, we 

calculate the global minimum (the smallest minimum) of ℎ: 

 
From the table it can be observed that ℎ  has a single 

minimum, in 𝑥 = 0, so this is also the global minimum. Its value is 

ℎ(0) = 0. So, for 𝑥 ≠ 0, we have ℎ(𝑥) > 0. 

 

 

Method 3: (Inequalities for integrals, without 
the calculation of the integrals) 

To prove an inequality of the form: 

 

without calculating the integral, we use the observation that if 𝑚, or 

𝑀 respectively, are values of the global minimum and maximum of 

𝑓 on the interval [𝑎, 𝑏], we have: 

 
and so, by integrating, we obtain: 

 



C. Dumitrescu ■ F. Smarandache  

194 

 

so, in order to prove the required inequalities, the following 

inequalities (numerical) still have to be proven: 

 
Example: Show that: 

 
Solution: (a) The inequality can be written under the form: 

 
(b) Using the variation table, we calculate the 

global minimum and maximum of the function 𝑓(𝑥) = 𝑒𝑥2
+

𝑒1−𝑥2
on the interval [0,1]: 

 

We thus have 𝑚 = 2√𝑒 and 𝑀 = 1 + 𝑒 

(c) We integrate the inequalities 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 

on the interval [𝑎, 𝑏] and we obtain: 
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Method 4: Using the inequality from the 
definition of convex (concave) functions 

Let 𝐼 be an interval on a real axis. 

Definition:    The function 𝑓: 𝐼 → ℝ is convex on 𝐼 if between any 

two points 𝑥1, 𝑥2 ∈ 𝐼 , the graphic of 𝑓  is situated 

underneath the chord that unites the abscissae points 

𝑥1 and 𝑥2. 

 
With the notations from the adjacent graphic, this condition 

is expressed through the inequality:𝑓(𝑥) ≤ 𝑦. 

In order to explain 𝑥 and 𝑦, we observe that: 

1. 𝑥 is in the interval [𝑥1, 𝑥2] if and only if it can be written 

in the form: 

 
Indeed, if 𝑥 ∈ [𝑥1, 𝑥2], it is sufficient that we take 𝛼 = (𝑥 −

𝑥2)/𝑥1 − 𝑥2) to meet the required equality. 

Reciprocally, if 𝑥 has the expression from (𝐸. 𝐼. 1), in order 

to show that 𝑥 ∈ [𝑥1, 𝑥2], the inequality system must be checked: 
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The first inequality is equivalent to 𝛼 ≤ 1, and the second 

inequality is equivalent to 𝛼 ≤ 0. 

Observation: The condition 𝛼 ∈ [0,1]  from (𝐸. 𝐼. 1)  is 

therefore essential. 

The inequality from the convexity becomes: 

 
2. To express 𝑦, we observe that: 

 
so: 

 
from which it follows: 

 
By replacing 𝑥 and 𝑦, we obtain: 

𝑓: 𝐼 → ℝ is convex <=> 

 

 
𝑓: 𝐼 → ℝ is said to be concave if, for any 𝑥1, 𝑥2 ∈ 𝐼, between 

the abscissae points 𝑥1 and 𝑥2 , the graphic of the function 𝑓  is 

above the chord that unites these points, namely: 

 

 
It is known that we can verify the convexity and concavity of 

a function twice differentiable on an interval with the use of the 

second derivative: 
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Using the two ways of expressing convexity, we can 

formulate and prove certain inequalities. 

Example: Show that for any 𝑥1 and 𝑥2 from ℝ, we have: 

 
Solution: The function 𝑓(𝑥) = 𝑒𝑥 is convex on ℝ(𝑓 ,,(𝑥) >

0), so: 

 

 

from where, for 𝛼 =
1

2
 we obtain the inequality from the 

enunciation. 

 

Exercises 
I. Show that: 
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5. For the intervals 𝐼1, 𝐼2 ⊂  ℝ let’s consider the continuous 

and injective functions: 

 
and the constant 𝑐  in the interior of 𝑓(𝐼1) . From the 

condition: 𝑓(𝑢(𝑥)) = 𝑐 + 𝑔(𝑥)  it follows that 𝑢(𝑥) = 𝑓−1(𝑐 +

𝑔(𝑥) for any 𝑥 that fulfills the condition 𝑐 + 𝑔(𝑥) ∈ 𝑓(𝐼1). Using 

this observation, construct equalities of the form ℎ(𝑥) = 𝑐 for: 

 

 

 
Answer:  (a) We have: 

 

 

We determine function 𝑢  from the condition 𝑓(𝑢(𝑥)) =

𝑐 + 𝑔(𝑥) that becomes: 

 

For 𝑐 =
𝜋

4
, for example, we have: 

 
and from the condition: 

 
we deduce: 
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and so we have: 

 

 
II. Using Lagrange’s theorem, prove the inequalities: 

 

 

 

 

 

 

 
6. Using Cauchy’s theorem applied to the functions: 

 

 
show that: 
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III. Using the method of the minimum, demonstrate the

inequalities: 

IV. Without calculating the integrals, show that:
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V. Without calculating the integral, show which one of the 

following integrals has the highest value: 

 

 

 
Indication: Using the method of the minimum, we prove 

inequalities of the form 𝑓1(𝑥) < 𝑓2(𝑥)  or 𝑓1(𝑥) > 𝑓2(𝑥)  on the 

considered intervals. We then integrate the obtained inequality. 

VI. 1. If 𝑓: 𝐼 → ℝ is convex, then for any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐼, 

we have the inequality (Jensen’s inequality): 

 
(Manual) 

2. Using Jensen’s inequality applied to the convex function 

𝑓(𝑥) = 𝑒𝑥, prove the inequalities of the averages: 

 

3. Show that for any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ [𝑜,
𝜋

2
], we have: 
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What are the maximum domains that contain zero and in 

which these inequalities take place? Give examples of other 

domains, that don’t contain the origin and that host inequalities like 

those illustrated above. In what domains do inverse inequalities take 

place? 

4. Using the concavity of the logarithmic function, prove that 

for any 𝑥1, 𝑥2, … , 𝑥𝑛 > 0 we have: 

 
5. Show that the function 𝑓(𝑥) = 𝑥𝛼 , 𝛼 > 1 , 𝑥 > 0  is 

convex. Using this property show that for any non-negative 

numbers 𝑥1, 𝑥2, … , 𝑥𝑛, the following inequality takes place: 

 
6. Applying Jensen’s inequality to the function 𝑓(𝑥) = 𝑥2 , 

show that for any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ, we have: 

 
What analogous inequality can be deduced from the convex 

function 𝑓(𝑥) = 𝑥3 , for 𝑥 > 0? And from the concave function 

𝑓(𝑥) = 𝑥3, for 𝑥 ≤ 0? 

7. Applying Jensen’s inequality for the convex function 

𝑓(𝑥) =
1

𝑥
, for 𝑥 > 0, show that, if: 
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is a polynomial with all real and positive roots, we have: 

 
What can be said if the polynomial has all the roots real and 

negative? 

 

SOLUTIONS: 

By comparing the right member of the required inequality 

with the right member of Jensen’s inequality, we deduce that the 

points 𝑥1, 𝑥2, … , 𝑥𝑛 are deduced from the conditions: 

 
We have: 

 
With these points, Jensen’s inequality, for 𝑓(𝑥) = 𝑒𝑥, becomes: 

 
Making the calculations in the left member we obtain the inequality 

of the averages. 

3. On the interval [0,
𝜋

2
], the functions sin 𝑥  and cos 𝑥 are 

concave. The biggest interval that contains the origin and in which 

sin 𝑥 is concave, is the interval [0, 𝜋]. On [𝜋, 2𝜋], for example, the 

same function is convex, so the inequality from the enunciation is 

changing. 
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VII. Primitives 

Connections with other notions 
specific to functions 
 

Definition :     The function 𝑓: 𝐼 →  ℝ has primitives on the interval 

𝐼 if there exists a function 𝐹: 𝐼 →  ℝ, differentiable 

and 𝐹,(𝑥) = 𝑓(𝑥) on 𝐼. 

It is known that two primitives differ through a constant: 

 
The set of all primitives is called an undefined integral of the 

function 𝑓 and is noted by: 

 
In order to enunciate the method employed to show that 

a function has primitives and the method to show that a 

function doesn’t have primitives, we recall some of the 

connections that exist between the main notions of calculus studied 

in high school, relative to functions: 

1. THE LIMIT 

2. THE CONTINUITY 

3. THE DERIVABILITY 

4. DARBOUX’S PROPERTY 

5. THE PRIMTIVE 

6. THE INTEGRAL 

The connections between these notions are given by the 

following properties: 

𝑃1 ) Any continuous function in a point  

𝑥0 has a limit in this point:  
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𝑃2 ) Any differentiable function in a point  

𝑥0 is continuous  in this point:  

 
𝑃3 ) Any continuous function on [𝑎, 𝑏]  has Darboux’s 

property on [𝑎, 𝑏]: 

 
𝑃4 ) Any continuous function on [𝑎, 𝑏]  has primitives on 

[𝑎, 𝑏]: 

 
𝑃5 ) Any continuous function on [𝑎, 𝑏]  is integrable on 

[𝑎, 𝑏]: 

 
𝑃6) Any function that has primitives on [𝑎, 𝑏] has Darboux’s 

property on [𝑎, 𝑏]: 

 
𝑃7) If a function has Darboux’s property on [𝑎, 𝑏], then in 

any point 𝑥0 in which the limit (the lateral limit) exists, it is equal to 

𝑓(𝑥0). 

Consequences: 1. A function with Darboux’s property (so a 

function that admits primitives) can’t have an infinite limit (lateral 

limit) in a point 𝑥0. 

The functions for which at least one lateral limit is 

infinite or different from 𝒇(𝒙𝟎) doesn’t have primitives. 

2. If 𝑓  has Darboux’s property on [𝑎, 𝑏]  and 𝑥0  is a 

discontinuity point, AT LEAST ONE LATERAL LIMIT 

DOESN’T EXIST. 

 
Due to the implications stated above, we can form the Table: 
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OBSERVATION: If 𝑥0 is a discontinuity point for 𝑓, one of 

the following situations is possible: 

(1) the lateral limits exist and they are finite 

(2) a lateral limit is finite, the other is infinite 

(3) both lateral limits are infinite 

(4) one lateral limit is infinite, the other doesn’t exist 

(5) one lateral limit is finite, the other doesn’t exist 

(6) both lateral limits don’t exist 

FROM ALL THE FUNCTIONS DISCONTINUED IN 

AT LEAST ONE POINT, THE ONLY ONES THAT CAN 

HAVE PRIMITIVES ARE THOSE FOR WHICH AT LEAST 

ONE LATERAL LIMIT DOESN’T EXIST (AND THE OTHER, 

IF IT IS EXISTS, IS FINITE). 

Also, let’s observe that, although in case (1) the function 

doesn’t have primitives on [𝑎, 𝑏]  (doesn’t have Darboux’s 

property), still, if, moreover, the lateral limits are equal, then 𝑓 has 

primitives on [𝑎, 𝑏]\{𝑥0} through the function 𝑓𝑝  – the extension 

through continuity of 𝑓′𝑠 restriction to the domain [𝑎, 𝑏]\{𝑥0}. 
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Example: 

has Darboux’s property for any 𝑎 ∈ [−1,1] , but doesn’t have 

primitives if 𝑎 ≠ 0. 

Indeed, assuming ad absurdum that 𝑓 has primitives, let 𝐹 be 

one of its primitives. Then 𝐹 must be of the form: 

In order to calculate ∫ sin
1

𝑥
𝑑𝑥, we observe that sin

1

𝑥
 comes 

from the derivation of the function 𝑥2 cos
1

𝑥
. Indeed, 

so: 

The function 𝑔(𝑥) = 𝑥 cos
1

𝑥
 has primitives on (0, ∞) 

because it is continuous on this interval, but doesn’t have primitives 

on [0, ∞) (we aim for the interval to be closed at zero in order to 

study the continuity and derivability od 𝐹). 

We observe that, because 
𝑙𝑖𝑚

𝑥 → 0
𝑥 > 0

𝑔(𝑥) = 0, we can consider 

its extension through continuity: 
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This function, being continuous on [0, ∞), has primitives on 

this interval. Let 𝐺 be one of these primitives. Then: 

We state the condition that 𝐹 be continuous in 𝑥0 = 0. We 

have: 

so we must have 𝐶1 = 𝐶2 + 2. 𝐺(0) and so, for the primitive, we 

obtain the following formula: 

We state the condition that 𝐹 be differentiable in zero: 
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because 𝐺 is differentiable in zero. We have 𝐺 ,(0) = 𝑔𝑃(0) = 0 (𝐺

is a primitive of 𝑔𝑃 ), so 𝐹𝑑
, (0) = 0 . Consequently, 𝐹  is not

differentiable in zero if 𝑎 ≠ 0. 

Observation: For the study of derivability we have mentioned 

two methods: using the definition and using the corollary of 

Lagrange’s theorem. Let’s observe that in the example from above, 

we can’t use the corollary of Lagrange’s theorem because 

𝑙𝑖𝑚
𝑥 → 0
𝑥 > 0

𝐹,(𝑥) doesn’t exist.

The table at page 193 allows us to formulate methods to 

show that a function has primitives and methods to show that a 

function doesn’t have primitives. 

We will enunciate and exemplify these methods, firstly with 

exercises from the calculus manual, XII grade, in order to highlight 

the necessity of familiarizing oneself with the different notions 

frequently used in high school manuals. 

(A) Methods to show that a function 
has primitives 

The first three methods are deduced from the table, using 

implications of the form 𝑎 → 𝑏: 

(𝐸𝑃1) We show that the function is differentiable. 

(𝐸𝑃2) We show that the function is continuous. 

(𝐸𝑃3) We construct the primitive. 

(𝐸𝑃4) We show that the function is a sum of functions that 

admit primitives. 

Keep in mind that method 𝐸𝑃2 is preferred over 𝐸𝑃1 

because derivability is easier to prove that continuity, and the 

method 𝐸𝑃3 is used only if the function doesn’t have a limit in a 

discontinuity point (this is the only situation where it can still have 

primitives). 
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(B) Methods to show that a function 
doesn’t have primitives 

The first three methods are deduced from the table, using 

the equivalence: 𝑎 → 𝑏 ⟷ 𝑛𝑜𝑛 𝑏 ⟶ 𝑛𝑜𝑛 𝑎.  

We therefore have: 

 

 
This way, we deduce the following methods to show that a 

function doesn’t have primitives: 

(𝑁𝑃1) We show that in a discontinuity point, both lateral 

limits exist and are finite or at least one lateral limit is infinite.. 

(𝑁𝑃2) We show that the function doesn’t have Darboux’s 

property.. 
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(𝑁𝑃3) We assume ad absurdum that 𝑓 has primitives and we 

obtain a contradiction. 

(𝑁𝑃4 ) If 𝑓  is the sum of two function, one of them 

admitting primitives, the other not admitting primitives, it follows 

that 𝑓 doesn’t have primitives. 

Examples: 

 
has primitives because 𝑓 is continuous. 

 

Solution: We observe that  2𝑥. 𝑠𝑖𝑛
1

𝑥
− 𝑐𝑜𝑠

1

𝑥
 comes from the 

derivation of the function 𝑥2𝑠𝑖𝑛
1

𝑥
, so, a primitive of 𝑓 must have 

the form: 

 
We state the condition that 𝐹 be continuous in zero: 

 
so 𝛼 = 𝐶 and we have: 

 
We state the condition that 𝐹 be differentiable in zero: 
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(something bounded multiplied with something that tends to zero, 

tends to zero), so 𝐹 is differentiable in zero. But we must also have 

𝐹,(0) = 𝑓(0), equality which is also met, so 𝑓 has primitives. 

 
We have: 

 

where 𝑔(𝑥) =
1

2
 and: 

 
and the functions 𝑔 and ℎ are primitives. 

 

(𝑁𝑃1 ) a) 𝑓(𝑥) = [𝑥] − 𝑥  doesn’t have primitives on ℝ 

because in points 𝑥0 = 𝑛 is discontinuous and both lateral limits are 

finite. 
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doesn’t have primitives because 
𝑙𝑖𝑚

𝑥 → 0
𝑥 > 0

𝑓(𝑥) = −∞. 

 

(𝑁𝑃2) The functions in which this method is used in the 

manual are of the form: 

 
with 𝑔 and ℎ, continuous functions, 𝑔 ≠ ℎ. We will prove on this 

general case that 𝑓  doesn’t have Darboux’s property. The 

demonstration can be adapted to any particular case. 

We must prove there exists an interval whose image through 

𝑓 isn’t an interval. We use the two conditions from the hypothesis. 

Solving the exercise: We must prove there exists an interval 

whose image through 𝑓 isn’t an interval, using  the two conditions 

from the hypothesis. 

From the condition 𝑔 ≠ ℎ  we deduce there exists at least 

one point 𝑥0 in which 𝑔(𝑥0) ≠ ℎ(𝑥0). Then, for 𝜀 small enough, 

the intervals (𝑔(𝑥0) − 𝜀, 𝑔(𝑥0) + 𝜀)  and (ℎ(𝑥0) − 𝜀, ℎ(𝑥0) + 𝜀) 

are disjunctive (see the Figure below). 
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From the conditions 𝑔 and ℎ continuous in 𝑥0 we deduce: 

 

 

 

 
Considering, as we said 𝜀  small enough for the intervals 

(𝑔(𝑥0) − 𝜀, 𝑔(𝑥0) + 𝜀)  and (ℎ(𝑥0) − 𝜀, ℎ(𝑥0) + 𝜀)  to be 

disjunctive, and 𝛿 = min {𝛿1, 𝛿2}, it follows that the image through 

the function 𝑓  of the interval (𝑥0 − 𝛿, 𝑥0 + 𝛿)  isn’t an interval, 

because: 

 

 

 

 
 

(𝑁𝑃3)  This method presupposes the same steps as in 

method 𝐸𝑃3. 

(a) we look for primitives for 𝑓′𝑠 branches and we obtain a 

first expression of 𝐹; 

(b) we state the condition that 𝐹  be continuous in the 

connection point (points) between the branches; 

(c) we state the condition that 𝐹  be differentiable in these 

points: 

- if 𝐹  is differentiable and 𝐹,(𝑥0) = 𝑓(𝑥0), 

we have covered method 𝐸𝑃3. 

- if 𝐹  isn’t differentiable in 𝑥0  or 𝐹,(𝑥0) ≠

𝑓(𝑥0), we have covered method (𝑁𝑃3). 
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doesn’t have primitives on ℝ. 

Indeed, we have 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) with: 

 

 
and 𝑔  is continuous so it has primitives and ℎ  has lateral limits, 

finite in zero, so it doesn’t have primitives. If, let’s say by absurd, 𝑓 

had primitives, it would follow that ℎ(𝑥) = 𝑓(𝑥) − 𝑔(𝑥)  has 

primitives. 

 

Exercises 
I. Using the method (𝐸𝑃2) , show that the following 

functions have primitives in ℝ: 
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II. Using methods (𝐸𝑃3) − (𝑁𝑃3) , study if the following 

functions have primitives: 
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if 𝑔: ℝ → ℝ and if it satisfies: 𝑔(𝑥) = 0 <=> 𝑥 = 0. 

 

 
10. The product from a function ℎ  that admits primitives 

and a function 𝑔 differentiable with the continuous derivative is a 

function that admits primitives. 

Indications: If 𝐻 is the primitive of ℎ, then 𝐻. 𝑔, is continuous, 

so it admits primitives. Let 𝐺  be one of its primitives. We have 

(𝐻. 𝑔 − 𝐺), = ℎ. 𝑔. 

 
𝑔 being a differentiable function with a continuous derivative on ℝ. 

III. Using method (𝑁𝑃1), show that the following functions 

don’t have primitives: 
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IV. Using method (𝑁𝑃2), show that the following functions 

don’t have primitives: 

 

 

 

 

 
Answer: 

1. The functions 𝑔(𝑥) = 3𝑥  and ℎ(𝑥) = 2𝑥2 + 1  are 

continuous on ℝ  and 𝑔 ≠ ℎ . We will show that 𝑓  doesn’t have 

Darboux’s property. Let 𝑥0  be a point in which we have (𝑥0) =

ℎ(𝑥0 ), for example 𝑥0 = 2. We have 𝑔(2) = 6, ℎ(2) = 9. 

ℎ − 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑖𝑛 𝑥0 = 2 <=> 
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𝑔 − 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑖𝑛 𝑥0 = 2 <=> 

 

 
Let there be 𝜀 so that the intervals:  

 
are disjunctive.  For example 𝜀 = 1  and let there be 𝛿 =

min (𝛿1, 𝛿2). Then the image of the interval (2 − 𝛿, 2 + 𝛿) through 

𝑓 isn’t an interval because for: 

 
we have 𝑓(𝑥) = 3𝑥 ∈ (5,7) and for: 

 
we have 𝑓(𝑥) = 2𝑥2 + 1 ∈ (8,10). 

V. Using methods (𝐸𝑃4) − (𝑁𝑃4) , study if the following 

functions admit primitives: 

 
Indication:  

 
so 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥), with: 

 



C. Dumitrescu ■ F. Smarandache  

220 

 

 

 

 
Indication:  

 

 
We obtain 𝑎 = 0. 
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Logical Scheme for Solving Problems 
Solving problems that require studying if a function has 

primitives can be done according to the following logical scheme: 
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VIII. Integration 
 

 

 

An integral is defined with the help of a limit. It is much 

easier to understand the theoretical aspects regarding the integral if 

one has understood why it is necessary to renounce the two broad 

categories of limits considered up to this point: 

1.  the limit when 𝑥 tends to 𝑥0, 

2. the limit when 𝑛 tends to infinity, 

and a new category of limits is introduced: 

3. the limit when the division’s norm tends to zero. 

The specifications that follow are aimed exactly at clarifying 

this aspect. 

The theory of the integral has appeared out of a practical 

necessity, in order to calculate the area that lays between the graphic 

of a function and the axis 0𝑥. 

Given a bounded function and (for now) non-negative 

𝑓: [𝑎, 𝑏] → ℝ we can approximate the desired area with the help of 

certain rectangles having the base on 0𝑥. 

For this, we consider the points: 

 
The set of these points form a division of the interval [𝑎, 𝑏] 

and they are noted with ∆: 

 
The vertical strips made using the points 𝑥𝑖 have an area as 

hard to calculate as the initial area, because of the superior outline. 

We obtain rectangles if we replace the superior outlines with 

horizontal segments. 
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In order that the obtained approximation be reasonable, it is 

only natural that these horizontal segments meet the graphic of the 

function. We observe that such a horizontal is uniquely determined 

by a point 𝜉𝑖  situated between 𝑥𝑖−1 and 𝑥𝑖 . In this way, we have 

obtained the rectangles with which we aimed to approximate the 

desired area. 

The areas of the rectangles are: 

  

 
The sum of these areas is called the Riemann sum attached 

to the function 𝑓, to the division ∆ and to the intermediary points 

𝜉𝑖 . This sum: 

 

 
approximates the desired area. 

The necessity of introducing the third category of limits is 

due to the necessity that the approximation be as accurate as 

possible. 

And now, a question: Is the approximation better when: 

(a) the rectangles increase in number, or when 

(b) the rectangles are narrower and narrower? 
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We observe that the rectangles “increase in number” if and 

only if 𝑛 tends to infinity, but making 𝑛 tend to infinity we do not 

obtain a “better approximation”. Indeed, if we leave the first 

rectangle unchanged, for example, and raising the number of points 

from its location to its right as much as we want (making 𝑛 tend to 

infinity), the approximation remains coarse. The approximation becomes 

much “better” if the rectangles are “thinner and thinner”. 

In order to concretize this intuitive intuition, we observe that 

the rectangles are thinner and thinner if the “thickest of them” 

becomes thinner and thinner. 

The biggest thickness of the rectangles determined by a 

division ∆ is called the norm of the division ∆. 

 

 
Therefore, “better approximations” <=> “thinner and 

thinner rectangles” <=> “the biggest thickness tends to zero” <=> 

“the norm of ∆ tends to zero” <=> ||∆|| → 0. 

 The area of the stretch situated between the graphic of the 

function 𝑓 and the axis 0𝑥 is, therefore: 

 

This limit is noted with ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥  and it is called the 

integral of function 𝑓 on the interval [𝑎, 𝑏]. 

 
For functions that are not necessarily non-negative on [𝑎, 𝑏], 

the integral is represented by the difference between the area 

situated above the axis 0𝑥 and the area situated below the axis 0𝑥. 
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Consequently, in order to obtain the area of the stretch 

situated between the graphic and the axis 0𝑥, in such a case, we 

have to take into consideration the module of 𝑓: 

 

 
Coming back to the affirmations (𝑎) and (𝑏) from above, 

we observe that: “the rectangles are thinner and thinner” => “the 

rectangles increase in number”, namely (𝑏) => (𝑎). 

In other words, ||∆|| → 0 = 𝑛 → ∞. 

Reciprocally, this statement isn’t always true. That is why we 

cannot renounce ||∆|| → 𝟎  in favor of 𝒏 → ∞ . Nevertheless, 

there is a case where the reciprocal implication is true: when the 

points of the division are equidistant.  

𝑛 → ∞ => ||∆|| → 0 for equidistant points. 
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In this case, the rectangles have the same dimension of the 

base, namely 𝑥𝑖 − 𝑥𝑖−1 =
𝑏−𝑎

𝑛
 for any 𝑖 = 1,2, … , 𝑛 , and the 

Riemann sum becomes: 

 

 
For divisions such as these, the following equivalence takes 

place: 

||∆|| → 0 <=> 𝑛 → ∞ 

that allows, as it was revealed by Method 16 for the calculation of 

limits, for the utilization of the definition of the integral for the 

calculation of sequences’ limits. 

Before we enumerate and exemplify the methods for the 

study of integration, let’s observe that, if the function is 

continuous, among the Riemann sums 𝜎∆(𝑓, 𝜉)  that can be 

obtained by modifying just the heights of the rectangles (modifying 

just the intermediary points 𝜉𝑖), there exists a biggest and smallest 

Riemann sum, namely the Riemann sum having the highest value is 

obtained by choosing the points 𝜉𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖] for which: 

 
and the Riemann sum having the smallest value is obtained by 

choosing the points 𝜉𝑖 for which: 

 
By noting with 𝑆∆(𝑓) and 𝑠∆(𝑓), respectively, these sums (called 

the superior Darboux sum, the inferior Darboux sum, respectively), 

we have: 
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The points  𝜉𝑖  that realizes the supreme, respectively, the 

infimum of 𝑓 on the intervals [𝑥𝑖−1, 𝑥𝑖] exists because it is known 

that a continuous function, on a closed and bounded interval is 

bounded and it touches its bounds. It is known (see Theorem 37 

from the Calculus manual, grade XI) that a function is integrable if and 

only if: 

 
 

 

Connections between integration and 
other notions specific to functions 

In order to formulate such connections, we fill the list of the 

propositions 𝑃1 − 𝑃7 enunciated in the previous chapter, with the 

following: 

𝑃8) any function integrable on [𝑎, 𝑏] is bounded, 

𝑃9) any function monotonous on [𝑎, 𝑏] is integrable, 

𝑃10) any function continuous on [𝑎, 𝑏] is integrable, 

𝑃11)  any function that has on [𝑎, 𝑏]   a finite number of 

discontinuity points of first order is integrable. 

The demonstration of 𝑃10 follows from the fact that if we 

modify the values of a function integrable on [𝑎, 𝑏],  in a finite 

number of points, we obtain also an integrable function and from 

the property of additivity in relation to the interval of the integral: 

 
Using the proposition stated above, we can make the 

following table: 
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and the table containing implications between all the notions that 

we have dealt with is the following ( 𝑙1  and 𝑙2  being one of the 

lateral limits): 
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Methods to show that a function is 

integrable (Riemann) on [𝑎, 𝑏] 
(𝐼1) using the definition; 

(𝐼2) we show that it is continuous; 

(𝐼3) we show that it has a finite number of discontinuity 

points of first order; 

(𝐼4) we show it is monotonic; 

(𝐼5)  we show that the function is a sum of integrable 

functions. 

 

Methods to show that a function is not 

integrable (Riemann) on [𝑎, 𝑏] 
(𝑁1)  using the definition (we show that 𝜎∆(𝑓, 𝜉)  doesn’t 

have a finite limit for ||∆|| → 0); 

(𝑁2) we show that the function is not bounded; 

(𝑁3) we show that the function is the sum of an integrable 

function and a non-integrable function. 

 

Examples 
(𝐼1) (a) Using the definition of the integral, show that any 

differentiable function with the derivative bounded on [𝑎, 𝑏]  is 

integrable on [𝑎, 𝑏]. 

Solution: Let 𝑓: [𝑎, 𝑏] → ℝ   be differentiable. We have to 

show that 𝜎∆(𝑓, 𝜉) has a finite limit when ||∆|| → 0 . The given 

function being differentiable, it is continuous, so it has primitives. 

Let 𝐹 be one of its primitives. We can apply Lagrange’s theorem to 

function 𝐹 , on any interval [𝑥𝑖−1, 𝑥𝑖]. There exists therefore 𝑐𝑖 ∈

[𝑥𝑖−1, 𝑥𝑖] so that: 
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It follows that: 

 

 

 

 

 

 
We calculate the two sums separately: 

 

 

 

 
We show that the second sum tends to zero when ||∆|| → 0. 

For this, we take into consideration that 𝑓 ,  is bounded, in other 

words, 𝑀 > 0 exists, so that |𝑓 ,(𝑥) < 𝑀| for any 𝑥 from [𝑎, 𝑏] and 

we apply the theorem of Lagrange to the function 𝑓, but on the 

intervals of extremities 𝜉𝑖 and 𝑐𝑖 . There exists 𝜃𝑖 between 𝜉𝑖  and 𝑐𝑖 

so that: 
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It follows therefore that: 

 

 
For the second sum, we therefore have: 

 

 

 

 

 

 
The condition from this exercise’s hypothesis is very strong. 

As it is known, it can be shown that a function that fulfills only the 

continuity condition is also integrable. Still, the method used in this 

exercise can be easily adapted to most exercises that require 

showing that a function is integrable. 

 

(𝐼1) (b) Show that 𝑓) 𝑥=sin 𝑥  is integrable on any interval 

[𝑎, 𝑏]. (Manual). 

 

Solution: We will adapt the previous demonstration. The 

given function is differentiable and has the derivative 𝑓 ,(𝑥) = cos 𝑥 

bounded. Being differentiable, it is continuous and it has primitives. 

Let 𝐹 be one of its primitives, 𝐹(𝑥) = − cos 𝑥 and let: 
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be a division of [𝑎, 𝑏] . We apply Langrange’s theorem to the 

function 𝐹 on each interval [𝑥𝑖−1, 𝑥𝑖]. There exists therefore 𝑐𝑖 ∈

[𝑥𝑖−1, 𝑥𝑖] so that: 

 
The function 𝐹  has a bounded derivative: | cos 𝑥| < 1  for 

any 𝑥  from ℝ , so for any 𝑥  from [𝑎, 𝑏] . We have to show that 

𝜎∆(𝑓, 𝜉) has a finite limit when ||∆|| → 0. We will show that this 

limit is (as it is known) 𝐹(𝑏) − 𝐹(𝑎) = − cos 𝑏 + cos 𝑎 . 

We have: 

 

 

 

 

 

 

 
Applying the theorem of Lagrange to the function 𝑓(𝑥) =

sin 𝑥, on the interval determined by the points 𝜉𝑖 and 𝑐𝑖 , we deduce 

there exists 𝜃𝑖 between 𝜉𝑖 and 𝑐𝑖 so that: 
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(𝐼2) The function 𝑓: [0,3] → ℝ defined by: 

 
is integrable. Indeed, it is continuous in any point 𝑥 ≠ 2 from the 

definition domain, being expressed through continuous functions. 

We study the continuity in 𝑥 = 2: 

 

 
The function is continuous on the interval [0,3], so it is integrable. 

 

(𝐼3) 𝑓(𝑥) = 𝑥 − [𝑥], 𝑓: [0, 2√3] → ℝ can be discontinuous 

just in the points where [𝑥] is discontinuous. These are of the form 
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𝑥 = 𝑛, 𝑛 ∈ ℤ. From these, only points 0,1,2,3, are in the function’s 

domain. We study the limit in these points. We have: 

 

 
so the function has a finite number of discontinuity points of first 

order and is therefore integrable. 

 

(𝐼4) For the function 𝑓(𝑥) = [𝑥] we can say it is integrable 

either by using the previous criterium, either using the fact that it is 

monotonic on any interval [𝑎, 𝑏]. 

(𝐼5) The function 𝑓: [−1,1] → ℝ through 𝑓(𝑥) = 𝑠𝑔𝑛 𝑥 +

|𝑥| + [𝑥]  is integrable because it is the sum of three integrable 

functions: 𝑓1(𝑥) = 𝑠𝑔𝑛 𝑥  is integrable because it has a finite 

number of discontinuity points (a single point, 𝑥 = 0 ) and the 

discontinuity is of the first order; the function 𝑓2(𝑥) = |𝑥|  is 

integrable because it is continuous, and the function 𝑓3(𝑥) = [𝑥] is 

integrable because it is monotonic (or because it has a single f 

discontinuity point, of the first order). 

 
isn’t integrable because, by choosing in the Riemann sum: 

 
the intermediary points 𝜉𝑖 , rational, we have: 𝑓(𝜉𝑖) = 0, so in this 

case: 

 
and if 𝜉𝑖 are irrational, we have: 
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isn’t integrable (Riemann) on [0,1] because it is not bounded. 

 
is the sum of the functions: 

 
If 𝑓 would be integrable, from 𝑓 = 𝑓1 + 𝑓2 it would follow 

that 𝑓2 = 𝑓 − 𝑓1 so 𝑓2 would be integrable on [0,1], as the sum of 

two integrable functions. 

 

Exercises 
I. Using the definition, show that the following functions are 

integrable: 

 

 

 
 

II. Study the integration of the functions: 
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8. The characteristic function of the set [0,1] ⊂ ℝ. 

 
 

III. For which values of the parameters 𝑎  and 𝑏  are the 

functions below integrable? For which values of the parameters do 

they have primitives? 
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INDICATIONS: 

1. 𝑙𝑑(0) = −
𝜋

2
, so for any value of the parameter, the 

function has only one discontinuity, of first order on [0,1]. 

2. For any value of 𝑎 ∈ (0,1)  the function has a limited 

number of discontinuity points of first order. 

4. The function 𝑒𝑥𝑐𝑜𝑠
1

𝑥
 comes from the derivation of 

𝑥2𝑒𝑥 sin
1

𝑥
. 

 

IV. 1. Show that any continuous function on an interval 

[𝑎, 𝑏] is integrable. 

2. Adapt the demonstration from the previous point to show 

that the following functions are integrable on the interval [0,1]: 

 
 

ANSWERS: 

1. We will show that: 

 
We have: 
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where: 

 

 
We now use two properties of continuous functions on a 

closed and bounded interval: 

(1) a continuous function on a closed, bounded interval is 

bounded and it touches its bounds; so, there exists 𝑢𝑖 , 𝑣𝑖 ∈ [𝑎, 𝑏] so 

that 𝑀𝑖 = 𝑓(𝑢𝑖), 𝑚𝑖 = 𝑓(𝑣𝑖). 

Therefore: 

 
In order to evaluate the difference 𝑓(𝑢𝑖) − 𝑓(𝑣𝑖), we use 

the property: 

(2) a continuous function on a closed and bounded interval is 

uniformly continuous (see Chapter 𝐼𝑉), namely: 

 

 
In order to replace 𝑥1  with 𝑢𝑖  and 𝑥2  with 𝑣𝑖 , we have to 

consider a division ∆  having a smaller norm than 𝛿𝜀  (which is 

possible because we are making the limit for ||∆|| → 0). Therefore, 

assuming ||∆|| < 𝛿𝜀 we have: 

 
i.e. 𝑀𝑖 − 𝑚𝑖 < 𝜀 and so: 

 

 
Because 𝜀 is arbitrary (small), we deduce that: 
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so the function is integrable. 

2. We show that 𝑆∆(𝑓) − 𝑠∆(𝑓) tends to zero when ||∆|| 

tends to zero. We have: 

 

 
where: 

 

 
because on the interval [0,1] the function 𝑓(𝑥) = 𝑥2is increasing. 

So: 

 
The function 𝑓(𝑥) = 𝑥2  is continuous on [0,1]  so it is 

uniformly continuous, namely: 

 

 
Considering the division ∆  so that ||∆|| < 𝛿𝜀  (possibly 

because ||∆|| → 0), we have 𝑥𝑖
2 − 𝑥𝑖−1

2 < 𝜀, so: 

 

 
Because 𝜀 is arbitrarily small, we deduce that: 

 
i.e. 𝑓(𝑥) = 𝑥2 is integrable on [0,1]. 
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   In this book, we discuss a succession of methods encountered in 
the study of high school calculus to students and teachers, to higher 
education entry examination candidates, to all those interested, in 
order to allow them to reduce as many diverse problems as possible 
to already known work schemes. 
   We tried to present in a methodical manner, advantageous for the 
reader, the most frequent calculation methods encountered in the 
study of the calculus at this level.




