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Abstract. Based on [1], it is shown that the gravitational field in a
steady, non-expanding universe itself can cause the universe to be virtu-
ally accelerating with the radial distance (when time t is large compared
to r, i.e. in the non-relativistic situation).
By no means does that mean that the universe should be steady: By
general relativity, acceleration and gravitational fields are to be equiv-
alent. The point here is simply to start to work out, whether and to
what degree the observed expansion can be understood in terms of the
gravitational field model.

1. Preliminaries

1.1. The Problem Model

Looking at the universe from our earthly position at a given time t0, what
we see is a 3-dimensional ball that extends to the past with increasing radial
distance and has its boundary at big-bang time, the socalled cosmic horizon.
And from what we know is that this universe preseves energy and momentum
and is Lorentz-covariant.
That makes our universe an adiabatic system (see [1]).

1.2. External Potentials of Neutral Adiabatic Systems

I ended [1] with the remark that

U(j′, j)(x) := (Const)

∫
j′µ(x′)jµ(x)

(x0 − x′0)2 − · · · − (x3 − x′3)2
d4x′

appears to become an interesting candidate for the interaction of two adia-
batic systems. In fact, given two interacting adiabatic systems j = (j0, . . . , j3)
and j′ = (j′0, . . . , j

′
3), which are spatially apart at all times t, we expect the

composite j̃ to be adiabatic as a whole. Hence,
∑

0≤µ≤3 ∂µj̃µ ≡ 0, and there-

fore,
∑
µ ∂µjµ = −

∑
µ ∂µj

′
µ.

Now, supposing that j′ is a neutral system, ∂µj
′
ν is to be symmetric (see:[1]),

and j′ can be integrated (in the Euclidean metrics) to a scalar function G,



2 Hüttenbach

say, and since the j′µ are supposed to have their support disjoint from the

light cone (as they describe masses unequal zero), F := �−1G exists, where
�−1 is the inverse of the wave operator. That inverse operator is a convo-
lution operator by a function f, in physics called Green’s function, which is
defined as Fourier inverse of the distribution 1

x2
0−x3

1−x2
2−x2

3
δ(x), and the math-

ematically correct result is f(x) = (const) 1
x2
0−x2

1−x2
2−x2

3
, where the constant

depends on the parameter λ = (2π)−1(const)1/4, chosen in the exponent of
the Fourier inverse

∫
eiλ(xµy

µ)δ(yµy
µ)d4y.

Remark 1.1. Given two well-behaved functions f and g on R4, the convolution
f ∗ g of f and g is defined as f ∗ g : R4 3 x 7→

∫
f(x− y)g(y)d4y. (Apart that

the partial derivatives commute with the convoluted functions, the second
remarkable feature is that the Fourier transform of the convolution is the
product of the Fourier transforms of the two functions.)

With the above, F is the gauge function for the perturbated adiabatic
system due to the external interaction, and its partial derivatives ∂µF add
the appropriate external vector field components

Aµ(x) = (const)

∫
j′µ(y)

(x0 − y0)2 − · · · − (x3 − y3)2
d4y.

Remark 1.2. I refer to [2], where it is shown that the retarded Green’s func-
tion, G say, which commonly is considered to be ”physically correct”, does
not really solve �G = 1 and causes infinite self-interaction.

2. Assembling the Pieces

In [1] it was shown that the complex phase of the action φ and therefore
the vector potentials Aµ can be chosen such that the complex conjugation
becomes the time inversion T , which in turn is PC. That is handy, because
it meets the expectation of the neutral mass to be time-inversion invariant,
and so we may restrict j = (j0, . . . , j3) to consist of a non-negative, real
valued energy density j0 and likewise real-valued momentum fluxes j1, j2, j3
associated with non-negative masses, either. (Implicitly, we take a leave from
considering the four components of spin and charge.)
The next simplification is to restrict to the non-relativistic limit c → ∞,
which means dropping the spatial vector potentials A1, A2, A3 as being small
compared to A0 the energy, and this implicitly implies that we restrict space-
time and energy momentum to the internal of the positive, forward light cone,
as is usual.

In order to calculate the interaction of the cosmic horizon with the rest
of the universe, we should first get the perspective right: The observer is not
looking from the inside against the cosmic horizon as a sphere, but it’s the
other way round: the observer looks from within the universe at the former
center of mass, and the cosmic horizon is the point (or small ball) at this
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universal center of mass. This suggests defining the cosmic horizon to be
at the coordinate position (t, 0, 0, 0) for all times t. Let r(t) := (x1(t)2 +
x2(t)2 +x3(t)2)1/2 denote the radial distance of some spatial location at time
t >> r(t), and let M be the total mass of the cosmic horizon.
With this, a mass point j0(t, x) = j0(θ(t), φ(t), r(t)) within the universe gets
added the interaction is: V (t, r) = (const) mM

t2−r2 , where m := j0(t, r) for

t >> r, and (const) must be negative, in order to yield the assumed attraction
of the masses.
Then dV (t, r)/dr is the force needed to sustain the radial gravitational force
−dV (t, r)/dr. And because 1

1−(r/t)2 =
∑
n≥0(r/t)2n, that force is roughly

proportional to Mr. In other words, the pressure of the cosmic horizon on
the universe, without taking into account the cosmic expansion, causes an
observed accelation of its internal approximately proportional to the distance
(and the total mass M).

Now, M should be a constant over time. And this means that the slope
of acceleration is governed by an additional expansion or a collapse of the
universe: an additional acceleration would subtract from the observed mass
M , and an additional collapse of the universe would increase that slope:
Let me explain that: Cosmic expansion does work against the gravitational
field of the center of mass M . That means that the force of inertia is opposite
to the gravitational force. In particular, the universe is stationary if and only
if the forces of expansion acceleration cancel against the gravitational forces.
In this case, any mass would not feel the gravitational force from the cosmic
horizon. In case of an additional accelerated expansion, the masses will be
repelled from the cosmic horizon: the energy needed for these to reach the
horizon will be greater zero, and the masses will be blue-shifted toward the
horizon. In the opposite case of a deceleration or even collapse, they gain
energy from the deceleration on their way towards the horizon, i.e. they get
attracted by the gravitational field, and so their spectrum is red shifted. Put
together, that means that the observed red shift demands deceleration, if not
contraction, but not an accelerated expansion of the universe!

Rather than ask for more and more precise astronomical data as to the
acceleration of the universe, let us estimate what the red shift was about to
be, given that the universe was stationary and held in place by a magic force,
that we forget to include:
The formula for the red shift due to a non-rotating, spherically symmetric
gravitational field has already been worked out within general relativity and
is given by

1 + z(r) =
1√

1− 2GM
rc2

, where M is the gravitational mass, G the gravitational constant, r the radius
of the radiating object to the center of the gravitational mass, c is the speed
of, light, and z := νemit−νobserved

νobserved
is the red shift parameter (see: [4]).

We can now estimate the red shift by inserting the current estimated
mass of the universe, M ≈ 3 · 1052kg, the value of the gravitational constant



4 Hüttenbach

G, −(const) = G ≈ 6.671̇0−11m3kg−1s−2, with c = 3 · 108m/s denoting the
speed of light, at different radiusses r = γR0, where 0 < λ ≤ 1, and where
R0 ≈ 4.6 · 1026ly is the current estimated radius of the cosmic horizon.

That turns out to be: z ≈ 5 · 10−8 for λ = 1, z ≈ 5 · 10−7 for λ = 1/2,
and z ≈ 5 · 10−5 for λ = 10−3.
Compared with the measured red shift data 0.16 ≤ z ≤ 0.62 for distant
supernovae (see: [3]), the calculation of the gravitational redshift above, is
about a factor 10−4 − 103 too small.

There are two major positions as to this: Either I am missing energy
(perhaps the interaction is stronger than assumed: but then: how will adia-
baticity and classical gravitation as the non-relativistic limit be preserved for
the universe?), or the current universe is strongly decelerating, if not already
collapsing. In the latter case, at least, the possibility of a steady universe is
to be excluded.

Remark 2.1. Let’s ask, whether I could have lost energy: Maybe heat? - It
seems no: Just like momentum flux, which can be in either direction and
which are captured in the two spin components of the 4-dimensional space
of states (χ1, . . . , χ4) ∈ C4 (see: [1]), that space also captures positive and
negative energetic states in dedicated components. So, on there, all shows up
as mass, contributing to a gravitational field. In the above, I just picked one
of the four components, but the results will be the very same for the other
three ones in place.

One obvious question now is: If the universe is decelerating, then it
should have been accelerating once before: How else would we get a big-bang
at the beginning? And even those who would like to deny a big-bang, will have
to ask themselves, where an ever decelerating process would have started...
So, we’d definitely need a point of inflexion at a past time t0, at which a
prior acceleration turned into a deceleration. That implies, that the observer
would recognize a deceleration for time t < t0 and an acceleration for time
t > t0. In this form, it is currently postulated by current astronomy (see e.g.
[3]).
And, perhaps surprisingly, the simple formula for the interaction of j and j′,
above,

U(j′(x′), j(x)) := (Const)
j′µ(x′)jµ(x)

(x0 − x′0)2 − · · · − (x3 − x′3)2
,

allows an explanation:
If only j and j′ are smooth and vanish with all their derivatives on

the light cone itself - and a stronger condition would be mass gap: j and
j′ are to vanish on {x ∈ R4 : |x20 − · · · − x23| < ε} for some ε > 0 - then
lim|(x′

0−x0)2−···−(x′
3−x3)2|→0 U(j′(x′), j(x)) exists, and is 0, and we can tres-

pass this boundary of divergency towards smaller |x′0 − x0|. And in that
(space-like) region, the forces invert: masses that are attractive in the time-
like region, become repulsive in the space-like one. But that will then also
hold for charges either!
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Again, there always are two ways to react on an observation: One is to
say, that this cannot be, because it must not be, the other one is to accept
this and to draw profit from it: When particles come close together, espe-
cially, when they collide, (x′0−x0)2−· · ·−(x′3−x3)2 < 0 cannot be excluded.
What, if not that force will hinder the electrons in the atomic shell to bind
with the oppositely charged nucleusses? Why do the electrons exclude oppo-
sitely charged particles in the atomic shell?
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