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Abstract

In this paper, a generalized Tsallis entropy, named as Nonextensive Deng

entropy, is presented. When the basic probability assignment is degenerated

as probability, Nonextensive Deng entropy is identical to Tsallis entropy.
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1. Introduction

Since firstly proposed by Clausius in 1865 for thermodynamics [1], various

types of entropies are presented, such as information entropy [2] and Tsal-

lis entropy [3]. Information entropy [2], derived from the Boltzmann-Gibbs

(BG) entropy [4] in thermodynamics and statistical mechanics, has been an

indicator to measures uncertainty which is associated with the probability
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density function (PDF).

Dempster-Shafer theory evidence theory[5, 6] can be seen as the general-

ization of probability theory. The probability measure is extended the basic

probability assignment (BPA) in evidence theory.

Information entropy is efficient to handle the uncertain measure of prob-

ability distribution. However, how to measure the uncertain degree of BPA

is not well addressed until the Deng entropy is presented [7]. Deng entropy is

the generalization of shannon entropy since it has the same result as that of

Shannon entropy when BPA is degenerated as probability. The main contri-

bution of this paper is to generalize Tsallis entropy [3], a widely used entropy

in many real applications, into a so called Nonextensive Deng entropy.

The paper is organized as follows. The preliminaries Dempster-Shafer

evidence theory and some entropy functions are briefly introduced in Section

2. Section 3 presents Nonextensive Deng entropy.

2. Preliminaries

In this section, some preliminaries are briefly introduced.

2.1. Dempster-Shafer evidence theory

Dempster-Shafer theory (short for D-S theory) is presented by Dempster

and Shafer [5, 6].Some basic concepts in D-S theory are introduced.

Let X be a set of mutually exclusive and collectively exhaustive events,

indicated by

X = {θ1, θ2, · · · , θi, · · · , θ|X|} (1)
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where set X is called a frame of discernment. The power set of X is indicated

by 2X , namely

2X = {∅, {θ1}, · · · , {θ|X|}, {θ1, θ2}, · · · , {θ1, θ2, · · · , θi}, · · · , X} (2)

For a frame of discernment X = {θ1, θ2, · · · , θ|X|}, a mass function is a

mapping m from 2X to [0, 1], formally defined by:

m : 2X → [0, 1] (3)

which satisfies the following condition:

m(∅) = 0 and
∑
A∈2X

m(A) = 1 (4)

In D-S theory, a mass function is also called a basic probability assignment

(BPA). Assume there are two BPAs indicated by m1 and m2, the Dempster’s

rule of combination is used to combine them as follows:

m(A) =


1

1−K

∑
B∩C=A

m1(B)m2(C) , A ̸= ∅;

0 , A = ∅.
(5)

with

K =
∑

B∩C=∅

m1(B)m2(C) (6)

Note that the Dempster’s rule of combination is only applicable to such two

BPAs which satisfy the condition K < 1.

D-S theory has more advantages in in handling uncertainty compared

with classical probability theory.Recently, Dempster-Shafer theory evidence

theory has been generalized [8, 9].
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2.2. Existing entropy

Entropy is associated with uncertainty, and it has been a measure of

uncertainty and disorder. The concept of entropy is derived from physics

[1]. In thermodynamics and statistical mechanics, the entropy often refers

to Boltzmann-Gibbs entropy [4]. According to Boltzmann’s H theorem, the

Boltzmann-Gibbs (BG) entropy of an isolated system SBG is obtained in

terms of the probabilities associated the distinct microscopic states available

to the system given the macroscopic constraints, which has the following

form

SBG = −k
W∑
i=1

pi ln pi (7)

where k is the Boltzmann constant, W is the amount of distinct microscopic

states available to the isolated system, pi is the probability of microscopic

state i satisfying
W∑
i=1

pi = 1. Equal probabilities, i.e. ∀i, pi = 1/W , is a

particular situation. In that situation, BG entropy has the following form

SBG = k lnW (8)

In information theory, Shannon entropy [2] is often used to measure the

information volume of a system or a process, and quantify the expected value

of the information contained in a message. Information entropy, denoted as

H, has a similar form with BS entropy

H = −
N∑
i=1

pi logb pi (9)
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where N is the amount of basic states in a state space, pi is the probability of

state i appears satisfying
W∑
i=1

pi = 1, b is base of logarithm. When b = 2, the

unit of information entropy is bit. If each state equally appears, the quantity

of H has this form

H = log2N (10)

In information theory, quantities of H play a central role as measures of

information, choice and uncertainty. For example, the Shannon entropy of

the game shown in Figure ?? is H = 0.6× log2 0.6 + 0.4× log2 0.4 = 0.9710.

But, it is worthy to notice that the uncertainty of this game shown in Figure

?? cannot be calculated by using the Shannon entropy.

According to mentioned above, no matter the BG entropy or the informa-

tion entropy, the quantity of entropy is always associated with the amount

of states in a system. Especially, for the case of equal probabilities, the en-

tropy or the uncertainty of a system is a function of the quantity of states.

Moreover, in that particular case, the entropy is the maximum.

2.3. Deng entropy

With the range of uncertainty mentioned above, Deng entropy can be

presented as follows

Ed = −
∑
i

m(Fi) log
m(Fi)

2|Fi| − 1
(11)

where, Fi is a proposition in mass function m, and |Fi| is the cardinality

of Fi. As shown in the above definition, Deng entropy, formally, is similar

with the classical Shannon entropy, but the belief for each proposition Fi is
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divided by a term (2|Fi| − 1) which represents the potential number of states

in Fi (of course, the empty set is not included).

Specially, Deng entropy can definitely degenerate to the Shannon entropy

if the belief is only assigned to single elements. Namely,

Ed = −
∑
i

m(θi) log
m(θi)

2|θi| − 1
= −

∑
i

m(θi) logm(θi)

2.4. Tsallis entropy

In 1988, a more general form for entropy have been proposed by Tsallis

[3]. It is shown as follows:

Sq = −k
N∑
i=1

pilnq
1

pi
(12)

The q− logarithmic function in the Eq. (12) is presented as follows [10]:

lnqpi =
pi

1−q − 1

1− q
(pi > 0; q ∈ ℜ; ln1pi = lnpi) (13)

Based on the Eq. (13), the Eq. (12) can be rewritten as follows:

Sq = −k
N∑
i=1

pi
pi

q−1 − 1

1− q
(14)

Sq = −k

N∑
i=1

pi
q − pi
1− q

(15)

Sq = k

1−
N∑
i=1

pi
q

q − 1
(16)

Where N is the number of the subsystems.

Based on the Tsallis entropy, the nonextensive theory is established by

Tsallis et.al.
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3. Nonextensive Deng entropy

In this section, we derive the Nonextensive Deng entropy directly as fol-

lows

END = k

1−
N∑
i=1

( m(θi)

2|θi|−1
)q

q − 1
(17)

It can be easily seen that, if the BPA degenerated as probability, the

Nonextensive Deng entropy is degenerated as Tsallis entropy [3]. In addition,

when q = 1, the Nonextensive Deng entropy will further degenerated as

Shannon information entropy [2].

4. Conclusion

In this paper, Nonextensive Deng entropy is presented based on Deng

entropy [7]. When the BPA is degenerated as probability, the Nonexten-

sive Deng entropy is degenerated as Trallis entropy [3]. In addition, when

q = 1, the Nonextensive Deng entropy will further degenerated as Shannon

information entropy [2]. The real physical significance of Nonextensive Deng

entropy is still explored.
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