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Abstract:

It has long been believed that to avoid unphysibakervable string singularities, Dirac monopoles
must be quantized in whole integers according éddirac Quantization Condition 2eg=n, where
e and g are the electric and magnetic charge stitengespectively, and n is an integer. Thisis in
fact true if the electron wavefunction is not re@while it traverses a single complete@rcuit
about the monopole. But it is also well-known tiwaen a spinor undergoes a rotation through
2z, the sign of that spinor is reversed yielding @pasite “version” of that spinor, and that the
original sign and version are only restored aftefiadouble rotation. Consequently, it is shown
here that when an electron wavefunction is rotated tidal lock with the monopole during a
single Z circuit, and specifically due to the version charthat occurs because of this tidally-
locked rotation, to avoid unphysical singularitiée Dirac condition must change from the usual
whole integer condition to a half-integer conditi@eg=n-%2. It is also shown how these half-
integer charges would only be detectable by eleali-charged fermions, not bosons.
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1. I ntroduction

In 1931 Paul Dirac [1] discovered that if magnatitarges with strengty were to
hypothetically exist, this would imply that the elec charge strengté must be quantized. The
relationship he found, often written @sg= n wheren is a positive or negative integer or zero,
has since come to be known as the Dirac Quantiz&wondition (DQC). The electric charge
strengthe in this relationship is the same one which isteglato the “running” fine structure
coupling viaa =e*/ 4 c which at low probe energy asymptotically approaciie numerical
value o =€ [ 4rthc[01/137.03¢, see, e.g., equation [1] in Dirac’s [1] (which si€gaussian units)
and Witten’s [2], pages 27 and 28.

In the mid-1970s, to remediate the fiction of Disathodal lines” which subsequently
became known as Dirac strings, Wu and Yang [3],d&Jeloped an approach which achieves
completely equivalent results “without strings.’helonly difference is that this approach is cast
in the more-modern language of fiber bundles.htnWu Yang approach, one uses {Dauge
theory to obtain the differential equatier" dé" = 2 eg@ (to be derived at (4.2) infra) where
is the gauge (really, phase) angle ahds the geometric azimuth about the z-axis in tired
dimensional physical space of the rotation groug3pOThis equation is easily seen to be solved
for constant electric and magnetic charge strengtiws dg=0 by exp(iA) = exdi Bgg) (as

seen at (4.3) infra).

It has long been believed that the only Wu-Yangitsmh which is free of unphysical
observable singularities Beg= n of the standard DQC (to be derived at (4.7) infr@jis is in

fact true if the electron wavefunctigf is not rotated while — to use Dirac’s language “goes

round a closed curve” o on the SO(3) space about the monopole. Howevethei
wavefunction is also rotated in a “tidal lock” withe monopole while traversing thi&r circuit
and so itself undergoes 27 rotation during this circuit, then its “version”illwreverse sign
following the completion of this circuit, as taughtsection 41.5 of Misner, Thorne and Wheeler’'s
(MTW) definitive work [5]. Consequently, as wilelbshown in section 5 here, in order to avert
observable singularities, these tidally-locked wits must have the half-integer charges
2eg= n—+ derived in (5.14) infra to compensate for thissiem sign reversal, rather than the

usual integer chargezeg= n of the standard DQC.

The only known circumstance in nature under whialf-imteger charges are observed, is
at ultra-low temperatures near OK in connectiorhie Fractional Quantum Hall Effect (FQHE).
In this environment, fractional fill factons=n/2 are in fact experimentally observed, see e.g.,
[6], [7] for v=1/2, [8] for v=3/2, [9] for v=5/2 and [10] forv=7/2. Consequently, the
guestion is raised whether the half-integer fraxtiiound here for wavefunctions tidally-locked
to Dirac monopoles might have some connectiongedlobserved half-integer FQHE fractions.
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2. L ocal U(1)em Gauge Transformations, in General

We begin by considering a first electron wavefunety, (x*) which is related to a second
electron wavefunctiony_(x*) by the local U(1gnm gauge transformation (throughout, except in
certain particular circumstances, we shall emplatpral unitsz =c =1):

@, -y, =exp(iN)g, =¢_, (2.1)

where phase anglA(x") varies locally as a function of the spacetime dowmtesx” as do the
wavefunctionsy(x“). The transformation (2.1) is often written simplyy — ¢' =exp(iN)y,

but by placing the labefy, on ¢ and theny_ on ¢_ =/, we lay the foundation for easily
introducing the “north” and “south” gauge patchssdito study monopoles starting in section 3.

Next, we define a gauge potenti&, ,(x“) to be an electromagnetic vector potential
corresponding with the wavefunctiog,, and we then use this to define the gauge-covarian
derivative D, , =0, +ieA , wheree is the (running) electric charge strength, andretibe sign
of ieA , is positive in this derivative because we are gistn Minkowski metric tensor

diag(nw) = (1,— 1- 1~ ;L versus the oppositely-signed convention. Apmthis derivative to
each side oexp(iA)y, in (2.1), we obtain:

D, , (exp(i/\)z/q) = (6# +ieA+#)( exp(i/\)gla)
=i0 Aexp(iN)y, + exiN)0 g, +HieA, , exfin)y, . (2.2)
=exp(in) (0,4, +[ieA,, +id A |y, )

Based on the inner square-bracketed expressioneidbattom line above, we define a second,
transformed gauge potentidl , = A, corresponding with the wavefunctigh =¢. by:

eA,=eA, +J . (2.3)
Then, defining a second gauge-covariant derivabive=9 , +ieA , (2.2) simplifies to:
D, (exp(iA)w,) = ex(iA)[ 8, +ieA , [w, = exgiA)D_u, . (2.4)

The foregoing represent a fundamental propositidoaal gauge theory: the local gauge
transformation (2.1) acting on a fermign must be compensated by the introduction of a gauge

fields A, transforming according to (2.3) in order to maimtdne local gauge invariance of the
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electrodynamic Lagrangian and its related field a¢igmns. The logical consequence of this
proposition is Maxwell's electrodynamics.

The gauge transformation (2.3) may readily be @dithrough by and rewritten using
the mathematical identitid A =™ é" as:

A,=A,+e0, & i (2.5)

Further, one may generally pack a vector potemi the differential one-formA= A)‘dX’.
Therefore (2.5) compacts and rearranges into:

A-A=e"d&/ i (2.6)

This tells us that these two gauge fields and A, differ from one another by no more than a
generalized U(%), gauge transformation, which is apparent becalesetare just relabeled names

for the one-form#\ and A’ transforming according té&\ = A+ € d&'/ ie. Therefore, these two
gauge fields are not observably-distinct.

3. A Coulomb M agnetic Field which isthe Curl of a Vector Potential, i.e.,
a U(1)em M agnetic M onopole

The electromagnetic field strength two-forfi=3F, dx“dX where F, is the field
strength tensor / bivector is generally relatethiovector potential one-fortaby F =dA and so
is a locally-exact two-form. The space compondfjts 9, A -0, A are related to the magnetic
field vectorB* =B = ( B, B, BZ) as represented in Cartesian coordinatess;by —g, B*, where
&, Is the antisymmetric Levi-Civita tensor withg,;=+1. Likewise, using
diag(nw) =(1-1-1-) to lower indexes in A“=(@pA)= (qo, ALA, A) , and with
9, =0= (6X,6y,6z) , this means thak, = -5, B* =0, A -9, A ,or B=0xA. So whenever we

have a field strengtlir =dA for a given potentiad, the magnetic field will be the curl of the
vector potential[1xA .

Now, to begin a review of magnetic monopole physiesus define the two four-vector
potentials inA_ and A ofthe last sectiosuch thathese are the potentials foCaulomb magnetic
field B which is the curl of the space components thestovg@otentials,B =0xA. That is, let
us now define the gauge potentials for a magnetinapole. We do this by simply postulating
the differential forms for these monopole potestidhen showing that these forms do in fact
reproduce a Coulomb magnetic field wigh=xA .

We start by positing a (running) magnetic chargengjthg for such a monopole, and we
then postulate each of the potential one-forfnsand A, in a spherical coordinate basis to be:

3
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g(cosf-J dg

g(cosd+ ) dg (34

A
A

Confining our domain t@ < @< 77, A is “northerly” because it is defined everywhereeapt for

6=, i.e., except due south of the origin, whhe is a “southerly” potential defined everywhere
except ford=0, i.e., except due north of the origin. These tinde regions are the Dirac string
singularities. But the union of the regions in @fhiA, are well-defined covers the entirety of the
SO(3) space oR*® about the monopole. Often these vector poterdi@seferred to as the north
and south gauge patche§, = A and A, = A . Making this identification, we see via (2.6) tha

these differ from one another simply by a gaugestiammation and so are not observably-distinct.
We now show that these will indeed produce a Coblanagnetic field for which the curl
B =0xA for both of the vector potentials, , A_.

First, although we must generally reggrds a running magnetic charge strength, for the
present analysis let us haidconstant,dg=0. That is, we shall not lg run over the region of

spacetime under consideration, or more precisedyshall consider a region of spacetime within
which any running off may be neglected. Because differential forms ggpnteaches that the
exterior derivative of an exterior derivative is@edd =0 in general, and thuddg =0 in this

specific setting, this all means when we operaté3ah) withd that:
F =dA =dA = gdcost & . (3.2

Therefore, based on what was discussed in thepfnstgraph of this section, for either potential
in (3.1) the magnetic field =0OxA, =X%A_ is the curl of the gauge potential, as desired.

Of course,dF = ddA = ddA=0 via the same identityld =0, which means thaf is

closed and locally exact. But it is not globallkaet. Specifically, if we integrate (3.2) over a
closed two-dimensional nonlocal surface wgthtill held constant, and if we also apply Gauss’ /
Stokes’ theorem, then:

J.J. dF:ﬁ)F:# gdcosddp = gj.on dcosﬁj.ozn @= gcodl 4" =- # ¢ (3.3)

The fact that the region of spacetime is positetbéoone in which any running of may be
neglected thug is constant andig =0 is reflected by our having movepoutside the integral

after the third equal sign above. Now let us dpm=dly pinpoint the magnetic field.

To do so, we consider the circumstance under vthedlectricfields vanish, that is, under
which the electric field vectoF, =-F,=E=0. Here,gf:.f) F= gf:ﬁ% F,dx‘dX = gf:ﬁ—; F dX dx.
Then, using this in (3.3) also in view of the ezrrlnotedF, = -¢, B“, we find that:
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fpF=gpsF, dxdx =fp ,dx dk+{p B dk B+ dp E dk de~{pBE@S=-47 . (3.4)
So from the final equality above, this means that:
{pBrS=4m9=p1, (3.5)

where 1 = 4mrg is defined as the total magnetic field flux acrthes closed surface. Conversely,
the magnetic charge strengthx 1/ 41 represents the steradial density of magnetic dicross

the closed surface. This, of course, is Gauss’ftawnagnetism in integral form, but with a non-
zero magnetic fluxy across the closed surface. Consequently, thigistegral formulation of

Gauss’ law for a non-vanishing magnetic monopdiecause this was arrived at usiagO in
(3.4), (3.5), there are relectricfields induced by this monopole, and as a re§BI§) describes
this magnetic monopole at rest.

Now, in general, Coulomb’s law cannot be deriviedhf Gauss’ law alone. However, if
the magnetic monopole is stationary — which it égduseE =0 in (3.4) and (3.5) — then the
magnetic fieldB in (3.5) will be exactly spherically symmetric. sAa result of this spherical
symmetry, we can center the coordinates at the palaso only the radial componeBt of B

will be non-zero, that is, in spherical coordinatss thatB:(Br,B¢, Bg):(B,0,0). Also

because of this spherical symmetry, we may renfrem the integrand in (3.5). Thus, using a
spherical surfacg:ﬁ dS=4rmr? centered about the monopole, we may now writeatweve as:

@B@S:B@ds:a @2 = 4mg = . (3.6)
Finally, (3.6) is easily rearranged to yield:

Bf:r_gzz4fz[r?' (3.7)

This is indeed a Coulomb magnetic field which hgsanstant) magnetic charge strengtland
for which the total magnetic flux across any closedface isy=4mg. Furthermore, this

Coulomb magnetic field is the curl of the vectotauuials,B =[x A, =[IxA_ as demonstrated

at the start of this section. Consequently, weehaampleted our review of how the potentials
postulated in (3.1) do in fact specify a non-vaimghCoulomb magnetic field witlB = xA .

Now, we begin to examine what is required to endinag this Coulomb magnetic
monopole withB =[0xA does not give rise to any observable singularities
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4, Conditions under which the U(1)em M agnetic M onopole has No
Observable Singularities: The Standard Dirac Quantization Condition

Returning to (3.1), we first find that the diffeic® between the north and south gauge
patches:

A-A=2gd. (4.1)

Combining the above with the gauge transformatd:®)(then yields the Wu-Yang [3], [4]
differential equation:

e de"/ ie=2 gap. (4.2)
This differential equation is solved for constarnd constar, i.e., forde=0 and dg =0 by:

exp(in) = exdi 2gg), (4.3)
as is easily seen by plugging (4.3) back into ¢fieHand side of (4.2) then reducing.

We next employ this solution to operateyn from the left, and combine this with (2.1),
which yields:

b, =0 =explin)g, = exili 2ag)y, @)

Clearly, for ¢ =0, this yields¢_(0) =¢, , using the notatio/(¢) to denote the wavefunctions

at a particular azimuthal disposition. Now, foliogy the course first charted by Dirac, let us move
this wavefunction through the Coulomb magneticdfief (3.7) around a closed curve in the
azimuthal direction, going fromt =0 to ¢ =277. When this single circuit about the monopole is

complete, from (4.4) withy = 277 we obtain:
Y, - =y, =exp(iN)y, = ex{i BgO)y, = expi #eg)y, (4.5)
This says thaty_(2m) = exp(i 4neg)1//+ . Now let’s turn to the question of observablgsiarities.

To avoid observable singularities, it is requitkdt the electron wavefunction @t= 27
be the same identical wavefunction as it is agég@metrically identical azimutl =0 on SO(3).
In other words, it is a requirement that the wawefion be defined so as to have the single value
¢, (0) - ¢, (27) =y, (0 andnot have multiple values at the same azimuthalneaigon on
SO(3), see, for example, [11]. This requiremeritt va satisfiedf and only if

Y, >y =y, =exp(iN)y, = exdi 4e9)y, = Wy, = expi an)y,, (4.6)
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where we make use of the identity exp(i 21'7n) for n=0,£1+24+ 3+ 4., i.e., for all positive or

negative integers or zero. Froewp(i 4'eg)y, = exfi 2m)y, , we see that this will occifrand
only if 47reg= 27rn, or more simply:

2eg= n. (4.7)

This is the Dirac Quantization Condition. In taeduage of fiber bundles, this all shows how the
electromagnetic field is described by a 2-form wikegral periods, which is precisely the
curvature of a connection on a principal U(1)-bendigain, see, e.g., [11].

From (4.7), defining then =1 charge units ag, =1/2g and g, =1/ 2e, we see that the
respective electric and magnetic charge strengthsegiprocally quantized by:

e=n/2g= ng

: 4.8
g=n/2e= ng (48)

Now let’'s examine the phase behavior. With thebcondition2eg= n of (4.7) imposed,
(4.4) now becomes:

Y. - =y, =exp(in)y, = exding)y, , (4.9)
which contains the implied quantized relationship:
N=ng (4.10)

between the phase angle and the azimuth anglg . Of course, aabsolutephase itself is not an
observable; all that may be observed ishangein phase between two points which we shall
denote with aA subscript as\,. So, we may ask, what change in phase occurs the
wavefunction traverses an azimuthal circuit frgnx 0 to ¢ =277? For this, we merely insert
¢ =2 into (4.10) to find that what Dirac often refeosim [1] as the observablefiangein phase
round” a “closed curve” is:

N, =2mm = 271, 41,6787 ... (4.11)

Thus, if we start with a wavefunction g =0 in physical space and assign some
unobservable arbitrary angle to the phasehen after traversing a single circuitgo= 277 which
leads to the same azimuthal orientation in physipate, the observable phase difference will be
N, =2m. Thus the phase will likewise have returned tecjsely the same angular orientation

in the phase spacnexp(i/\) = cod\ +i sid\ that it had at the start. Likewise, as impose@@ &),
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there will be no observable singularities, becahsavavefunction will maintain the single value
@, (2m) =y, (0) at both of thep =0 and ¢ = 277 azimuthal orientations.

Using the Dirac quantization condition (4.7) weynimally return to (3.1) to write the
monopole potentials as:

eA =1 n(cosf- 1 4.12)
eA =3 n(cosf+ ] dp '

All of the foregoing summarizes the present-daglanstanding of U(k)y magnetic
monopoles and the Dirac Quantization Conditeg= n of (4.7) which is understood to be
required if these monopoles are to exist witholgeoable singularities. A very good, parallel
review of the above can be studied at [12], whietves the beneficial purpose of clarifying and
detailing how the gauge field approach presentegtetelates to the modern mathematics of fiber
bundles. Note that thd, utilized in [12] employ an opposite sign conventfoom that used here.

Although the Dirac chargezeg = n of (4.7) are presently thought to be dmy monopole

charges that can exist in the natural world withobservable singularity, we shall now
demonstrate that if the wavefunction in rotatedairtidal lock with the postulated magnetic
monopole while it traverses the monopole frgm 0 to ¢ = 277, then in order to avoid observable

singularities, the Dirac charges must now possa$fsiteger rather than whole-integer charge
quanta.

5. Tidally-L ocked Electron Wavefunctions and Half-I nteger Fractional
M onopole Char ges

In the derivation of the Dirac Quantization Corwafitjust reviewed, there is an unstated
assumption that the electron wavefunction, over dberse of traversing its circuit about the
monopole fromg =0 to ¢ = 27, it not itself undergoing any rotation. But nost Ls examine
what happens if the electron itself rotates inidaltlock” with the monopole as it traverses the
monopole, so that in the course of traversing frgm 0 to ¢ =27 about the monopole the
electron also rotates throughr via SU(2) which is the universal cover of the tota group of
SO(3). This is analogous, albeit in the quantumldydo what the moon does when it traverses
the earth such that the far side of the moon igneigible from earth. As we shall now see, with
such a tidal lock, to avoid observable singulasjtiée Dirac charge condition must now become
a half-integer rather than a whole-integer conditio

We begin with the three 2x2 Pauli matriags of SU(2), posit three associated anges
in the physical space of spacetime, and form theices U, =exp(ic;@ /2 which are unitary,

U'U =1, given thato," = g are Hermitian. Thesd, matrices are used to transform spinors, and

when projected via the two-to-one, double-coveredmomorphic, universal covering map
. SU(2) - SQ3)onto physical space, result in rotations througipeetive angleg, =¢,,6,,6,

8
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about each of the x, y, z axes in the three-dinosmasiphysical SO(3) space often denoted®as
It is well-known how to make use of the seriegp(ix) = 1+ix -4 x* —ix*+ 4 x*... together

with the fact thato;* =1, and g;°™" = g, to flesh out these unitary matrices, each of wiiak
detU; = 1, into:

. @
U, =exp ig, -+
1 p( 12

j_[cos(@l 12 i sir(6, /z)j

“lisin(g,/2) cod8, 12

J:[ cos(, /3 sin6, /z)j

—-sin(6, /2) cog46, /2

U, =exp(i02%

6. cos(8, /A +i sin8, /2 0 : (5.1)
u3=exp(i0333j:[ e cos(6, /9-i sifé, /;j
_(exp(i6, /2 0
_[ 0 exp(-i6, /2)}

Continuing with the natural units =c =1 let us next consider an electron traveling with

velocity B =v along the z axis and thus the Lorentz contradiotor y =1/+/1-v* . As is often
done, we may then define the boost parametessy = y andsinh y = )3, and write the Lorentz
transformation between the time coordinaa@d thez coordinate using the hyperbolic “rotation”:

t t' cosh sin t
L[V 2fcoshy sinby )ty (5.2)
z 4 sinhy coshy )\ z
Several of the points to now be developed are fonfiRlyder’s [13], amidst pages 36 to 42.

The electron wavefunctio is a four-component Dirac spinor which we can derxy
Y= (.;(T,/f), whereé ands are each two-component spinors with all componietésrelated
via Dirac’s equation(iy“aﬂ —m)z// =0. Under a transformation (5.2) defined by the Inbze

group SO(1,3), which includes a general bgpstnd spatial rotation through on SO(1,3), these
spinor components will transform on SL(2,C) accogdio:

’ :U;j L :U;j :[exp(icfﬂg—ix) 12) exp(icfﬂ(;)"‘ix) /3}6} (5.3)

whereo =g, are the 2x2 Pauli matrices. So for a non-relstiivielectron withy — 0 undergoing
simply a rotation without boost, this simplifies to
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w:@Hw,:[fij:[exp(ic[olz) 0 j@ Dexp(m%jw (5.4)

n n 0 exp(ic® /2

Here, | ,, is a 2x2 identity matrix and the outer product bgin] is used to compactly represent
that 1, Oexp(ic® /2 is a 4x4 matrix formed by placing the 2&p(ic ® / 2) based on (5.1),
on the diagonal twice. For an azimuthal rotatibrotigh 8, =¢ about the z axis only, this
becomesy — ' =1, Oexpliog | Q=1 ,0U 4, for which the unitary matrixU, is
explicitly given by the third relation in (5.1) witg, replaced byg . Thus, for an azimuthal
rotation only, for a non-relativistic electron, tBEp(i0'3¢ /2) term in (5.4) will operate identically
upon each of the two-spinoé&/ . So for the upper spind. =(¢,,&;), usingu, from (5.1), the
transformation in (5.4) will be:

. 5':U3£:exp(|a3 2) [009(¢ /2)42)I sir(g /2 oo /3_? » /ﬂ@j (5.5)

For the lower spinor; =(17,.775) the operation is a carbon copy of (5.5) but wiité $ymbolé
replaced throughout by the symbpl The requirement to maintain the two spingrsand ;
together within the four-component Dirac wavefunetiy’ :(fT,nT) arises because these are

interchanged? ~ 17 under parity. But when the boost is removed terall ¢/ as well as each
of & andn will transform in identical fashion and so maydeparately considered.

We finally consolidate the transformation (5.5) bath &,n7 into one expression by
representing the third 2x2 matrix (5.1) compactiya = cos(¢ /A +i si{¢ /2= exfrig /}
while also using they, labelling of (2.1) to recasyy = ¢, , and thus also recagt= &, and
n=n,, yelding:

<. '3
l//+ (,7+j l//+ (,7+j l D exp(l 03 ¢Jl//+ = I (2) DU é/’+

:{COS(WZ)? e cog(# /ai(i) sirfg /2}6}{ eXbﬂg ¥ ex(ti; /);[gj

In this compact notation, the signs denote the respective operations on eaclp@oent of
& =(Earées) and 7,; =(1,477.5). This is a more explicit form of (5.4) for an awithal

rotation withe 0 = 0,6, = 0.9, also adopting the labelling of (2.1).

.(5.6)

10
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Now, let us return to the gauge transformatign— ¢, =exp(iA)y, of (2.1) and contrast

this against (5.6). As already noted, now quoiigac from page 63 of [1], “the value of [the
phase] at a particular point has no physical mepand only the difference between the values of
[the phase] at two different points is of any impoce.” So, if we are comparing phases between
two different azimuthal points (for the non-relagic electron presently under examination), then
we should also inquire whether the electron has betated at all when moving from one such
point to the next. If the electron has not rotdietithe phase has changed, then the transformation

will be ¢, — ¢, =exp(i\)y, from (2.1). Conversely, if the electron has retiabut the phase

has not changed, then the transformation willge— ¢, =1, Oexp(io / Jy, from (5.6).

But, if both the phase has changetl the electron has rotated, then the complete wamsition
will be a combination of both operations (2.1) &), namely:

W, » ¥, =1, 0U exp(iN)y, =1 ,0 ex;{i U3§J exp Ay, =I ,,0 ei{d3g+/\}l//+ (5.7)

With (5.7) we are now equipped to ask what happktise electron makes a complete circuit
“round a closed curve” about the monopole throudhiraazimuthand simultaneously does so in
a tidal lock with the monopole thus also rotatihgough2/7, all on SO(3).

To avoid observable singularities, as in sectiorwd, must still have a single-valued
wavefunction after the full 277 circuit is complete, that is, we must still impose
W, =y, (2m) =y, (0). But now, the condition required to avoid a silagity will be imposed by

defining ¢, =, when ¢ =2 using (5.7). So to impose the condition thattitially-locked
wavefunction be single-valued after completingsa circuit, we simultaneously set =2/ in
(5.7) and requirey, =, =1, exp(i 2n)y, , which usesl= exp(i 2m) as before. By setting
@ =2m, we are also now implicitly examining an obsereaphase difference as betwegr 0
and ¢ =277, which we again denote by replacing the absolbhts@/A\ with the phase difference
A, . Consequently, from (5.7), with these conditiome,obtain:

W, -, =1, Oexpliogm) exdiA, )@, = ,0 exp(ogr+ A, ), =@, =, exp B )y, .(5.8)

Now turning the *=” used to designate the imposing of a single-valuadefunction into an equal
sign, this will be recognized as, and may be restired into, an eigenvalue equation:

(1) Dexpi (ggr+A,) =1 o exii 2n))y, = ( (5.9)

for the phase differenc&, that is introduced when going frogn=0 to ¢ = 277. Now, we merely
need to solve this eigenvalue equation.
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To simplify solving (5.9), we may use (5.1) to ded that wherg, =¢ =277 as it is in
(5.9), the 2x2 matri}J, =exp(ioym) = ,,, which produces a sign reversal. So rather thiwes
(5.9) using explicit matrices, we may use this obestion together with ,, U1 ,, =1 ,, to directly
simplify then reduce (5.8) to:

Y. - . =—exp(in, )y, =y, . (5.10)

Except for the sign reversal and the fact that reenaw using the notatiof, introduced at (4.11)

to represent that this is an observable pliiference this is the same as (4.6) from which we
obtained the standard DQC of (4.7). This sign r&ade which is a consequence of the rotation
from the tidal lock, is, however, not a trivial et because it changes the Dirac condition needed
to avert observable singularities. Let us see how:

Now, in lieu of 1=exp(i 2m) used in (4.6), we use the mathematical identity
—1:exp(in(21— ])) ie., we use the fact that the Euler formwap(id)=-1 at angles

9= 11,3, 57..=( D~ 377 for which the coefficient of7 is an odd-integef2n-1) = 1,3,5... So
now, flipping the signs in (5.10) and using thisntity for -1, we have:

exp(in, )y, =-¢ —EX[Z(IIT (2- ;L) (5.11)

As a result, for the tidally-locked electron, weynetract from (5.11) that after a single tidally-
locked 277 circuit “round a closed curve,” the change in ghadll be:

Ny =(2n-1) 7=1m,37,57,77 .., (5.12)

which is likewise an odd-integer multiple af, contrast (4.11) which is an even-integer multiple
of 7.

Most importantly, if now combine (5.11) with the Wiang equation (4.4) also obtained

from a single2s7 circuit about the monopole, that is, if we comb{gell) with (4.4) (with the
notation A, for the phase difference) for the saghe 277 azimuthal circuit, we now obtain:

exp(in, ), = EXF(IIT (n- ;L) = exfi @P)y, = exp )y, . (5.13)

From exp(in( - ]))z//+ = exfi 4eg)y, above, we may finally extragt(2n-1) = 47eg which
reduces to:

I~

2eg=(2n-1) /2=n-1=13 52, (5.14)

2

N
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for the positive integera =1, 2,3,4,5.. This is the charge condition required to avoid alable
singularities when the wavefunction traverses tlbaaopole in a tidal lock Contrasting the usual
DQC 2eg= nof (4.7), we see that to avoid observable singidarfor a tidally-locked electron
which rotates in synchronization with its circulicaut the monopole, we must now have a Dirac
guantization condition for which the charges hadf-integer charge fractions that skip over the
whole integer charges

Under this condition, using the same charge queed / 2g and g, =1/ 2e defined after
(4.8), the electric and magnetic charge strengthsiaw reciprocally quantized according to:

e=(n-3)129=(m1) s

1
2
, (5.15)
g=(n-})/2e=(n-3) g
Likewise, using (5.14) in (3.1), in contrast to gwlier (4.12), the vector potential one-forms are
now quantized according to:

(5.16)

Now, let’s step back to gain some perspective batvinas happened here to reveal these
half-integer Dirac charges.

6. Why the Half-Integer Dirac Charges are Smply a Consequence of
Wavefunctions Changing their Version when Under going Rotations

In their classic exposition at section 41.5 of Misner, Thorne and Wheeler (MTW) teach
that a spinor will reverse sign after a@yr= 360 rotation, and will only regain its original sign
after ad4r=720 rotation. A four-component Dirac wavefunctign houses two spinor§, 7,
and as reviewed in the last section, these twoospiand thus the overall wavefunction will
transform identically under rotations absent boosthus, the entire non-relativistic Dirac
wavefunction will exhibit this sign reversal after2/7 rotation. On close inspection, it will be
seen that the rotation reviewed in [41.48] thro[4gh50] of [5] when taken about the z-axis is the
same as that used in (5.5) here. We discussath@nfelectron by saying that the electron changes
to an oppositely-signed “version” after2ar rotation and only recovers its original versioteat
477 rotation. So if the electron is traversed throagir azimuthal circuit about the hypothesized
magnetic monopole reviewed in section 3, andif fidally-locked to the monopole and thus has
a rotation synchronized to this traversal, theneleetron will return to its original azimuth, but
with its version sign reversed. And this means tiha wavefunction at this azimuthnst single-
valued but is double-valuedith a leading+ sign. This would give rise to an unphysical
observable Dirac string singularity if not competeshin some way.

MTW analogize this version change to the macroscamd entirely classical “orientation-
entanglement” phenomenon wherein an object contidotés environment by a set of threads

13
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will only regain its original state of entanglemeiter it is rotated twice ovetsr, but will have
an opposite entanglement following onl\2a& rotation. But an electron is a quantum object not
a classical one, and it is not necessary heregthismacroscopic analogy. The angfes (5.1)

are rotation angles in physical space which arep@@mpnto SO(3) through the homomorphic
double-covering projectiomr: SU(2) - S{3), and when the complete Dirac theory is taken into
account, through the mapping: SL(2,C) - S{1,3). Numerically, this is encoded in the
denominator of 2 first appearing in (5.3). Thirg spinor transformation (5.5) makes very clear
that the sign of the electron wavefunction willémn/following a2 rotation and only be restored
after4sr. Specifically, when the rotation azimugre 277 we haveé - &' =U,(2m)¢ =& which

will carry through to the entire non-relativisti@awefunctiony™ = (.;(T,/f) , but wheng =41 we

haveé - &' =U,(4m)é =& which restores the sign to its original valuel dilthis is well-known

and well-settled physics. Indeed, this two-valdedersion sign is directly related to the double
covering of SO(3) by itsimpleuniversal cover SU(2)But the question of what happens in Dirac
monopole theory when electron wavefunctions arallyidocked to a postulated magnetic
monopole and so undergo this well-known versiomgkaafter executing & =277 circuit does

not appear to have been previously consideredariiterature.

Because a version charge is simply a sign chaihgemay be encoded in the identity
-1= exp(in( A - ])) which represents the primitive square root otyunsing Euler’'s formula

exp(i¥)=-1 at angles #=75,3m,57..=( - )7 which are oriented at the Euler angle

J=m=180C and at angles differing from this simply by integaultiples of2/7. Indeed, the two
signs of the wavefunction versions taught by MTWynte illustratively represented in the
simplest and most transparent form by writing tipease roots of unity using Euler angles as:

exp(in( Eh)) for9 =2r n

exp(iz( - 1) ford 71( a- ) (6.1)

F1=+1= exy(id) :{

So to maintain the single-valued wavefunctiognh= . (277) =, (0) required to avoid observable

string singularities, we need to compensate fardlgn change that occurs when there is a version
change. When calculated through, this compensasioaflected and absorbed into the phase

difference A\, =(2n-1) 77 of (5.13) for a tidally-locked electron. Thisiiscontrast to the phase
difference A, = 27m of (4.11) required when there is no tidal lock ahds no version change.
And this, in turn, finally cascades through to tequirement that the Dirac condition for tidally-
locked wavefunctions must be the half-integeg=(2n-1) /2= n-4 found in (5.14), rather than
the customary whole-integéeg= n of (4.7).

There is a related way to look at all of this whiocuses on the phase difference rather
than the charge fraction. The result in (5.12¢hes that the phase difference for a tidally-locked

wavefunction after traversing # =277 azimuth must beA, =(2n-1) 77=,37,57.., which
means that the wavefunction orientation becod®$ out of phase after this single azimuthal
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circuit in the complex phase space ekp(iA)= cos\+i sif\ used to perform the gauge

transformationy, — ¢/, =exp(iA)y, =¢._ of (2.1) on the electron wavefunction. So, what s

of azimuthal traversal is required to restore thegioal phase orientation of the wavefunction? If
we traverse a firazr azimuth and then a seco@dr azimuth for a totalt/r circuit usingn, and

n, to denote the characteristic integerdrom the first and second traversals, then thespha
differences will add together in the form 6§, = (2n, -1 77+(2n, - ) 7= 27(n+ n,— 3= 2rn,
where in the final step we simply renamg+n,-1= i to another integer. So afterga=4mr
azimuthal traversal — but not after onl@a traversal — the phase difference becomgs= 2/m'’
like that in (4.11), and so the phase returnsstoriginal orientation. This means that in general

the phasefor a tidally-locked electron will return to itgiginal orientation only after circuits of
@ =4rm, andnot after only ¢ = 27m circuits —just like the wavefunction version itself.

So, stepping back from the mathematical detail ey summarize all of this by saying
that to avoid singularities for an electron wavehion traversing a magnetic monopotae
wavefunction phase orientation in phase space bistynchronized to the wavefunction version
orientation in physical spacelf the wavefunction does not rotate in a tisedk during ag =277
circuit, then both the version and the phase vélréstored to their original orientations in their
respective spaces after tBa azimuthal circuit is complete. However, if thewsunctiondoes
rotate in a tidal lock during this circuit, thencenthe circuit is complete, the version will have a
opposite sign, hence opposite orientation from vithiaad at the outset, and synchronized to this,
the phase will also have an opposite orientatioiénphase space. Here, both the phase and the
version — synchronized to one another — will ordyert to their original orientations in their
respective spaces after traversigg- 47m circuits, which is an extension of the teachin@is o
Misner, Thorne and Wheeler in section 41.5 of [bjthe Wu-Yang analysis [3], [4] of Dirac
monopoles. Whether tidally-locked or not, the wawnetions themselves remain single-valued
W, =y, (2m) =y, (0) after eachg =27m circuit which is required to avoid observable rgjri

singularities, and the resulting Dirac monopolergha are the half-integ@eg= n-1 when there
is a tidal lock, and the standard whole-integeg= n when the is no tidal lock.

7. Why Half-Integer Dirac Chargeswould only be Detectable by
Fermions, not Bosons

While there are many important differences betwieemions and bosons including the
fact that fermions must adhere to the Dirac siesisif the Exclusion Principle whereas bosons do
not, for purposes of the present discussion thet nmportant difference is that fermion
wavefunctions invert their version sign undea rotation and only regain their original signs
under a4/ rotation, whereas boson wavefunctions do not telrathis way. So for example, if
we postulate a negatively charged “scalar electrgnivith spin zero which we denote at a

particular azimuthal state of rotation () , then in contrast to the non-relativistic electya{®p)
reviewed in section 5 for whicl(2r)=-/(0), the scalar electron will have(27) = ¢(0)
following a 277 rotation, with no version sign reversal. At tlaeng time, the physics must still be
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symmetric under the local U@k gauge transformations reviewed in section 2, which
transformations will now bey - ¢ :exp(i/\){p for our posited scalar, contrast (2.1). This will

lead after the same development reviewed in se@itmthe same gauge fiefdfor which the
one-form transforms asA = A+ e d&'/ i¢, contrast (2.6) and note the discussion right
afterwards. This means that once we make the idefial associationsA; =A = A and

A = A = A, all the results of section 3 will carry througttaict.

So now to the question: what would be detectableuryposited scalar electron, were it to
traverse the monopole in a tidal lock? Would itthe whole-integer Dirac monopole condition
2eg= nof (4.7), or the half-integer conditic®eg= n—3 of (5.14)? We shall show in this section

that such a scalar electron could only detect thelevinteger, not the half-integer, condition.

For a scalar electron traversina azimuth about a magnetic monopole in a tidal lock
and so at the same time rotating thro@h in harmony with this circuit, to ensure there ace

observable string singularities we must requit@rm) = ¢(0), similarly to what we did for the

spin-half electron at (4.6) and (5.8). But we cahto the chase by recognizing that the minus
sign in (5.10) resulted directly from the opposteigned version//(2n)=—z//(0) following a

25T rotation. Thus, changing the fermign in (5.10) into a spinless scalar and removing the

minus sign which is a direct consequence of Hemmions but not bosornsehave under2r
rotations, then to avoid observable singularitibe,applicable equation in place of (5.10) will be:

@ - ¢ =exp(iN,) p=g. (7.1)
This, it will be seen, leads to a variant of (4&@)dnot of (5.11).

Specifically, if we now use (4.3) to operate frdma left ong, we may write:

exp(in) p= exdi 2gg)e. (7.2)

Then, taking thehange in phasgoing from ¢ =0 to ¢ =27 while combining (7.1) and (7.2)
and again using the identify= exp(i 27n) , We next obtain (contrast (4.6)):

@ - g =exp(iN)p= exi Bog)p= exfi #eg)p= M= exXp /)y, (7.3)

where the definitiore 1Ly is what imposes a single-valued wavefunction anav®ids observable
singularities. Once again, as in (4.6), we exteaqi(i 42g)p= exdi 2m)g, and this contains
the ordinary, whole-integer Dirac condition

2eg=n. (7.4)
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Therefore, a hypothetical spin-zero electron waudd detect the half-integer magnetic
monopoles, even in a tidal lock. Rather, becaws®its do not flip their versions undgrr
rotations, this spinless electron would only detbetwhole-integer monopoles of the customary
Dirac monopole analyses, whether or not it wadlyidacked to the monopole. Consequently,
the half-integer monopole charg&eg= n-1 — were they to physically exist — would be a

phenomenon associated uniquely detectable by fesrd@aod not bosons.

8. Conclusion

Just as Dirac’s finding at page 68 of [1] of theaqgtization condition2eg= n of (4.7)
raised the question whether this might providettig®retical explanation for why electric charge
is quantized, the finding at (5.14) here that aefanction tidally locked to a magnetic monopole
obeys the half-integer conditidzeg= n—1 of (5.14) raises the question whether this mighthie

theoretical reason why half-integer FQHE chargetioas are observed in conductive materials
at ultra-low temperatures near absolute OK wher g&mong perpendicular magnetic fields are
applied to two-dimensionalystems of electrong/hich electrons are fermions not bosons.

It is left for future study to examine whether ke physical connection can in fact be
established between the half-integer charge frastiound here and the half-integer charge
fractions observed in the FQHE. But it is impottemand of itself to recognize, using the Wu-
Yang analysis for maintaining a single-valued wawetion to avoid observable string
singularities, thatvhen a spin-half electron wavefunction is rotateditidal lock as it traverses
a circuit about a hypothesized magnetic monopdie,Rirac condition not merely admits, but
indeed requires, the existence of half-integer ghdractions
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