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Abstract. The present study concerns the problem of learning, pattern recognition and computational 

abilities of a homogeneous network composed from coupled bistable units. New possibilities for pattern 

recognition may be realized due to the developed technique that permits a reconstruction of a dynamical 

system using the distributions of its attractors. In both cases the updating procedure for the coupling matrix 

uses the minimization of  least-mean-square errors between the applied and desired patterns. 

 

 

I. Introduction 

  

The neural network approach is a traditional paradigm for simulating and analyzing the 

computational aspects of the dynamical behavior of complex neural-like networks 

concerning the problems of learning and pattern recognition in neural networks [1, 7, 8, 

11]. Among others the Hopfield type models in which every fixed point corresponds to 

one of the stored patterns, are very convenient for the purposes of pattern recognition 

because of their high memory capacity and fast association. 

 Several dynamical models were also suggested in which network realizes other 

principles and ideas such as: a) gradient competitive dynamics [6] and its further 

generalizations that include short-range diffusive interactions and subthreshold periodic 

forcing  [2, 13];  b) genetic algorithm that was used to evolve cellular automata to 

perform a particular computational task [11];  c) bistable network approach [3-5] which 

exploits the idea that ionic channel in biological membranes is a self-organized non-

equilibrium dynamic system functioning in a multistable regime; oscillator network 

models such as relaxation oscillators with two time scales models [4, 5, 14] and 

stochastic bistable oscillator Hopfield-type network model [10]. 

 In this study we propose a neural-like network model of a content-addressable 

memory which exploits the dynamics of coupled overdamped oscillators that move in a 

double-well potential. The main goal of this paper is to describe the dynamic properties of 

attractors that have been observed in numerical simulations. The proposed model 

describes the dynamics of a network composed of bistable elements. Coupling 

coefficients characterize pair-wise nature of interactions between network elements with 

all-to-all connections. 

 

II. The model  

 

Description of dynamics of the model is based upon the following equations: 
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 The model accounts for the connectivity of all elements of the network. We 

choose the effective free energy functional,  

 

H H H= + int ,                                             (2) 

 

containing the homogeneous terms representing cubic forces acting on each element, H ,  

and the interaction H int , terms, respectively 

 

H x xi

i

N

i= − −
=

∑
1

4
22

1

2( ),                               (3)  

 

 

H w x xij j

i j

N

iint

,

.= −
=

∑
1

2 1

                               (4) 

 

 

 The network is composed of N coupled bistable elements that may be considered 

as neural-like network activities. Each element is an overdamped non-linear oscillator 

moving in a double-well potential H ,  pair-wise interactions between all elements are 

given by Eq. (4). The network has the gradient dynamics with all limit configurations 

contained within the set of fixed point attractors. For a given coupling matrix wij , the 

network evolves towards such limit configurations starting from any initial input 

configurations of bistable elements (the elements are distributed among left and right 

wells of the potential with negative and positive values, respectively). 

 Let us consider several stable limit configurations as patterns to be stored by such 

a network. In the traditional neurodynamics paradigm the corresponding coupling matrix 

may be constructed according to the rule which is referred as Hebb’s rule [9] 
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where p is a number of stored patterns, or the network may be trained (learned) using 

some iteration procedure in which a set of given patterns presented repeatedly to the 

network and coupling matrix elements adjusted according definite learning rule. For the 

considered network, we have used both these schemes.  

 

 



III. Learning algorithm 

 

In the framework of the standard steepest descent approach to construct the learning rule 

[9, 12], updating procedure for the coupling matrix may be obtained using an algorithm 

that minimize the mean squared error ε (MSE) between a given (desired) pattern d i  and 

some limit configuration xi  
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In this approach the coupling matrix wij  has to be updated via the following scheme 
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where k is the iteration step, parameter η determines the rate of learning [9], and matrix L 

is defined as 

 

L x wik ik k ik= − −δ ( ) ,3 12                                       (8) 

 

 This updating algorithm will be used for the network learning as well as for 

retrieving the stored memories when applied patterns are just corrupted memorized ones. 

The actual values of elements in all the patterns are not the bipolar (-1 or +1) ones, but 

they are real values established in the network when it reaches its final state. These values 

are stable states that correspond to the minima of the double-well potentials for each 

oscillator. It should be underlined here, that fixed-point attractors in our case do not 

coincide, like in all Hopfieldian-type networks, with the corners of hypercube,.  

 The patterns (key patterns ξ µ0 ) from which the coupling matrix wij

0  is constructed 

using Hebb’s rule given by Eq. (5), differ from the limit solutions x j  of Eq. (1).  

  During the learning phase based on a scheme given by Eq. (15) the key patterns  

ξ µ0  were taken as the target patterns and stored patterns with distortions (the signs of 

10% of elements were inverted and small random noise was add to all the elements) were 

taken as the applied patterns. In this case the initial values of the weight coefficients were 

constructed using the applied patterns according to Hebb’s rule given by Eq. (5). The 

iteration learning procedure is constructed in such a way that applied patterns repeatedly  

presented one by one, but the next is presented only after the weight coefficients are 

adjusted according to the learning rule given by Eq. (7). The learning procedure lasts until 

MSE criterion ε defined by Eq. (6) will be less or equal some given small value. In all our 

simulations the obtained matrix practically coincides with the matrix wij

0   constructed 

from the key patterns ξ µ0 . We should underline here that in the coupling matrix 

constructed so far, all diagonal matrix elements wii  are nonzero values. 



 In Fig. 1 the dependence of MSE criterion ε on the number of iterations needed to 

learn the coupling matrix Wij  for a network with N=20 elements is shown. In Fig. 2 the  

dependence of the sum of all matrix elements Wij

i j,

∑  on the number of iterations for the 

network with N=20 units when only first pattern ξ 1  is used to learn the network is given. 

Both dependencies characterize the rate of convergence process during the learning 

phase. 
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Fig. 1. Dependence of MSE on the number of iterations needed to learn the coupling matrix Wij  for a 

network with N=20 elements 
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Fig. 2. Rate of convergence of the learning phase.  Dependence of the sum of all matrix elements Wij

i j,

∑  on 

the number of iterations for the network with N=20 units when first pattern ξ 1  is used to learn the network. 

 

 IV. Network Performance 

 

The configuration of N elements that have positive and negative values is taken as a 

pattern. In Fig. 3 a first example of the network performance is shown. Seven patterns 

(ξ ξ1 7, .....,  ) were memorized in the network consisting of N=8 coupled bistable 

elements. Black circles depict element’s negative value (left well of the double-well 

potential is occupied by this element), white circles depict element’s positive value (right 

well of the double-well potential). 

 

 
 
Fig. 3. Example of seven patterns memorized in the network consisting of N=8 elements. Black circles 

depict element’s negative values (left wells of the double-well potential), white circles depict element’s 

positive values (right wells of the double-well potential). 

 



 

 Note that the initial values for each element within input configurations that were 

used to learn the network to memorize these seven patterns differ from their final values. 

Being memorized, each of these patterns could be easily retrieved when an input 

sequence with random values of elements is applied to the network. In all our simulations 

we have used normally distributed random values with zero mean. We note that besides 

these memorized patterns only the patterns fully antisymmetrical to those shown in Fig. 3 

could be retrieved. The latter have inverted signs of all elements with respect to the 

original pattern and therefore have the same energy. No other spurious states 

corresponding to linear combinations of stored patterns will appear during retrieval 

process. During the retrieve phase we have applied also a pattern that was a result of 

overlap of all stored patterns. In this case the network may recall only one pattern 

possessing the smallest energy or corresponding antisymmetrical one. 

 The network is characterized also by extremely fast convergence to the desired 

patterns when elements of the input patterns are distorted up to 30%  (by inversion of 

their signs) in case of using the fixed learned coupling matrix. These distortions should 

remain each pattern within the basin of attraction of corresponding fixed-point attractor. 

In this case the network immediately will reach the latter. 

 To test the association performance of the network we use different applied (test) 

patterns that differ from the stored (desired) patterns by opposite values of some 

elements. Examples of the restoration of different distorted patterns  (memorized 

patternsξ 7 , ξ 4 , andξ 6 ) in the network with N=8 elements by updating the coupling 

matrix wij  are shown in Figures 4 and 5. In all these cases applied patterns have 50% of 

distorted elements (their signs are inverted). In each panel first column corresponds to the 

desired pattern and second column  to the applied one. Other columns depict 

configurations of elements in each successive iteration of wij  that is needed to achieve 

target state. 

 

 

                   
 

 

Fig. 4. Example of restoration of different distorted patterns  (ξ 7  − left panel, ξ 4  - right panel) by 

updating the coupling matrix wij . In these applied patterns 50% of elements are distorted (signs are 

inverted).  In each panel first column corresponds to desired pattern and second column - to applied 



pattern. Other columns depict configurations of elements in each successive iteration that is needed to 

achieve target state (desired pattern). 

 

 

 

 
 

Fig. 5. Example of restoration of sixth distorted pattern  (ξ 6 ) with 50% of distortions. 

 

 

 Figure 6 shows the result of restoration of the sixth pattern (ξ 6  − first column) 

corrupted with  62% of distortions (second column). Top and bottom panels show all the 

iterations from the beginning to the end. More iterations are needed in this case in 

comparison with previous cases shown in Figures 4 and 5 where 50% of distortions of 

input patterns were taken. 

 

 

 
 

 

 
 



Fig. 6. Example of restoration of the sixth pattern (ξ 6 ) with  62% of distortions (second column). Top and 

bottom panels show all the iterations from the beginning to the end. 

 

 

 Only a few iterations are needed to restore within the accuracy defined by a given 

MSE all the values of the elements of each pattern. The number of iterations needed to 

restore only signs of each element is substantially less then in the case when the values of 

the elements are restored, not only their signs. Next example of the network performance 

is shown in Fig. 7. Five patterns (ξ ξ1 5, ....,  ) were memorized in the network consisting 

of N=20 coupled bistable elements. 

 

 

 

 

 
 

Fig. 7. Example of five stored patterns (ξ ξ1 5, ....,  ) in the network consisting of N=20 elements. Each 

column represent one pattern. Black circles depict element’s negative values, white circles - element’s 

positive values. 

 

 Examples of the restoration of the distorted patterns in the network with N=20 

elements by using the algorithm of updating the coupling matrix wij  are shown in Figures 

8 and 9. These patterns differ from the memorized patterns ξ 2  andξ 3  by inversion of the 

signs of 40 % (Fig. 8), or 50%. (Fig. 9)  of elements. Second case (50%. of distortions) 

needs much more iterations to restore desired pattern.  



 Being restored at the n-th iteration the pattern remains stable in the succeeding 

iterations. On the other hand, during the retrieve performance one could frequently 

observe that at some iteration step pattern coincides with a desired one (like in the fourth 

column of Fig. 5) but the retrieval process does not stop at that moment. The reason is 

that in all considered restoration network performances not only the signs of all elements 

that constitute given pattern should be recovered, but also their values should be close to 

those from the desired pattern. The network meanwhile should move in the weight space 

along the gradient in the weight space wij  until MSE criterion ε will exceed some small 

given value. Therefore, the iteration process will proceed further from this iteration point. 

In all the simulations shown in this section the value of ε was taken as 0.1. It is worthy to 

note that at such MSE values the network converges actually to its stable (limit) 

configuration that corresponds to the desired pattern. And the retrieve algorithm will 

stopped just at that moment of the iteration procedure. 

 

 

 

 
 

Fig . 8. Restoration of the second distorted pattern (ξ 2  ) for the network with N=20 elements. In applied 

patterns 8 elements (40%)  are distorted (by inversion of their signs).   First column - desired pattern, 

second column - applied pattern. Only several iterations are shown in other columns. Pattern is restored 

after 245 iterations (seventh column). Black circles depict element’s negative value (left well), white circles 

depict element’s positive value (right well). 

 



 
 

Fig . 9. Restoration of the third distorted pattern (ξ 3  ) for the network with N=20 elements. In applied 

patterns 60% of elements are distorted (by inversion of their signs).   First column - desired pattern, second 

column - applied pattern. Only several iterations are shown in other columns. Pattern is restored after 1500 

iterations (eleventh column). 

  

 The next point we wish to emphasize is that if the matrix wij  will be multiplied by 

a coupling strength coefficient γ, the rate of convergence to the desired pattern during the 

retrieval phase may increase as γ increases. Unfortunately, such an effect depends on the 

relation between the values of strength coefficient γ, MSE criterion ε , and learning rate 

parameter η. One should look for the optimal choice of these parameters in each case 

trying to speed up the retrieval process. It could be shown also that the restoration of all 

(inverted) signs is achieved much faster than practically full restoration of the element’s 

values when ε tends to zero. 

 It is interesting to underline that considered network may successfully provide 

perfect associative memories retrieve in a case when the coupling matrix wij  that was 

previously learned to memorize several patterns, is distorted up to 20%-25%. The 

corresponding distortion was made in the following way: for a network with N=20 

elements the coupling coefficients were affected by the white noise or put to zero for each 

site remote from the given one on more than 13 -15 neighboring sites. 

 It should be noted that considered bistable network may function successfully also 

in a case when all diagonal matrix elements wii  have zero values (like in the traditional 

Hopfield-type networks). 



 

V. Conclusion  

 

The results presented in this paper concerns the computational possibilities of a network 

consisting of coupled bistable units that may store (for the fixed coupling matrix) much 

more memory patterns in comparison with the Hopfield-type neural networks. These new 

possibilities may be realized due to the proposed learning algorithm that may induce the 

system to learn efficiently. Using known patterns with up to 45%- 50%  of distortions, the 

coupling matrix may be fully reconstructed. In some sense, the developed technique 

resembles a reconstruction of the dynamical system using its attractors. 

 For an example, a network composed of N coupled bistable units for a fixed 

coupling matrix has several stable fixed-point-like attractors that are associated with the 

memorized patterns. If these patterns and the coupling matrix are known, the applied 

patterns taken as the initial values for the dynamical system may be restored in few 

iterations. If some applied patterns belongs to another set (say, they were obtained as a 

fixed-point attractors for different coupling matrix), they would be easily recognized 

giving another resulting coupling matrix that is updated during the retrieval phase. 

Therefore, the identification of memories (attractors) could be easily done. 

 It was shown in our simulations that the applied patterns with 45% of distortions 

may be effectively restored. If only memorized patterns are known the coupling matrix 

will be reconstructed after several iterations. In both cases the updating procedure for the 

coupling matrix uses the minimization of the least-mean-squares errors between the 

applied and desired patterns. 

 From a computational point of view the proposed network offers definite 

advantages in comparison with the traditional Hopfield-type networks. It has good 

performance, it may learn efficiently, and has bigger memory capacity. In examples 

described above we have seen that the network with N=8 elements may store seven stable 

patterns that may be perfectly retrieved even when half of its elements are distorted by 

inversion of their signs. It should be said also that the performance of our learning 

algorithm depends on a judicious choice of the rule parameter η. It' s worthy to underline 

that the network may operate also in a noisy environment. 
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