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Considering the generalized charge and generalized four potential associated of dyons as
complex quantities with their real and imaginary parts as electric and magnetic constituents, in
this present discussion we have constructed a gauge covariant and rotational symmetric angular
momentum operator for dyons in order to analyze the integer and fractional quantum Hall effect.
It has been shown that the commutation relations of angular momentum operator possesses a
higher symmetry to reproduce the eigen values and eigen function Lowest Landau Level (LLL) for
quantum Hall system. The LLL has also been constructed in terms of Ist Hopf map (S3 → S2)

and it is concluded that dyons are more suitable object to investigate the existence of quantum
Hall effect (both integer and fractional )

1 Introduction

The two discoveries of [1, 2]quantum hall effect(Integer and Fractional) open a new area in

theoretical and experimental physics. The quantum Hall effect was discovered by von Klitzing,

Dorda and Pepper[2]. This effect has been considered as one of the most remarkable phenomena

in condensed-matter physics and theoretical physics. Klitzing et al [2] discovered that two di-

mensional electron gas,[1, 3] at very low temperatures(∼ 4K) and strong magnetic fields(∼ 10T ),

displays a remarkable quantization of the Hall conductance. Robert Laughlin [4] put forward

an argument for the quantization of the Hall conductance
(
σxy = ν e

2

h

)
where ν is an integer.

This argument plays a seminal role in the development of the theory of the Integer quantum
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Hall effect [1]. The next revolution occurred with the discovery of the “Fractional Quantum Hall

effect (FQHE)” by Tsui-Stormer-Gossard[5] (TSG). It has shown that the Hall conductance is

quantized at rational fractional (f). The striking feature of this fraction quantum Hall effect

was that all fractional filling factor appear with odd denominator. In other words, the Hall

conductivity can take on rational fractional values in the units of e2

h
, and denominator of the

fractional (i.e.f = p
q
) was necessarily odd. The leading members given rise to be 1

3
, 2

3
, 2

5
, etc.

The first fractional
(
1
3

)
was observed in 1982 in GaAs hetro-structures. This effect was called

the anomalous quantum Hall effect. The integer quantum Hall effect can be explained by free

electrons. In contrast, the fractional quantum Hall effect needs us to take interactions between

electrons. Fractional quantum Hall effect theory can not be explained simply by landau level

structure. In FQHE the conductivity at very high magnetic [5, 6] field gives the fractionally

field lowest landau level. The major breakthrough in this theory was made by Laughlin, who

proposed a justrow-type[4] trial wave function for filling factor ν = 1
m

with m an odd integer.

Laughlin’s wave function described a quantum liquid and provided an explicit example of a cor-

related many body state. However Laughlin wave functions [4] are not translation-ally invariant

[7], but described a circular droplet of fluid, which must be confined in an external potential.

Laughlin circumvented this problem by comparing the properties of the fluid to those of the

classical 2D one component plasma. Haldane demonstrated construct the hierarchy of fractional

quantum Hall effect[7] by spherical geometry. which is very convenient geometry for studies of

FQHE systems. In this geometry a 2D electron gas of N particles problem was discussed on a

spherical surface R, in a radial (monopole) magnetic field. So, the first attempt to understand

Hall effect from magnetic monopoles was described Haldane. This technique allows the construc-

tion of homogeneous states with finite N ; in the limit R, N and total magnetic flux→ ∞ , the

Euclidean group of the plane has been is recovered [8, 9] from the rotation group SO(3) of the

sphere. In the spherical geometry [7], the two dimensional sheet containing charge particles are

wrapped around the sphere, and a perpendicular magnetic field is generated by placing a Dirac

monopole [10] at the center of the sphere. The popularity of this geometry may be discussed

due to two reasons: First, it does not have edges (which makes it suitable for an investigation

of the bulk properties) and second, Landau levels have finite degeneracy. This theory has been

extensively studied later on by Fano [8]. The question of existence of monopole [10] and dyons

[11, 12] has become a challenging new frontier and more interest in high energy physics. Dirac

showed [10, 11, 13] that the quantum mechanics of an electrically charged particle of charge e

and a magnetically charged particle of charge g is consistent only if eg = 2π I, I being an integer.

Schwinger-Zwanziger [11, 12] generalized this condition to allow for the possibility of particles
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(dyons) these carry both electric and magnetic charges. As seen there exists a quantum mechan-

ical theory which can have two particles of electric and magnetic charges (e1, g1) and (e2, g2)

only if e1g2 − e2g1 = 2π I [11]. The angular momentum in the field of the two particle system

can be calculated readily with the magnitude e1g2−e2g1
4πc

. This has an integer or half-integer value,

as expected in quantum mechanics, only if e1g2− e2g1 = 2πI. Many physicists [14]-[16] has been

claiming now a days the possibility of indirect evidences of magnetic monopoles in the condensed

matter physics. So, it is being speculated that magnetic materials may provide a new context

for observing magnetic monopoles which plays an important role in condensed matter physics.

2 Why dyons

Particles carrying simultaneous existence of electric and magnetic charge are called dyons. In

addition to magnetic monopole solutions, the Yang - Mills-Higgs theory with an adjoint Higgs

field has dyon solutions. By definition, a dyon is a particle or soliton with both magnetic and

electric charge. The name was coined by Schwinger [17]. Dyons are not strictly static, although

they are stationary in certain gauges, and they have non - zero kinetic energy. In physics, a dyon

is a hypothetical particle in 4-dimensional theories with both electric and magnetic charges. A

dyon with a zero electric charge is usually referred to as a magnetic monopole. Many grand unified

theories predict the existence of both magnetic monopoles and dyons. Dyons were first proposed

[11] by Julian Schwinger in 1969 as a phenomenological alternative to quarks. He extended the

Dirac quantization condition to the dyon and used the model to predict the existence of a particle

with the properties of the J/ψ meson prior to its discovery in 1974. The allowed charges of dyons

are restricted by the Dirac quantization condition. This states, in particular that the magnetic

charge on dyons must be integral, while the electric charges corresponding to dyons must all be

equal modulo 1. The Witten effect, demonstrated [18] the dyons of Charge eθ/2π states that

the electric charges of dyons must all be equal, modulo one, to the product of their magnetic

charge and the theta angle of the theory. In particular, if a theory preserves CP symmetry then

the electric charges of all dyons are integers. If monopoles carry electric charge in addition to

their magnetic charge, they are called dyons. Dyons are not strictly static, although they are

stationary in certain gauges and they have non - zero kinetic energy. In spite of the enormous

potential importance of Dirac’s monopoles and the fact that they have been extensively studied

recently, there has been presented no reliable theory which is as conceptually transparent and

practically tractable as the usual electrodynamics. However, the problem raised be Dirac’s veto

were eventually solved when Wu and Yang [19] introduced the fibre bundle formulation into

gauge theories. Still there are following paradoxes faced by the theory of pure monopoles.
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2.1 Wrong connection between spin and statistics

If the monopole exists, then classical physics tells that a system of pole g and electric charge

e has an angular momentum of magnitude eg directed from charge to pole i.e.

−→
J =

−→
L −egr̂. (1)

This is the sum of orbital angular momentum of the particle and the angular momentum of

the electromagnetic fields. In quantum mechanics that spin adds to orbital and intrinsic angular

momentum, so that for eg =
(
n+ 1

2

)
, an otherwise integral spin system will have net half integral

total angular momentum. This holds equally good in the SU (2) gauge field formulation of charge

pole interactions. In fact this spin may be used to derive the gauge field shown by Jackiw and

Rebbi [20]and demonstrating that in an SU (2) quantum gauge field theory, with iso - spin

symmetry broken spontaneously by triplet of scalar mesons, iso-spinors degrees of freedom and

converted into spin degrees of freedom in the field of magnetic monopole consequently in solution

- monopole sector of quantum theory total angular momentum
(−→
J
)
is the sum of conventional

orbital plus spin
(−→
M
)
and iso - spin

(−→
I
)
;

−→
J =

−→
L +

−→
M +

−→
I . (2)

As such, perhaps an object whose half integral spin comes from charge pole contribution obeys

Fermi - Dirac statistics, so that a fermion may be made out of bosons.

It led Goldhaber [21] to prove a theorem which states that if electric charge e can combine

with magnetic monopole g to from the cluster with half integral values for the product eg then

there must entities with wrong connection between spin and statistics, considering electric and

magnetic charge on the same particle (a dyons) could solve this problem. They showed that

dyon (provides carrying electric and magnetic charges) wave function (which is diagonal in both

angular momentum and parity) lead to correct spin statistics relationship. Such particle (carrying

electric and magnetic charges) were named as dyons by Schwinger [17]suggesting that quark and

dyons.

3 Field Associated with Dyons

The generalized duality invariant Dirac Maxwell’s equation in presence of electric and magnetic[22,

23] charges are expressed as
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−→
∇ ·
−→
E = ρe ;

−→
∇ ×

−→
H =

−→
j +

∂
−→
E

∂t
,

−→
∇ ·
−→
H = ρm ; ∇×

−→
E = −

−→
k − ∂

−→
H

∂t
, (3)

where ρe is the charge source density due to electric charge , ρm is the charge source density due

to magnetic charge (monopole),
−→
j is the current source density due to electric charge (e) and

−→
k

is the current source density due to magnetic charge(g). This hypothesis of existence of magnetic

charge(monopole) provides an explanation for the quantization of electric charge, Dirac [12, 13],

gave an interesting result was that the product of electric charge (e) with magnetic monopole

charge (g) must be quantized.

eg = I. (4)

where I is an integer which could assume the values 1, 2, 3........

In spite of many good point, Dirac’s monopole theory encounters the difficulty of string. The

vector potential can not be defined uniquely and definitely along this string. This condition

was referred as Dirac’s veto [11]. It is unnatural and undesirable condition because string are

unphysical object. The name dyon was coined by Schwinger [17] for the particles carrying

simultaneously the existence of electric and magnetic charges. Dyons are not strictly static,

although they are stationary in certain gauges, and they have non - zero kinetic energy. A dyon

with a zero electric charge is usually referred to as a magnetic monopole. Schwinger extended

the Dirac quantization condition (4) to the dyon. So an alternative approach which is free from

Dirac string involve a second potential in addition to the electric four potential. The electric and

magnetic fields of dyons satisfying the generalized Dirac Maxwell’s equations are now expressed

in terms of components of two four potentials in a symmetrical manner i.e.

−→
E =−

−→
∇φe −

∂
−→
A

∂t
−
−→
∇ ×

−→
B ,

−→
H =−

−→
∇φg −

∂
−→
B

∂t
−
−→
∇ ×

−→
A, (5)

Where {Aµ} =
{
φe, ~A

}
and {Bµ} =

{
φg, ~B

}
are the component of two four potential associated

respectively

The complex vector electrodynamic field
−→
ψ =

−→
E − i

−→
H reduces the four GDM [22] equations

to two differential equations as
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−→
∇ .
−→
ψ =ρ;

−→
∇ ×

−→
ψ = −i−→j − i∂

−→
ψ

∂t
. (6)

Consequently, the Lorentz force equation of motion may be written in following form as

m
d2x

dt2
=
(
eFµν + gF̃µν

)
uν ; (7)

which may further be reduced to

m
dv

dt
= e

(−→
E +−→u ×

−→
H
)

+ g
(−→
H −−→u ×

−→
E
)

; (8)

wherem is the mass of the particle, e is the electric charge, {uν} is four-velocity of particle, space-

time four vector is defined as {xµ}= {t,−→x } and g is magnetic charge. Electric and magnetic

four-current are related as jµ = euµ and kµ = guµ. As such the duality invariance is an intrinsic

property of Maxwell’s Lorentz theory of electrodynamics in presence of monopole(ie. for dyons).

let us introduce the generalized charge for dyon as q = e − ig, so that the Generalized four

potential V µ =
(
φ, ~V

)
associated with dyons is defined as

V µ = Aµ − iBµ; (9)

So the duality transformations for {Aµ} and {Bµ} are described as

Aµ = Aµcosθ +Bµsinθ;

Bµ = Aµsinθ −Bµcosθ;
(10)

Hence, the covariant tensorial form of generalized Dirac-Maxwell’s equations of dyons may be

written as,
∂νF

µν = jµ;

∂νF̃µν = kµ;
(11)

These equation are invariant under the duality transformations

(
F, F̃

)
=

(
Fcosθ + F̃ sinθ; Fsinθ − F̃ cosθ

)
;

(jµ, kµ) = (jµcosθ + kµsinθ; jµsinθ − kµcosθ) .
(12)
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where
g

e
=
Bµ

Aµ
=
kµ
jµ

=
F̃

F
= −tanθ. (13)

is described as constancy condition. The generalized charge may also be written as

q =| q | e−iθ. (14)

In addition to the dual symmetry,the equation of motion (7) and the GDM field equation (11)

leads to the following symmetries;

(a) invariance under a pure rotation in charge space or its combination with a transformation
containing simultaneously space and time reflection(strong symmetry);

(b) a weak symmetry under charge reflection combined with space reflection or time reflection

(not both);

(c) a weak symmetry under PT (combined operation of parity and time reversal) and strong

symmetry under CPT (combined operation of charge conjugation, parity and time reversal).

using equation (13), the Interaction of ithdyon in the field of jth dyon may be written as

follows

Iij =
Ajµ
ej
q∗j qiu

i
µ,

where Ajµ is the electric four potential describing the field of jth dyon ej is its electric charge and

uiµ is the four-velocity of ith dyon in the field of jth this equation shows that

(a) interaction between two dyons is zero, when their generalized charges are orthogonal in

their combined charge space.

(b) interaction depends on electric coupling parameter

αij = eiej + gigj. (15)

under the constancy condition ei
gi

=
ej
gj
=constant.

(c) interaction depends on the magnetic coupling parameter(i.e. chirality)

µij = eigj − giej; (16)

under the condition ei
gj

= − ej
gj

The coupling between two generalized charges qi and qjis described
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as

q∗i · qj = (eiej + gigj)− i (eigj − giej) = αij − i µij; (17)

where the real part αij is called the electric coupling parameter ( the Coulomb like term) re-

sponsible for the existence of either electric charge or magnetic monopole while the imaginary

part µij is the magnetic coupling parameter and plays an important role for the existence of

magnetic charge. Both of these parameters are invariant under the duality transformations. The

parameter µij has also been named as Chirality quantization parameter for dyons and leads the

following charge quantization condition i.e.

µij = ±I (I∈Z); (18)

where the half integral quantization is forbidden by chiral invariance and locality in commutator

of the electric and magnetic vector potentials.

If we consider two dyons with qi = (e, 0) and qj = (0, g) the quantization condition (18)

reduces to well known Dirac quantization condition eg = ±I . While if we do not consider Dirac

particle as dyon the Dirac quantization condition loses its dual invariance. Thus dyon plays an

important role in electromagnetic duality with the association of Chirality quantization parameter

and it is important to consider the consistent quantum field theory for the simultaneous existence

of electric and magnetic charges (dyons).

4 Quantum Hall Effect For Dyons

Let us construct a more general situation, where the interaction between ith generalized

charge qi (ei, gi) and the jth generalized charge qj (ej, gj)take place. This interaction (given by

equation (17)), depends on electric coupling parameter αij (= eiej + gigj) and magnetic coupling

parameter µij (= eigj − ejgi). The gauge invariant angular-momentum operator[24] associated

with dyons is defined as

−→
J =−→r × (−→p − µijV ) ; (19)

where −→r is position vector, µij(µij = eigj − ejgi) is magnetic coupling parameter ( or chirality

parameter) and V is the transverse generalized vector potential for dyons.This angular momentum

vector(also called dynamical angular momentum) in above equation (19), is not rotationally
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symmetric because it satisfies the following commutation relation;

[−→
jα ,
−→
jβ

]
= iεαβγ

(−→
jγ − µij r̂

)
; (20)

where εαβγ is usual Levi-Civita symbol, Since the angular momentum vector is not rotationally

symmetric it does not satisfy the angular momentum algebra, so the eigen values of | J |2are not

equal to j (j + 1) ~2 with j an integer.

The rotationally symmetric and gauge invariant angular momentum operator for dyon may

then be written [24]as

~Λ =−→r × (−→p − µijV ) + µij
~r

r

=r × (Π) + µij
~r

r
; (21)

where Π (= −→p − µijV ) is the linear momentum of this system. So the compact form of angular

momentum operator in case of dyonic charge is written as

~Λ = ~J + µij
~r

r
; (22)

Consequently the Hamiltonian of this combined system responsible for our quantum hall effect

problem may now be written as

H =
Π2

2m
− αij

r
+

µ2
ij

2mr2
; (23)

It is quite obvious that the Hamiltonian, given by equation (23) possesses the higher symmetry

than the pure coulomb Hamiltonian. This higher symmetry is provided by the addition of (
µ2ij

2mr2
)

term. This Hamiltonian equation (23) may now be reduced as

H =
| Λ |2

2Mr2
; (24)

It should be noted that the Hamiltonian (24) is defined on a two sphere, the Hamiltonian (24) is

reduced to the SO(3) Landau model [7]. So we may readily obtain the following commutation
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relations described as

[ΛjΛk] =iεjklΛl (∀j, k, l = 1, 2, 3) ;

[Λ2H] = [Λ,H] = 0. (25)

where εjkl is usual Levi-Civita symbol. From equation (19), the scalar
−→r
r
·
−→
Λ = µij =

−→
Λ · −→r

r
,

commutes with all the observables, so that we may easily solve the eigen values of the operators

Λ2 and Λz respectively as

(| µij | +n) (| µij | +n+ 1) =⇒ l (l + 1) ; (26)

and

− (| µij | +n) , (| µij | +n+ 1) , ................ (| µij | +n) =⇒ (m = −l, −l + 1, ........., l ) ; (27)

It is customary to say that the angular momentum commutation relations imply that l must

have values
(
l = 0, 1, 1

2
, 1, 2, 3

2
, .......

)
where n (= 0, 1, 2, 3.....) is a non negative integer therefore

| J |2=| Λ |2 − | µij |2; (28)

The above equation demands that l (l + 1) ≥| µij |2, so that the eigenvalues of J2 is written

as[(| µij | +n) (| µij | +n+ 1)− | µij |2]. We may now write the energy eigenvalues obtained as

En =
((| µij | +n) (| µij | +n+ 1)− | µij |2)

2Mr2
=

(n (n+ 1) + µij (2n+ 1))

2Mr2
. (29)

Where n plays the role of Landau level index, for (n = 0) corresponds to the lowest Landau level.

Then the lowest landau level and its energy (29) may now be defined as;

E =
µij (µij + 1)− | µij |2

2Mr2
; (30)

Substituting the value of µij from equation (18), in to equation (29) and solving further we get

the energy eigen values as

En =
(n (n+ 1) + I (2n+ 1))

2Mr2
. (31)

It shows that the degeneracy of the landau level is written as dn = 2 (µij + n) + 1. Hence for

n = 0 we get the lowest landau level degeneracy (d0 = 2µij + 1). Therefore the ground state are

described as 2µij + 1(or 2I + 1) fold degeneracy. The cyclotron frequency of the system may be
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defined as (ωd)

ωd =
qψ∗

M
; (32)

which is the generalized cyclotron frequency. Equation (28) may now be decomposed as

ωd =
(eE + gH) + i (eH − gE)

M
; (33)

It is clear that real term of equation (33) does not have any physical significance related to the

cyclotron frequency, since the electric and magnetic charges are not interacting their originating

field linearly. Rather the imaginary part has been obtained due to interaction of electric charge

to the magnetic field and magnetic charge to the electric field that gives rise to the significance

of cyclotron frequency [25]. So the modified form of cyclotron frequency (called dyonic cyclotron

frequency) may be written as

ωd =
(eH − gE)

M
; (34)

Now let us define the following forms of the electric and magnetic field strengths at the point

with −→r of magnitude r i.e.

−→
E =e2

−→r
r3
,

−→
H =g2

−→r
r3

; (35)

in which the electric e2 and magnetic g2 charges for a stationary body are located at origin.

Substituting
−→
E and

−→
H from equation (35) into the equation (34), we get the following expressions

respectively for cyclotron frequency(ωd), and the magnetic length (ld) of this system

ωd =
(µij)

M

~r

r3
; (36)

ld =

√
1

ωdM
; (37)

Substituting ωd from equation (36) into the equation (24) , we get the following expression for

Hamiltonian

H =
ωd

2µij
| Λ |2 . (38)

which has given same expression as discussed earlier by some author [7, 9, 14]
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5 Hopf maps and Eigenstates for Lowest Landau levels

The Hopf fibration, named after Heinz Hopf [9, 26, 27]who was the studied it,is an important
tool which deals both mathematics and physics.It relates topology and the theory of Lie groups.
These Hopf fibration find to be suitable for discussing the magnetic monopoles The n- sphere
Snis the set of all points (x0, x1...........xn) in real space (Rn+1) that must satisfied this condition

x20 + x21 + .................x2n = 1

Thus by this equation the 1-sphere S1is the unit circle in the plane and 2-sphere S2is the
surface of three dimensional sphere. By the Hurwitz theorem there exists four normed division
algebras R, C, H and O respectively named as the algebras of real numbers, complex numbers,
quaternions and octonions. Quaternion discovered by Hamilton in 1843 to generalize the basics
elements (1, i)of a complex number field to the basis (1, i, j, k)of quaternion number field. In-
terestingly, the division algebras are closely related to topological maps from sphere to sphere
in different dimensions; i.e. the Hopf maps. In existence there are only four (Hopf) fibrations
of spheres[9] over spheres: S1 Z2→ S1 for R, S3 S1

→ S2 for C, S7 S3

→ S4 for H and S15 S7

→ S8 for
O.This gives us maps from the spheres S0, S1, S3and S7.The algebraic structure of the four
dimensional Quantum Hall Effect in presence of dyon by the 2nd Hopf map is represented as
S7 S3

→ S4. According to the Hopf map, the gauge field is obtained from the so-called Hopf spinor.
The Hopf spinor plays an important role in the quantum Hall system.There all three Hopf maps
are closely related bundle structures of U(1), SU(2), SU(8) magnetic monopole. The first Hopf
map is defined as a map from S3 to S2. The first Hopf map may be constructed as by first
introducing a normalized complex two spinor.

In the quantum Hall effect problem eigenstate are known as Landau levels.The eigenstates

of this system is formulated by spinor coordinate [7, 9, 14, 27]. The first Hopf map now be

constructed as introducing a normalized two component complex spinor i.e.

ϕ =

 ϕ1

ϕ2

 ; (39)

which satisfy

ϕ†ϕ =| ϕ1 |2 + | ϕ2 |2= 1; (40)

Here ϕ is the 1st Hopf spinor on the space S3 and may be realized as

ϕ→ xi =ϕ†σiϕ; (41)
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Where σi (i = 1, 2, 3) are well known Pauli spin matrices i.e.

σ1 =

 0 1

1 0

 ; σ2 =

 0 −i

i 0

 ; σ3 =

 1 0

0 −1

 (42)

The xi satisfy the condition for S2

xixi =
(
ϕ†ϕ

)2
= 1; (43)

using equation (39 -42), we get

xi =ϕ†σiϕ;

x1 = (ϕ∗1, ϕ
∗
2)

 0 1

1 0

 ϕ1

ϕ2

 =
(
ϕ∗1ϕ2 + ϕ∗2ϕ1

)
;

x2 = (ϕ∗1, ϕ
∗
2)

 0 −i

i 0

 ϕ1

ϕ2

 = i
(
−ϕ∗1ϕ2 + ϕ∗2ϕ1

)
;

x3 = (ϕ∗1, ϕ
∗
2)

 1 0

0 1

 ϕ1

ϕ2

 =
(
ϕ∗1ϕ1 + ϕ∗2ϕ2

)
; (44)

which is further reduced to

(ϕ∗1ϕ2) =
x1 + ix2

2
,

(ϕ1ϕ
∗
2) =

x1 − ix2
2

,

(ϕ∗1ϕ1) =
1 + x3

2
,

(ϕ∗2ϕ2) =
1− x3

2
; (45)

where we have the condition ϕ†ϕ =| ϕ1 |2 + | ϕ2 |2= 1 in (45) then the first Hopf spinor is

written as

ϕ =

 ϕ1

ϕ2

 =
1√

2 (1 + x3)

 1 + x3

x1 + ix2

 ; (46)

Substituting ei = e; gj = 0; ej = 0 and gj = g in the equation (18) we have system composed

by two dyons with charges (e, 0)and (0, g) which satisfies immediately the Dirac quantization

condition condition.eg = I given by equation (4).
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Consequently the equation (24, 29) represent the Hamiltonian and Energy eigen values of two
dimensional (2d ) quantum hall effect on S2, associated with dyons. Then the normalized eigen-
functions in the Lowest Landau Level are just the algebraic products of the spinor coordinates

< ϕ | I,m >=

√
(2I)!

(I +m)! (I −m)!
ϕI+m1 ϕI−m2 ,

=

√
(2I)!

(m1)! (m2)!
ϕm1
1 ϕm2

2 . (47)

where m1 = I +m, m2 = I −m. If we set the value I is half integer then m1 +m2 = I.

The simplest case has been obtained for N = d0, (N particle density and d0 = 2µij + 1 ≈

2µij = 2I ), when the lowest level is completely filled. In this case the filling factor is describes as

ν ≡ N
d0

= 1 , the result corresponds to the integer quantum Hall effect, and in the case of fractional

quantum Hall effect the many body wave function is written like this Φm = Φm (x1, ........xN)

with odd integer m, then the filling fraction ν = d0
d0(m)

≈ 1
m
. this result corresponds the fractional

quantum Hall effect.
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