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Abstract

In this present discussion we discussed the super Poincaré group in D = 10 dimensions in terms of the highest division
algebra of octonions. We have construct the Poincaré group in D = 8 dimension then it’s extension to conformal algebra
of D = 10 has been discussed in terms of octonion algebra. Finally extension of the conformal algebras of D = 10

dimensional space to super conformal algebra of Poincaré group have been done in a consistent manner.

1 Introduction

The well known result of Haag, Sohnius and Lopuszanski [1] proved that supersymmetry algebra is the only graded lie
algebra of symmetries of S- matrix consistent with relativistic quantum field theory. Also that supersymmetry arises as a
symmetry which combines fermions and bosons in the representation or multiplet of the graded group of Poincaré algebra.
It is well known that [2] the traditional field theories however realistic plagued with the problems of mass hierarchy
which become unavoidable at higher energy ranges. In this regard it is a fascinating fact that supersymmetry provide a
self consistent cancellation method which remove these problems. And also that the higher dimensional Supersymmetric
theories are the most possible gauge theories in order to understand the theories of everything (TOE)[3]. The close
connections exist between division algebras, Fiertz identities and super Poincaré groups led to the important conclusion
that [4] the classical Green-Schwarz superstring and N = 1 super Yang-Mills (SYM) theories of a single vector and spinor
can exist only in the critical dimensions associated with the division algebras.

On the other hand in view of Hurwitz theorem [5] there exists four normed division algebras R,C,H andO respectively
named as the algebras of Real numbers, Complex numbers, Quaternions [6] and Octonions [7]. It is pointed out that by
Kugo-Townsend that [8] the supersymmetric gauge theories are well examined forD = 3,4, 6, 10 in terms of components of
division algebra respectively associated with the algebra of real numbers R (for D=3), of complex numbers C (for D = 4),
quaternions H (for D = 6) and octonions O (D = 10). The connection between higher dimensional supersymmetric field
theories and division algebra has already been established by Kugo-Townsend|[8] ,Lukereski-Topan[9] ,A. Anastasiou et.
all[10], J. M. Evans [11]. Also the connection between super Poincaré groups and division algebras has been studied
by Feza Gursey [12] and M. Gunaydin[13]. The explicit relation between octonion algebra and SO(8) previously well
established by A. Reit Dundarer, Feza Gursey|[14]. Attempt has been made by Corinne A. Manogue, Jorg Schray [15] for

the algebraic description of finite Lorentz transformations of vectors in 10—dimensional space by octonion formulation,



where the non-associativity of octonion algebra plays a crucial role. The relation between SO(9,1) and SL(2,O) has been
well established. Also D = 11 M —algebra has been studied in terms of octonions|9].

Keeping in view the close connection between division algebras and supersymmetry in higher dimensions we attempt
to study D = 8 and D = 10 Poincaré algebra in terms of octonions by first establishing relation between SO(8) group
and octonion algebra then extending the Poincaré algebra of D = 8 to conformal algebra. Then extending of Poincaré
algebra in D = 10 to conformal algebra in D = 10 space.. Then finally supersymmetrization has been done for D = 10

dimensions.

2 Octonionic representation of SO(8):

Let us write the vector x in D = 8 space as

ot =(xt, 2?23 2t 25, 20, 27 28) (1)

The metric defined in D = 8 space as 7, = (1,1,1,1,1,1,1,1). As for the case of quaternion generalization, the complex

7 ) ) ) ) 3 )

quantity of Pauli matrices has been extended [16] to the imaginary quaternion triplet e;(Vj = 1,2, 3 e; € H). Consequently
the Pauli matrices were generalized to 2 x 2 quaternion hermitian matrices for description of SL(2,H) group. Likewise,
let us construct a mapping from the Euclidien eight dimensional space to the set of octonion valued 2 x 2 Pauli matrices

such that a eight-vector is described as
' —p(ah) = 2T, (2)

where I', are 2 X 2 octonion matrices such as

rg< 0 e >r< 0 ei) (Vi=1to7). (3)
€0 0 —€; 0

The octonion basis elements e} s satisfy the relation [17]
eiej = — dijeq + fijker (Vi j, k= 1to7). (4)

The f;;r is completely antisymmetric G invariant tensor having the +1 value for the following permutations of com-
binations of (ijk) (123), (471), (257), (165), (624), (543), (736). The I',, matrices satisfy the following relation of clifford
algebra

r,r,+1r.,1r, =2n,,. (5)
So by the equation (2) we have

0 28+ ezt + esa? + 63333 + e4x4 + 651‘5 + 661‘6 + 67337 )

6 7 0

p(a") :xﬂrﬂz( 8 2 3 erx
—er

28 — ezl —ex? —ega® — eqxt — e52® — e

(6)

The determinent of p(z*) may be defined unambigously for hermitian 2 x 2 octonionic matrices [18]. Which leads us to
the

det[p(a")] = — (%)% = (21)? = (2%)? = (2°)* = (2*)? = (&%) = (2°)? = («")%. (7)



In another way we may write it as
det{p(x)] = — 2, 2# =~ ¥t (8)

We may define the generators of SO(8) in 2 x 2 octonion matrices. First the generators of angular momentum in SO(8)

as

Sas :%[ra,rﬁ] (Va, B = 1toT)

Yap =~ %faﬁv ( o > (Vo, B,y =1to7). (9)
0 e,

But this generate only 7 independent Lorenz generators of rotation in dimensional greater than three there is no unique

plane orthogonal to a given axis[15]. For example since fio3 = far1 = fie5 = +1 s0 X4y = X5 = o3 , there are three

degenerate plains of rotations along any axis. Similarly for the other permutation of combinations for f;;x (Vi,j,k = 1to7).

There are 7 other generators defined as

i

ZSa :4

[s,Tw]  (Va=1to7)

Ssa :% < ¢ 0 ) (Ya = 1to7). (10)

0 €a

There are 28 independent Lorentz generators of SO(8). Where 14 generators are come from Yg, (Voo = 1to7) and

Yos (Va, 8 = 1to 7). The commutation rule followed by the 7 generators of rotation are defined by

N2 N2
) e 0 e 0 7 e 0 e

Y 72 =\ 35 m K " — |\ 5 m " K

[ af lm] < 2) fozl?’yfl n ( 0 e ) ( 0 e, ) < 2) fi nfotﬁ’Y ( 0 e, ) < 0 3
1 e 0

= <_) fa/i'yflmnf’ynq ! . (11)

2 0 eq

By the following identities of octonions [14]

® o
N——

flmnfnq"/ =Jlmqry + 5lq5m’y - 6lv6mq

I Gmay =F5i00 4 Findy & Frag8 — Fon8s — Fd — gt (12)
we have the following commutation relation
[Za,@7 Zlm] = _i(nalzﬁm - namzﬁl + nﬁmzal - nﬂlzam) - KaBlm (VO&, B, l, m=1to 7) (13)

Where the K,gim is a four rank tensor defined as

1 ea O eg 0 em O e 0
K =_ — — m . 14
aflm 2 [fﬁlm ( 0 e ) falm < 0 es ) + faﬂl ( 0 e, ) faB v ( 0 e >] ( )

The K,gim doesn’t raise any ambiguity, since there is no unique plain of rotation along any one axis. This four rank

tensor contain the elements of generators of rotation. The 7 generators of Lorentz boost satisfy the commutation rule as

[Xs8a, Xgs] = — ingsXag (Va, B =1to7) (15)



The commutation relation between the generators of rotation ¥,s and generators ¥g, are defined by using (9,10) as

[280“ Eﬁ’y] = *i(na'yESB - 77046287) - Xﬂ'yaé (16)

where X445 is a four rank tensor defined as

—es O
0 €5

1
Xﬁ’y(xé = 59,3’)/045 ( ) (vﬁa v &, 6 =1to 7) (17)

which may be neglected by the same argument for the previous derivation. Since SO(8) must have 28 independent

generators, 14 of which come from 3,gand g, and the other 14 come from the derivative algebra of octonions (G2) as
s0(8) =L & G4 (18)

where the L is the lie algebra of generators ¥, (Vu,v = 0to7). For the elements of derivative algebra (G2) of octonions

we may defined as a mapping D on octonions itself
D(zy) =(Dx)y + x(Dy) (19)
The linear mapping D on an element = € Odefined as[19]
Dyy() =lobya] + 5llabla]  (Va,bz € O). (20)

The 14 other generators of SO(8) may be defined as

— i Dy 0
Sw =75 ( 0 D ) (Vu,v € 0) (21)

where the D, is an element of G algebra defined as

D/LV(I) :[BIL,BV,SC} + %He/u eu]yx] (22)

z € O and ey, e, (Vu,v € 1to7) are the basis elements of octonion algebra ©. The commutation relations of the 7

generators of angular momentum and 14 generators D, is defined as

1 D, 0
[Zu0s Sap) = — Zfaﬁ’y ( [ uo ey Doe] ) . (23)
pvs €y

We have the following commutation relation

- 49
B Zap] = — g[%azuﬁ — NupZva T MpZSua — MvaSus) — Kopup (24)

where the K’ P has the form as

apy

Youv 0
(/)cul/,@ = o : (25)
0 Youvs



With Y, .8, a four rank tensor having value

9 1
Yoyvp =§(faw€/3 — fouvea) + ¢ (fapven = fapuey)- (26)

Which should be again neglected for the same argument of above derivations Similarly the commutation relations of Z,,,

with Yo, may be evaluated as

— )
[:-',u,V7 E804] = g(nuaz&u - nuaz&l) - Z/,Ll/a’f‘ (27)

where the Z,,,ar is the four raank tensor defined as

2 —e, 0
Z/»u/ar :ggp,uozr ( 0 B ) . (28)

So taking into cosideration the degeneracy of rotation plains and the permutation of combinations of structure constant
we have the following Lie algebra of SO(8):

[Eas, Zim] = =Nt Xgm — NamEpt + NmEal — Ng1Eam) (Yo, B,1,m = 1to7)
[Ega, Xgp] = —ingsXap (Va, 8 =1to7)
[Esar gy = —t(NayXss — NapXsy) (Va,B,y=1to7)

— 43
[:uuv Eaﬁ] = _*(nuazuﬂ - nuﬁzua + nVﬁEua - nvazﬂﬁ) (VM7 v,a, 3= 1to 7)

3
_ = .62 _ _ _ _
(S Eapl = —i5- (uaBup = MupBva + MupEpa = MvaZup) (Y, v, 0,5 = 1t07)
— 21
[Euvs Xsal = —E(nmESM — Npasw) (Vu,v,a=1t07). (29)

3 The Poincaré group of SO(1,9) :
A proper Lorentz transformation in D = 10 space is defined as
't =AY (VA € SO(1,9),Vu,v =0t09) (30)
The elements of rotation group SO(1,9) in ten dimensional space-time satisfy the metric preserving condition [20]
ATpA =n. (VA € SO(1,9)) (31)

-1
of A comes out to be unity. From the Lie algebra theory it is well known that for each A € SO(1,9) may be define as
A(a) = exp(aR). Where a is a real parameter and R is an element of the Lie algebra so(1,9). By putting this on equation

Here the metric is defined as 7, = {1,—1,-1,—1,—1,—1,—1,—1} and T for the transpose of matrix. The determinant

(31) and differentiating w.r.t.”a’. We get the following condition for R (the element of Lie algebra so(8) or the generator
of Lie group SO(8)) as

RT = —nRp (VR € s0(8)) (32)



where R is to be taken as
R=[rapl, p_- (33)

Substituting this to (32) we get rmm = 0, 'mn = —Tnm, Tom = Tmo (Vm,n = 1t09), and corresponding generators
for SO(1,9) group may be written accordingly. The determinant of A turns out to be unity. Thus we may easily
define the rotation and Lorentz boost generators of SO(1,9) group respectively denoted by L,,, and Ny,,. For SO(1,9)
group there exists 35 generators of rotation associated with L,,, matrices followed by 10 generators corresponding to
the Lorentz boost matrices Ny,,. Both L,,, and Ny, are traceless matrices. The five Lorentz boost generators Ny,
are symmetric, while the other ten rotation generators L,,, are antisymmetric. Matrices L,,, and Ny,, are discussed in
the appendix—I. In physics generally it is prefered to write the group elements as A(a) = exp(—iw™ M,,) (Ym,n =

0to9) w™" is antisymmetric parameter). where M/ s are the generators of group transformations with the extra —i in

mn
the exponent, because the group transformation must act as a unitary operator and so the generators to be act as Hermitian
operators. Therefore for Hermitian generators we may define matrices M, (Vu, v = 0to9) corresponding to the L,,,, and
Nom, whose matrix elements are defined by the mappings (M), = inu,(L)0 and (M), = 1'77(,5(N)§Y (Vu,v,p,0,0,7 =

0t09). So the algebra of quaternion Lorentz group SO(1,9) describes the following structure
(M, Mpo] = —i(mupMyo + Nvo Myup — Nuo Myp — 10pMyo) (34)

where the metric for SO(1,9) group is defined as n,, = (1,-1,-1,—-1,-1,—-1,-1,—1,—1,—1). The Poincaré group

transformation induces the changes in vector z*as
't =Alz? + ot (35)
leaving the space-time interval (A:c)2 constant. The group elements follow the composition rule
(A1,a1) . (A2, a2) = (A2A1, Azar + a). (36)
We may associate with the transformation (A, a) a matrix as [21]

A a

(Aya) — )

(37)

the A is an element of SO(1,9) corresponding to rotation and Lorentz boost in the space D = 10 space time. The a
corresponding to the translation vector in D = 10 space time. For the case of homogeneous Lorentz transformation we

have the 11 x 11 transformation matrices as

(38)

The generators of Lorentz transformation are already evaluated and described in Appendix—I . While the transformation

0 a
wofre] o

matrices for the translation is defined as



where ’a’ is a 10 dimensional vector defined in 10 x 1 matrix representation. The generators of translation defined as
(Pu) po = = iNupdos (Vu=0tob, o,p=0t010). (40)

Where the generators of Lorentz transformations and of linear transformations are described as

M, 0 0 T,
S = we , P, = r 41
(M) e (07 )

Where the T}, are matrices in 10 x 1 representation as

—1i 0 0 0 0
0 i 0 0 0
0 0 ) 0 0
0 0 0 i 0
0 0 0 0 )
Ty = T, = Ty = Ty = Ty = ,
0 0 ' o |77 O o[ 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Ty = Ts = Ty = Ty = Ty = 42
5 ; 6 0 7 0 8 0 9 0 (42)
0 i 0 0 0
0 0 1 0 0
0 0 0 i 0
0 0 0 1
It may be easily find that S,, and P, satisfy the relations
[Suuy Spa] = - i(nupsua - nMUSVp - nupsuo + nVUSp,p)
[Syvs Ppl = — i(up Py — 1upP)
[Py, P,] =0 (43)
4 Octonion realization of SO(1,9) and Poincaré algebra in D = 10:
The Space-time vector z* in D = 10 may be written as
ot =(20 2t 2?23 2t 2 28 27 2B 2%) = (20, 7) (44)



It is well known that there exist homomorphism [8] between the proper Lorentz group in critical dimensions 3,4, 6,10 and

group involving matrices having elements of division algebras R, C, H, O such as

SO(1,2) =S1(2; R)
SO(1,3) =51(2;C)
SO(1,5) =51(2; H)
SO(1,9) =S1(2;0) (45)

Hence a ten dimensional vector x*can be made corresponding to a octonionic 2 X 2 matrices as follows

8 3 5 6 7 0 9

X np 29 + 29 8 + elxl + egx2 + 63x3 + e4x4 + 65.135 + 66.136 + 67337
=X =
I
xr — 61371 — 623&‘2 — e3x" — 64.’]3‘4 — €5 — egL — €7Xx r — X

(46)

where may take octonion 2 x 2 I';, matrices such as

1 0 0 €; 0 €o 1 0 .
Iy = , Iy = , I's = , g = , (Vi=1toT). 47
0 (0 1) <eio> ® <e00> ? <01> ( ) 47)

These I',, matrices satisfy the following relation

LT, +T,T, =2, (48)

where the metric structure taken as 7, = (1,—1,—-1,-1,—-1,—-1,—-1,—-1,—1,—1). And T, = (T'o,—I}) (Vi = 1t09).

The determinent of the (34) which is already unambiguously defined for hermitian 2 x 2 matrices leads to
det(X) =z a2t = na’z" (49)
For finite Lorentz transformation the
X' =yxyt with Y € SI(2; 0) (50)

is ambiguous for octonions due to the non-associativity of octonions but it’s infinitesimal version is still valid [18] for

Y =1+ € M with trM = 0. The 4 x 4 representation of Dirac represenatation of T ,matrices are defined as

I, 0 0 Iy
Yo = , Y= / Vi =1t09). 51
0 (0 _I2> J <_Fj O> (J 0) ( )

The 4 x 4 representation of Weyl represenatation of ,matrices in D = 10 space defined as

0 I 0 1
= , =I'I'® Vi=1t09). 52
Yo (.72 0) M l <_1 0> ( 0) ( )

Lorentz generators are defined in D = 10 dimensional space as

]
Z/(;11/) :ih/u%/ - '71/7/1] (V,u, v =_0to 9) (53)

The number of generators in SO(1,9) is 45. There are 31 independent generators come from Z,(flu) . Since there are three



degenerate plains of rotation which generate rotation about the same axis. The other 14 come again from the derivative

algebra G2 of octonion. Here we define again the generators Effl,,) defined as

= _ip, (20 (Vv =0
o y w,v=0to7). (54)
Ty Tk ( 0 I

We have thus the 4 x 4 matrices representation for the Lie algebra of SO(1,9) as

[E,(;lg)a 2(4)] i(na12(4) - nam2(4) + Uﬁmz( ) 7]512(4) )+ K(Slﬁ)lm (Va, Bym,l =1to7)
[Zé‘fj, 2(4)] == i(nawE( ) naﬂz( )) + Xév)ws (Yo, B,7,0 = 1to7)
[Eg;)v 2(4)] = inSSEag Vo, B =1to7)
— 24
[= Eflu)a 2(4)] g[ﬁuﬁzz(/) - ﬂu62(4) Uua2(4) + nya2(4)] YOE;L“,B Vo, u,v, 8 =11t07)
26 26 = = s 260 — s, Z60) + Z {0, (Y, v,a,7 = 1t07)
4) (4 4 4 4
[Zs()a)v E( )] [777042( ) 77[3042(7)] Tﬁ(fy)ag (Vapyo =0to7)
1) «(4) 4) 4 4
[E((Jaaz( ] =—in, E( Z( )] - S[(;,Y)aa (VafByo =0to7)
- 4)
[ ;(1411)7 E( ] = [770”2(4) 2(4)] + R,(ﬁ,)ap (Va =0to 9)
[Zéi)v 2(4)] ”7992( ) Vo, B =1to7) (55)

For the extension of octonion realization for SO(1,9) to the Poincaré algebra in D = 10 space time by introducing the

generators of translation and Lorentz group as

) 0 O
P, =— Vu=0to9
S 0
nE) = e Vi, v =0to9
nv ( 0 Z,(;lu) ( 2 )
o (=0 0
20 = 0 = (Vu,v=1to7) (56)

Now the octonion realization of Poincaré algebra in D = 10 may be defined as (including the Lie algebra of equation (55)

[Py, P] =0
2(8 = P
[ on » ] 2(’703 — Mnj 0)
(24, i) = = i1 P = e Py)
[Ef()i)v ] = Z(7793Pk 77ij9)
£, P,) = — i(nao Py — 1 Pa) + Klgos
[E,(J,Sy)a Po’] = é(nMUPU - nua'Pu) - K;,Luo'p (57)

5 Conformal algebra of SO(1,9):

A conformal transformation of the coordinates is a mapping which leaves invariant the metric 7, up to a scale[22]

My (27) = A (@) N (58)



The set of all conformal transformations form a group which has Poincaré group as subgroup corresponds to A(x) = 1.

The conformal group of SO(1,9) have the following generators: 28 Generators of rotation SO(8)as

i e 0
Za,@’:_2fa/3'y< K ) (Va,,@,’y=1t07)

0 e,
7 —e, O
Yoo == Va =1to7
0 2( 0 ea) (Vo 07)
i D 0
o =—= Yu,v € 1to7). 59
’ 2( . DW> (¥ ) (59)

Eight generators of translation may be defined as

i [ 0 e, _
P, =3 ( 0 0 ) (Vu=0toT). (60)

Eight generators of conformal accelerations may be defined as

) 0 0 0 0
Ky == K, = Yu=1to7). 61
0 2(—60 O) i <€M 0> (Vu ) (61)

One generator of dilations may be defined as

7 1 0
D:4<0_1>. (©2)

So the total number of generators of conformal algebra in D = 10 space is equal to 28 + 8 +8 + 1 = 45. The commutation
relations in conformal group in D = 10 space have the following form:

The commutator relations of P, with the seven generators ¥g, (Va = 1to7) evaluated as

—eq O 3 0 e,
0 e /72 0 0
_ 1 0 —eqey —eueq
4\ o0 0

1 0 (5,1”6() .
= — = 10aus. 63
(0 0 ) Wants (63)

Similarly the commutator relations of P, with the generators X5 (Vo, f = 1to7) evaluated as

—zf ey 0 i 0 ey
277\ 0 e, )72\ 0 0

[Eaﬁv PH] =
=105, Pa — 100 Ps + Ko g, (64)
with K/ 5, has the value
1 0 e
K . =-g, P, 65
afup 29 Bup ( 0 0 ) ( )

10



Also the commuator relations of P, with the generators of Lorentz group comes from the derivative algebra of octonion

(G2) evaluated as
i Duw 0 i 0 eo
2\ 0 D, )2\ 0 0
1 0 0
4 [Duvses] 0

=000 Py = 58Py + gK ! (66)
The octonionic conformal algebra in SO(1,9) is defined a
[Eags Bim] = = i(NaiXsm — NamX81 + NgmEal — N815am) (Yo, B,m,l =1toT)
[Ssar Biy] = = (1 Vs — s Ds) (Va,B,7,0 = 1toT)
[E8a, o] = — ingsZag (Va, 3= 1to7)
[Euv, Bapl = — 4;2 08B 00 = MupZva + MuaXvs — MwaXpus] (Yo, p,v, 8= 1t07)
B Bapl = — %(mmxuﬂ — NusZva + MpBpa — NwaXpus) (Vu,v,a, 8 =1t07)
(B, Yga] = — %[nm&zua — N8 Lpal (Y, v, o, = 1t07)
[Esa, Pu] =tnanPs (Vu,aa =0t07)
[Xas, Pul =i(nuPo — 1uaPs) (Vov, B, pi,p = 0t07)
(B, Psl Z%(UWPV — NovPy) (Vo,u,v,m =0to7)
[Esa, Ku] =ina,Ks (Vu,aa =0t07)
Eap, K] =i(nguKa — 60, Kp) (Va, B, 1,p = 0t07)
Eps Kol =5 oK = s K) (Yo, 1, v,7 = 0t07)
[Py, P} =0 (Vu,v =0to7)
[K,,K,] =0 (Vi,v =0to7)
Ky P =it D~ £ Sy (Vv = 0t07)
(D, P, :%RL (Vu=0to7)
D.K,) =~ LK, (Y = 0t07)
X, D] =0 (Vu,v =0to7)
[E., D] =0 (Vu,v =0t07) (67)

11



6 Supersymmetrization of Conformal Group in SO(1,9):

The N = 1 supersymmetrization of conformal group in D = 10 dimensional space (conformal algebra of SO(1,9)) may be

done by the introduction of the following representation of conformal group of superchages as

o
o
o
o
o

€u
0 0 : e 0O 0 : 0

Qi(ey) = ] Qalen) =
0 0 0 0 0 0

o O
o O
o O
o O
o O
o O

Si(en) =  Sa(en) = (68)

0 e : 0 e, 0 1 0

The anti commutation relation for the octonionic supercharges may be obtained as

1@u(en), S2(e0)} = (~0u Ko + s o)

{Q2(€u)7 Sl(ez/)} :%(_6;1,1/]30 + fp,VUPU>
{Ql(eu)a Q2(ev)} 2{51(€M)7 Sa(e,)} =0

{Ql(eu)v Si(ev)} :ZT(BVBM) - Z(eveu)A + izxw + (%GV)D

(@2(en). S2(e0)} =2 T(eve) — Hlevep) A+ £ Sy — (eue0)D (69)

where T is the generator of internal symmetry and A is the non-compact chiral generator such as

en 0 100
T(ey) = 0 e O A=10 1 0 (70)
0 e, 00 2

12



The covariance relations of the superalgebra are

[Xoa, Qplen)] =iQp(—eaey) (Vp,aa=0to7)
X aﬁan(eu)7] =iQo (fapyerep) (Va, B, p,y = 0toT)
S Q)] =iQu Dy () (Yo v = 0t07)
[Py, Q1(ev)] =iQa(epey) (Vu, v =0to7)
[P, Q2(ev)] =0 (Vu, v =0to7)
[Py, S1(e,)] =0 (Vu,v=10toT)
[Py, S2(ey)] = —iS1(evey) (Vu,v =0toT)
[Xoa, Splen)] =iSs(—eaep) (Voo = 0o 7)
[Yap, So(en), ] =iSs (faprerep) (Ve, B, 1,y = 0to7)
[:lﬂ” Sa(eu)] =S, (DMV(eP«)) (VU7 v =0to 7)
(K, Q1(en)] =0 (Vu, v =0to7)
(K, Q2(ey)] =iQ1(epen) (Vu,v =0to7)
(K, S1(ey)] = —iS2(evey) (Y, v =0to7)
(K, S2(e,)] =0 (Vp,v =0toT) (71)

7 Conformal group in D=10 space-time:

A conformal transformation of the coordinates is a mapping which leaves invariant the metric 7,, up to a scale

ﬁiw (xl) :A(x)n,uu' (72)

The set of all conformal transformations form a group which has Poincaré group (discuss in previuos section) as subgroup
corresponds to A(x) = 1. The conformal group of D = 10 space is isomorphic to the group SO(1,11) have the following
set of generators:

45 Generators of rotation SO(1,9) as

S0
n®) — m Vu,v=0to9
nv 0 ijlu) ( K )
S =
=28 = 0 = (Vu,v = 1to7) (73)
Ew
10 generators of translation dfeined as
i 0 0
P, == (Vi = 0t09). (74)
2 o 0
10 generators of conformal accelerations may be defined as
K=t 0 W (Vi = 0t09). (75)
2\ 0 0
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One generator of dilations may be defined as

1( 14 O
ol (8, -

The conformal algebra in D = 10 space-time has the following commutation relations

(K, K] =0
[zéi),K ] == i(n0; K — 1 Ko)
(B8, K] = — (s K — iy Ks)
(2505 K] = = gy K — miey Ko)
8)
[E((xﬁ’ } Z(naoKﬂ - nﬁoKa) =+ (;,ﬁg—y
[EELSy)a Ka'} = - 6(77,LLUKV - T)I/UK,LL) - W;Aua’p
[P, K] = = 2m,,D + 5
1
[P;58)7 D] :ipu
1
[K;(LE;)’D} = ZKM
8
=%, D] =0
=), D] =0 (77)
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