
Super Conformal Group in D = 10 Space-time

Bhupendra C. S. Chauhan, O. P. S. Negi

October 22, 2016

Department of Physics
Kumaun University
S. S. J. Campus

Almora – 263601 (Uttarakhand)
Email: bupendra.123@gmail.com

ops_negi@yahoo.co.in

Abstract

In this present discussion we discussed the super Poincaré group in D = 10 dimensions in terms of the highest division
algebra of octonions. We have construct the Poincaré group in D = 8 dimension then it’s extension to conformal algebra
of D = 10 has been discussed in terms of octonion algebra. Finally extension of the conformal algebras of D = 10

dimensional space to super conformal algebra of Poincaré group have been done in a consistent manner.

1 Introduction

The well known result of Haag, Sohnius and Lopuszanski [1] proved that supersymmetry algebra is the only graded lie
algebra of symmetries of S- matrix consistent with relativistic quantum field theory. Also that supersymmetry arises as a
symmetry which combines fermions and bosons in the representation or multiplet of the graded group of Poincaré algebra.
It is well known that [2] the traditional field theories however realistic plagued with the problems of mass hierarchy
which become unavoidable at higher energy ranges. In this regard it is a fascinating fact that supersymmetry provide a
self consistent cancellation method which remove these problems. And also that the higher dimensional Supersymmetric
theories are the most possible gauge theories in order to understand the theories of everything (TOE)[3]. The close
connections exist between division algebras, Fiertz identities and super Poincaré groups led to the important conclusion
that [4] the classical Green-Schwarz superstring and N = 1 super Yang-Mills (SYM) theories of a single vector and spinor
can exist only in the critical dimensions associated with the division algebras.

On the other hand in view of Hurwitz theorem [5] there exists four normed division algebras R,C,H andO respectively
named as the algebras of Real numbers, Complex numbers, Quaternions [6] and Octonions [7]. It is pointed out that by
Kugo-Townsend that [8] the supersymmetric gauge theories are well examined forD = 3, 4, 6, 10 in terms of components of
division algebra respectively associated with the algebra of real numbers R (for D=3), of complex numbers C (for D = 4),
quaternions H (for D = 6) and octonions O (D = 10). The connection between higher dimensional supersymmetric field
theories and division algebra has already been established by Kugo-Townsend[8] ,Lukereski-Topan[9] ,A. Anastasiou et.
all[10], J. M. Evans [11]. Also the connection between super Poincaré groups and division algebras has been studied
by Feza G

..
ursey [12] and M. G

..
unaydin[13]. The explicit relation between octonion algebra and SO(8) previously well

established by A. Reit D
..
undarer, Feza G

..
ursey[14]. Attempt has been made by Corinne A. Manogue, Jörg Schray [15] for

the algebraic description of finite Lorentz transformations of vectors in 10−dimensional space by octonion formulation,
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where the non-associativity of octonion algebra plays a crucial role. The relation between SO(9, 1) and SL(2, O) has been
well established. Also D = 11 M−algebra has been studied in terms of octonions[9].

Keeping in view the close connection between division algebras and supersymmetry in higher dimensions we attempt
to study D = 8 and D = 10 Poincaré algebra in terms of octonions by first establishing relation between SO(8) group
and octonion algebra then extending the Poincaré algebra of D = 8 to conformal algebra. Then extending of Poincaré
algebra in D = 10 to conformal algebra in D = 10 space.. Then finally supersymmetrization has been done for D = 10

dimensions.

2 Octonionic representation of SO(8):

Let us write the vector x in D = 8 space as

xµ =(x1, x2, x3, x4, x5, x6, x7, x8) (1)

The metric defined in D = 8 space as ηµν = (1, 1, 1, 1, 1, 1, 1, 1). As for the case of quaternion generalization, the complex
quantity of Pauli matrices has been extended [16] to the imaginary quaternion triplet ej(∀j = 1, 2, 3 ej ∈ H). Consequently
the Pauli matrices were generalized to 2 × 2 quaternion hermitian matrices for description of SL(2,H) group. Likewise,
let us construct a mapping from the Euclidien eight dimensional space to the set of octonion valued 2× 2 Pauli matrices
such that a eight-vector is described as

xµ →ρ(xµ) = xµΓµ (2)

where Γµ are 2× 2 octonion matrices such as

Γ8 =

(
0 e0

e0 0

)
,Γi =

(
0 ei

−ei 0

)
(∀i = 1 to 7). (3)

The octonion basis elements e′is satisfy the relation [17]

eiej =− δije0 + fijkek (∀i, j, k = 1 to 7). (4)

The fijk is completely antisymmetric G2 invariant tensor having the +1 value for the following permutations of com-
binations of (ijk) (123), (471), (257), (165), (624), (543), (736). The Γµ matrices satisfy the following relation of clifford
algebra

ΓµΓν + ΓνΓµ =2ηµν . (5)

So by the equation (2) we have

ρ(xµ) = xµΓµ =

(
0 x8 + e1x

1 + e2x
2 + e3x

3 + e4x
4 + e5x

5 + e6x
6 + e7x

7

x8 − e1x1 − ex2 − e3x3 − e4x4 − e5x5 − e6x6 − e7x7 0

)
.

(6)

The determinent of ρ(xµ) may be defined unambigously for hermitian 2 × 2 octonionic matrices [18]. Which leads us to
the

det[ρ(xµ)] =− (x8)2 − (x1)2 − (x2)2 − (x3)2 − (x4)2 − (x5)2 − (x6)2 − (x7)2. (7)
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In another way we may write it as

det[ρ(xµ)] =− xµxµ = −ηµνxνxµ (8)

We may define the generators of SO(8) in 2×2 octonion matrices. First the generators of angular momentum in SO(8)

as

Σαβ =
i

4
[Γα,Γβ ] (∀α, β = 1 to 7)

Σαβ =− i

2
fαβγ

(
eγ 0

0 eγ

)
(∀α, β, γ = 1 to 7). (9)

But this generate only 7 independent Lorenz generators of rotation in dimensional greater than three there is no unique
plane orthogonal to a given axis[15]. For example since f123 = f471 = f165 = +1 so Σ47 = Σ65 = Σ23 , there are three
degenerate plains of rotations along any axis. Similarly for the other permutation of combinations for fijk (∀i, j, k = 1 to 7).
There are 7 other generators defined as

Σ8α =
i

4
[Γ8,Γα] (∀α = 1 to 7)

Σ8α =
i

2

(
−eα 0

0 eα

)
(∀α = 1 to 7). (10)

There are 28 independent Lorentz generators of SO(8). Where 14 generators are come from Σ8α (∀α = 1 to 7) and
Σαβ (∀α, β = 1 to 7). The commutation rule followed by the 7 generators of rotation are defined by

[Σαβ ,Σlm] =

(
− i

2

)2

fαβγflmn

(
eγ 0

0 eγ

)(
en 0

0 en

)
−
(
− i

2

)2

flmnfαβγ

(
en 0

0 en

)(
eγ 0

0 eγ

)

=

(
−1

2

)
fαβγflmnfγnq

(
eq 0

0 eq

)
. (11)

By the following identities of octonions [14]

flmnfnqγ =glmqγ + δlqδmγ − δlγδmq
fαβγglmqγ =fαqlδ

β
m + fαlmδ

β
q + fαmqδ

β
l − f

β
lmδ

α
q − f

β
qlδ

α
m − fβmqδαl (12)

we have the following commutation relation

[Σαβ ,Σlm] = −i(ηαlΣβm − ηαmΣβl + ηβmΣαl − ηβlΣαm)−Kαβlm (∀α, β, l,m = 1 to 7). (13)

Where the Kαβlm is a four rank tensor defined as

Kαβlm =
1

2

[
fβlm

(
eα 0

0 eα

)
− fαlm

(
eβ 0

0 eβ

)
+ fαβl

(
em 0

0 em

)
− fαβm

(
el 0

0 el

)]
. (14)

The Kαβlm doesn’t raise any ambiguity, since there is no unique plain of rotation along any one axis. This four rank
tensor contain the elements of generators of rotation. The 7 generators of Lorentz boost satisfy the commutation rule as

[Σ8α,Σ8β ] =− iη88Σαβ (∀α, β = 1 to 7) (15)
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The commutation relation between the generators of rotation Σαβ and generators Σ8α are defined by using (9,10) as

[Σ8α,Σβγ ] = −i(ηαγΣ8β − ηαβΣ8γ)−Xβγαδ (16)

where Xβγαδ is a four rank tensor defined as

Xβγαδ =− 1

2
gβγαδ

(
−eδ 0

0 eδ

)
(∀β, γ, α, δ = 1 to 7) (17)

which may be neglected by the same argument for the previous derivation. Since SO(8) must have 28 independent
generators, 14 of which come from Σαβand Σ8α and the other 14 come from the derivative algebra of octonions (G2) as

so(8) =L⊕G2 (18)

where the L is the lie algebra of generators Σµν (∀µ, ν = 0 to 7). For the elements of derivative algebra (G2) of octonions
we may defined as a mapping D on octonions itself

D(xy) =(Dx)y + x(Dy) (19)

The linear mapping D on an element x ∈ Odefined as[19]

Da,b(x) =[a, b, x] +
1

3
[[a, b], x] (∀a, b, x ∈ O). (20)

The 14 other generators of SO(8) may be defined as

Ξµν =− i

2

(
Dµν 0

0 Dµν

)
(∀µ, ν ∈ O) (21)

where the Dµν is an element of G2 algebra defined as

Dµν(x) =[eµ, eν , x] +
1

3
[[eµ, eν ], x] (22)

x ∈ O and eµ, eν (∀µ, ν ∈ 1 to 7) are the basis elements of octonion algebra O. The commutation relations of the 7

generators of angular momentum and 14 generators Dµν is defined as

[Ξµν ,Σαβ ] =− 1

4
fαβγ

(
[Dµν , eγ ] 0

0 [Dµν , eγ ]

)
. (23)

We have the following commutation relation

[Ξµν ,Σαβ ] =− 4i

3
[ηµαΣνβ − ηµβΣνα + ηνβΣµα − ηναΣµβ ]−K ′

αµνβ (24)

where the K ′
αµνβ has the form as

K ′
αµνβ =

(
Yαµνβ 0

0 Yαµνβ

)
. (25)
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With Yαµνβ , a four rank tensor having value

Yαµνβ =
2

3
(fαµνeβ − fβµνeα) +

1

6
(fαβνeµ − fαβµeν). (26)

Which should be again neglected for the same argument of above derivations Similarly the commutation relations of Ξµν

with Σ0α may be evaluated as

[Ξµν ,Σ8α] =− i

3
(ηναΣ8µ − ηµαΣ8ν)− Zµναr (27)

where the Zµναr is the four raank tensor defined as

Zµναr =
2

3
gµναr

(
−er 0

0 er

)
. (28)

So taking into cosideration the degeneracy of rotation plains and the permutation of combinations of structure constant
we have the following Lie algebra of SO(8):

[Σαβ ,Σlm] = −i(ηαlΣβm − ηαmΣβl + ηβmΣαl − ηβlΣαm) (∀α, β, l,m = 1 to 7)

[Σ8α,Σ8β ] = −iη88Σαβ (∀α, β = 1 to 7)

[Σ8α,Σβγ ] = −i(ηαγΣ8β − ηαβΣ8γ) (∀α, β, γ = 1 to 7)

[Ξµν ,Σαβ ] = −4i

3
(ηµαΣνβ − ηµβΣνα + ηνβΣµα − ηναΣµβ) (∀µ, ν, α, β = 1 to 7)

[Ξµν ,Ξαβ ] = −i62

3
(ηµαΞνβ − ηµβΞνα + ηνβΞµα − ηναΞµβ) (∀µ, ν, α, β = 1 to 7)

[Ξµν ,Σ8α] = −2i

3
(ηναΣ8µ − ηµαΣ8ν) (∀µ, ν, α = 1 to 7). (29)

-

3 The Poincaré group of SO(1, 9) :

A proper Lorentz transformation in D = 10 space is defined as

x′µ =Λµνx
ν (∀Λ ∈ SO(1, 9),∀µ, ν = 0 to 9) (30)

The elements of rotation group SO(1, 9) in ten dimensional space-time satisfy the metric preserving condition [20]

ΛT ηΛ =η. (∀Λ ∈ SO(1, 9)) (31)

Here the metric is defined as ηµν = {1,−1,−1,−1,−1,−1,−1,−1} and T for the transpose of matrix. The determinant
of Λ comes out to be unity. From the Lie algebra theory it is well known that for each Λ ∈ SO(1, 9) may be define as
Λ(a) = exp(aR). Where a is a real parameter and R is an element of the Lie algebra so(1, 9). By putting this on equation
(31) and differentiating w.r.t.′a′. We get the following condition for R (the element of Lie algebra so(8) or the generator
of Lie group SO(8)) as

RT =− ηRη (∀R ∈ so(8)) (32)
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where R is to be taken as

R = [rab]
9
a,b=0 . (33)

Substituting this to (32) we get rmm = 0, rmn = −rnm, rom = rm0 (∀m,n = 1 to 9), and corresponding generators
for SO(1, 9) group may be written accordingly. The determinant of Λ turns out to be unity. Thus we may easily
define the rotation and Lorentz boost generators of SO(1, 9) group respectively denoted by Lmn and N0m. For SO(1, 9)

group there exists 35 generators of rotation associated with Lmn matrices followed by 10 generators corresponding to
the Lorentz boost matrices N0m. Both Lmn and N0m are traceless matrices. The five Lorentz boost generators N0m

are symmetric, while the other ten rotation generators Lmn are antisymmetric. Matrices Lmn and N0m are discussed in
the appendix−I. In physics generally it is prefered to write the group elements as Λ(a) = exp(−iωmnMmn) (∀m,n =

0 to 9)ωmn is antisymmetric parameter). where M ′
mns are the generators of group transformations with the extra −i in

the exponent, because the group transformation must act as a unitary operator and so the generators to be act as Hermitian
operators. Therefore for Hermitian generators we may define matrices Mµν (∀µ, ν = 0 to 9) corresponding to the Lmn and
N0m, whose matrix elements are defined by the mappings (M)µν = iηµρ(L)ρν and (M)σγ = iησδ(N)δγ (∀µ, ν, ρ, σ, δ, γ =

0 to 9). So the algebra of quaternion Lorentz group SO(1, 9) describes the following structure

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (34)

where the metric for SO(1, 9) group is defined as ηµν = (1,−1,−1,−1,−1,−1,−1,−1,−1,−1). The Poincaré group
transformation induces the changes in vector xµas

x′µ =Λµνx
ν + aµ (35)

leaving the space-time interval (4x)
2 constant. The group elements follow the composition rule

(Λ1, a1) . (Λ2, a2) = (Λ2Λ1,Λ2a1 + a2) . (36)

We may associate with the transformation (Λ, a) a matrix as [21]

(Λ, a)→

[
Λ a

0 1

]
(37)

the Λ is an element of SO(1, 9) corresponding to rotation and Lorentz boost in the space D = 10 space time. The a
corresponding to the translation vector in D = 10 space time. For the case of homogeneous Lorentz transformation we
have the 11× 11 transformation matrices as

G =

[
Λ 0

0 1

]
(38)

The generators of Lorentz transformation are already evaluated and described in Appendix−I . While the transformation
matrices for the translation is defined as

W =

[
0 a

0 1

]
(39)
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where ′a’ is a 10 dimensional vector defined in 10× 1 matrix representation. The generators of translation defined as

(Pµ)ρσ =− iηµρδσ6 (∀µ = 0 to 5, σ, ρ = 0 to 10). (40)

Where the generators of Lorentz transformations and of linear transformations are described as

Sµν =

(
Mµν 0

0 0

)
, Pρ =

(
0 Tρ

0 0

)
(41)

Where the Tρ are matrices in 10× 1 representation as

T0 =



−i
0

0

0

0

0

0

0

0

0



, T1 =



0

i

0

0

0

0

0

0

0

0



, T2 =



0

0

i

0

0

0

0

0

0

0



,T3 =



0

0

0

i

0

0

0

0

0

0



, T4 =



0

0

0

0

i

0

0

0

0

0



,

T5 =



0

0

0

0

0

i

0

0

0

0



, T6 =



0

0

0

0

0

0

i

0

0

0



, T7 =



0

0

0

0

0

0

0

i

0

0



,T8 =



0

0

0

0

0

0

0

0

i

0



, T9 =



0

0

0

0

0

0

0

0

0

i



(42)

It may be easily find that Sµν and Pρ satisfy the relations

[Sµν , Sρσ] =− i(ηµρSνσ − ηµσSνρ − ηνρSµσ + ηνσSµρ)

[Sµν , Pρ] =− i(ηµρPν − ηνρPµ)

[Pµ, Pν ] =0 (43)

4 Octonion realization of SO(1, 9) and Poincaré algebra in D = 10:

The Space-time vector xµ in D = 10 may be written as

xµ =(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = (x0, ~x) (44)
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It is well known that there exist homomorphism [8] between the proper Lorentz group in critical dimensions 3, 4, 6, 10 and
group involving matrices having elements of division algebras R,C,H,O such as

SO(1, 2) ∼=Sl(2;R)

SO(1, 3) ∼=Sl(2;C)

SO(1, 5) ∼=Sl(2;H)

SO(1, 9) ∼=Sl(2;O) (45)

Hence a ten dimensional vector xµcan be made corresponding to a octonionic 2× 2 matrices as follows

X =xµΓµ =

(
x0 + x9 x8 + e1x

1 + e2x
2 + e3x

3 + e4x
4 + e5x

5 + e6x
6 + e7x

7

x8 − e1x1 − e2x2 − e3x3 − e4x4 − e5x5 − e6x6 − e7x7 x0 − x9

)
(46)

where may take octonion 2× 2 Γµ matrices such as

Γ0 =

(
1 0

0 1

)
, Γi =

(
0 ei

−ei 0

)
, Γ8 =

(
0 e0

e0 0

)
, Γ9 =

(
1 0

0 −1

)
, (∀i = 1 to 7). (47)

These Γµ matrices satisfy the following relation

ΓµΓν + ΓνΓµ =2ηµν (48)

where the metric structure taken as ηµν = (1,−1,−1,−1,−1,−1,−1,−1,−1,−1). And Γµ = (Γ0,−Γi) (∀i = 1 to 9).
The determinent of the (34) which is already unambiguously defined for hermitian 2× 2 matrices leads to

det(X) =xµx
µ = ηµνx

νxµ (49)

For finite Lorentz transformation the

X ′ =Y XY † with Y ∈ Sl(2;O) (50)

is ambiguous for octonions due to the non-associativity of octonions but it’s infinitesimal version is still valid [18] for
Y = I+ ∈M with trM = 0. The 4× 4 representation of Dirac represenatation of Υµmatrices are defined as

Υ0 =

(
I2 0

0 −I2

)
, Υj =

(
0 Γj

−Γj 0

)
(∀j = 1 to 9). (51)

The 4× 4 representation of Weyl represenatation of γµmatrices in D = 10 space defined as

γ0 =

(
0 I2

I2 0

)
, γl = Γl ⊗

(
0 1

−1 0

)
(∀l = 1 to 9). (52)

Lorentz generators are defined in D = 10 dimensional space as

Σ(4)
µν =

i

4
[γµγν − γνγµ] (∀µ, ν = 0 to 9). (53)

The number of generators in SO(1, 9) is 45. There are 31 independent generators come from Σ
(4)
µν . Since there are three
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degenerate plains of rotation which generate rotation about the same axis. The other 14 come again from the derivative
algebra G2 of octonion. Here we define again the generators Ξ

(4)
µν defined as

Ξ(4)
µν =

i

2
Dµν

(
I2 0

0 I2

)
(∀µ, ν = 0 to 7). (54)

We have thus the 4× 4 matrices representation for the Lie algebra of SO(1, 9) as

[Σ
(4)
αβ ,Σ

(4)
lm ] =− i(ηαlΣ(4)

βm − ηαmΣ
(4)
βl + ηβmΣ

(4)
αl − ηβlΣ

(4)
αm) +K

(4)
αβlm (∀α, β,m, l = 1 to 7)

[Σ
(4)
8α ,Σ

(4)
βγ ] =− i(ηαγΣ

(4)
8β − ηαβΣ

(4)
8γ ) +X

(4)
βγαδ (∀α, β, γ, δ = 1 to 7)

[Σ
(4)
8α ,Σ

(4)
8β ] =− iη88Σ

(4)
αβ (∀α, β = 1 to 7)

[Ξ(4)
µν ,Σ

(4)
αβ ] =− 2i

3
[ηµβΣ(4)

να − ηνβΣ(4)
µα − ηµαΣ

(4)
νβ + ηναΣ

(4)
µβ ] + Y

(4)
αµνβ (∀α, µ, ν, β = 1 to 7)

[Ξ(4)
µν ,Σ

(4)
8α ] =− i

3
[η8νΣ(4)

µα − η8µΣ(4)
να ] + Z(4)

µναr (∀µ, ν, α, r = 1 to 7)

[Σ
(4)
9α ,Σ

(4)
βγ ] =− i[ηγαΣ

(4)
9β − ηβαΣ

(4)
9γ ]− T (4)

βγασ (∀αβγσ = 0 to 7)

[Σ
(4)
0α ,Σ

(4)
βγ ] =− i[ηγαΣ

(4)
0β − ηβαΣ

(4)
0γ ]− S(4)

βγασ (∀αβγσ = 0 to 7)

[Ξ(4)
µν ,Σ

(4)
0α ] =− i[η0µΣ(4)

να − η0νΣ(4)
µα] +R(4)

µναρ (∀α = 0 to 9)

[Σ
(4)
9α ,Σ

(4)
9β ] =− iη99Σ

(4)
αβ (∀α, β = 1 to 7) (55)

For the extension of octonion realization for SO(1, 9) to the Poincaré algebra in D = 10 space time by introducing the
generators of translation and Lorentz group as

Pµ =
i

2

(
0 0

γµ 0

)
(∀µ = 0 to 9)

Σ(8)
µν =

(
Σ

(4)
µν 0

0 Σ
(4)
µν

)
(∀µ, ν = 0 to 9)

Ξ(8)
µν =

(
Ξ
(4)
µν 0

0 Ξ
(8)
µν

)
(∀µ, ν = 1 to 7) (56)

Now the octonion realization of Poincaré algebra in D = 10 may be defined as (including the Lie algebra of equation (55)

[Pµ, Pν ] =0

[Σ
(8)
0n , Pj ] =− i(η0jPn − ηnjP0)

[Σ
(8)
8k , Pj ] =− i(η8jPk − ηkjP8)

[Σ
(8)
9k , Pj ] =− i(η9jPk − ηkjP9)

[Σ
(8)
αβ , Pσ] =− i(ηασPβ − ηβσPα) +K ′′

αβσγ

[Ξ(8)
µν , Pσ] =− i

6
(ηµσPν − ηνσPµ)−Kµνσρ (57)

5 Conformal algebra of SO(1, 9):

A conformal transformation of the coordinates is a mapping which leaves invariant the metric ηµν up to a scale[22]

η′µν(x′) =Λ(x)ηµν . (58)
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The set of all conformal transformations form a group which has Poincaré group as subgroup corresponds to Λ(x) = 1.

The conformal group of SO(1, 9) have the following generators: 28 Generators of rotation SO(8)as

Σαβ =− i

2
fαβγ

(
eγ 0

0 eγ

)
(∀α, β, γ = 1 to 7)

Σ0α =
i

2

(
−eα 0

0 eα

)
(∀α = 1 to 7)

Ξµν =− i

2

(
Dµν 0

0 Dµν

)
(∀µ, ν ∈ 1 to 7). (59)

Eight generators of translation may be defined as

Pµ =
i

2

(
0 eµ

0 0

)
(∀µ = 0 to 7). (60)

Eight generators of conformal accelerations may be defined as

K0 =
i

2

(
0 0

−e0 0

)
,Kµ =

(
0 0

eµ 0

)
(∀µ = 1 to 7). (61)

One generator of dilations may be defined as

D =
i

4

(
1 0

0 −1

)
. (62)

So the total number of generators of conformal algebra in D = 10 space is equal to 28 + 8 + 8 + 1 = 45. The commutation
relations in conformal group in D = 10 space have the following form:

The commutator relations of Pµ with the seven generators Σ8α (∀α = 1 to 7) evaluated as

[Σ8α, Pµ] =

[
i

2

(
−eα 0

0 eα

)
,
i

2

(
0 eµ

0 0

)]

=− 1

4

(
0 −eαeµ − eµeα
0 0

)

=− 1

2

(
0 δαµe0

0 0

)
= iδαµP8. (63)

Similarly the commutator relations of Pµ with the generators Σαβ (∀α, β = 1 to 7) evaluated as

[Σαβ , Pµ] =

[
− i

2
fαβγ

(
eγ 0

0 eγ

)
,
i

2

(
0 eµ

0 0

)]
=iδβµPα − iδαµPβ +K ′

αβµp (64)

with K ′
αβµphas the value

K ′
αβµp =

1

2
gαβµp

(
0 ep

0 0

)
. (65)
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Also the commuator relations of Pµ with the generators of Lorentz group comes from the derivative algebra of octonion
(G2) evaluated as

[Ξµν , Pσ] =

[
− i

2

(
Dµν 0

0 Dµν

)
,
i

2

(
0 eσ

0 0

)]

=
1

4

(
0 0

[Dµν , eσ] 0

)

=
i

3
δνσPµ −

i

3
δµσPν +

8

3
K ′
µνσr. (66)

The octonionic conformal algebra in SO(1, 9) is defined a

[Σαβ ,Σlm] =− i(ηαlΣβm − ηαmΣβl + ηβmΣαl − ηβlΣαm) (∀α, β,m, l = 1 to 7)

[Σ8α,Σβγ ] =− i(ηαγΣ8β − ηαβΣ8γ) (∀α, β, γ, δ = 1 to 7)

[Σ8α,Σ0β ] =− iη88Σαβ (∀α, β = 1 to 7)

[Ξµν ,Σαβ ] =− 4i

3
[ηνβΣµα − ηµβΣνα + ηµαΣνβ − ηναΣµβ ] (∀α, µ, ν, β = 1 to 7)

[Ξµν ,Ξαβ ] =− 4i

3
(ηµαΣνβ − ηµβΣνα + ηνβΣµα − ηναΣµβ) (∀µ, ν, α, β = 1 to 7)

[Ξµν ,Σ8α] =− 2i

3
[ηµ8Σνα − ην8Σµα] (∀µ, ν, α, r = 1 to 7)

[Σ8α, Pµ] =iηαµP8 (∀µ, α = 0 to 7)

[Σαβ , Pµ] =i(ηβµPα − ηµαPβ) (∀α, β, µ, p = 0 to 7)

[Ξµν , Pσ] =
i

3
(ηµσPν − ησνPµ) (∀σ, µ, ν, r = 0 to 7)

[Σ8α,Kµ] =iηαµK8 (∀µ, α = 0 to 7)

[Σαβ ,Kµ] =i(ηβµKα − δαµKβ) (∀α, β, µ, p = 0 to 7)

[Ξµν ,Kσ] =
i

3
(ηνσKµ − ηµσKν) (∀σ, µ, ν, r = 0 to 7)

[Pµ, Pν ] =0 (∀µ, ν = 0 to 7)

[Kµ,Kν ] =0 (∀µ, ν = 0 to 7)

[Kµ, Pν ] =iηµνD −
i

2
Σµν (∀µ, ν = 0 to 7)

[D,Pµ] =
i

2
Pµ (∀µ = 0 to 7)

[D,Kµ] =− i

2
Kµ (∀µ = 0 to 7)

[Σµν , D] =0 (∀µ, ν = 0 to 7)

[Ξµν , D] =0 (∀µ, ν = 0 to 7) (67)
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6 Supersymmetrization of Conformal Group in SO(1, 9):

The N = 1 supersymmetrization of conformal group in D = 10 dimensional space (conformal algebra of SO(1, 9)) may be
done by the introduction of the following representation of conformal group of superchages as

Q1(eµ) =


0 0

... 0

0 0
... eµ

· · · · · ·
... · · ·

0 0
... 0


, Q2(eµ) =


0 0

... eµ

0 0
... 0

· · · · · ·
... · · ·

0 0
... 0



S1(eν) =


0 0

... 0

0 0
... 0

· · · · · ·
... · · ·

0 eν
... 0


, S2(eν) =


0 0

... 0

0 0
... 0

· · · · · ·
... · · ·

eν 0
... 0


(68)

The anti commutation relation for the octonionic supercharges may be obtained as

{Q1(eµ), S2(eν)} =
i

2
(−δµνK0 + fµνσKσ)

{Q2(eµ), S1(eν)} =
i

2
(−δµνP0 + fµνσPσ)

{Q1(eµ), Q2(eν)} ={S1(eµ), S2(eν)} = 0

{Q1(eµ), S1(eν)} =
i

4
T (eνeµ)− i

4
(eνeµ)A+

i

2
Σµν + (eµeν)D

{Q2(eµ), S2(eν)} =
i

4
T (eνeµ)− i

4
(eνeµ)A+

i

2
Σµν − (eµeν)D (69)

where T is the generator of internal symmetry and A is the non-compact chiral generator such as

T (eµ) =

 eµ 0 0

0 eµ 0

0 0 eµ

 ,A =

 1 0 0

0 1 0

0 0 2

 (70)
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The covariance relations of the superalgebra are

[Σ0α, Qβ(eµ)] =iQβ(−eαeµ) (∀µ, α = 0 to 7)

[Σαβ , Qσ(eµ), ] =iQσ(fαβγeγeµ) (∀α, β, µ, γ = 0 to 7)

[Ξµν , Qσ(eµ)] =iQσ(Dµν(eµ)) (∀σ, µ, ν = 0 to 7)

[Pµ, Q1(eν)] =iQ2(eµeν) (∀µ, ν = 0 to 7)

[Pµ, Q2(eν)] =0 (∀µ, ν = 0 to 7)

[Pµ, S1(eν)] =0 (∀µ, ν = 0 to 7)

[Pµ, S2(eν)] =− iS1(eνeµ) (∀µ, ν = 0 to 7)

[Σ0α, Sβ(eµ)] =iSβ(−eαeµ) (∀µ, α = 0 to 7)

[Σαβ , Sσ(eµ), ] =iSσ(fαβγeγeµ) (∀α, β, µ, γ = 0 to 7)

[Ξµν , Sσ(eµ)] =iSσ(Dµν(eµ)) (∀σ, µ, ν = 0 to 7)

[Kµ, Q1(eν)] =0 (∀µ, ν = 0 to 7)

[Kµ, Q2(eν)] =iQ1(eµeν) (∀µ, ν = 0 to 7)

[Kµ, S1(eν)] =− iS2(eνeµ) (∀µ, ν = 0 to 7)

[Kµ, S2(eν)] =0 (∀µ, ν = 0 to 7) (71)

7 Conformal group in D=10 space-time:

A conformal transformation of the coordinates is a mapping which leaves invariant the metric ηµν up to a scale

η′µν(x′) =Λ(x)ηµν . (72)

The set of all conformal transformations form a group which has Poincaré group (discuss in previuos section) as subgroup
corresponds to Λ(x) = 1. The conformal group of D = 10 space is isomorphic to the group SO(1, 11) have the following
set of generators:

45 Generators of rotation SO(1, 9) as

Σ(8)
µν =

(
Σ

(4)
µν 0

0 Σ
(4)
µν

)
(∀µ, ν = 0 to 9)

Ξ(8)
µν =

(
Ξ
(4)
µν 0

0 Ξ
(8)
µν

)
(∀µ, ν = 1 to 7) (73)

10 generators of translation dfeined as

Pµ =
i

2

(
0 0

γµ 0

)
(∀µ = 0 to 9). (74)

10 generators of conformal accelerations may be defined as

Kµ =
i

2

(
0 γµ

0 0

)
(∀µ = 0 to 9). (75)
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One generator of dilations may be defined as

D =
1

4

(
I4 0

0 −I4

)
. (76)

The conformal algebra in D = 10 space-time has the following commutation relations

[Kµ,Kν ] =0

[Σ
(8)
0n ,Kj ] =− i(η0jKn − ηnjK0)

[Σ
(8)
8k ,Kj ] =− i(η8jKk − ηkjK8)

[Σ
(8)
9k ,Kj ] =− i(η9jKk − ηkjK9)

[Σ
(8)
αβ ,Kσ] =− i(ηασKβ − ηβσKα) +W ′′

αβσγ

[Ξ(8)
µν ,Kσ] =− i

6
(ηµσKν − ηνσKµ)−Wµνσρ

[P (8)
µ ,K(8)

ν ] =− 2ηµνD + Σ(8)
µν

[P (8)
µ , D] =

1

4
Pµ

[K(8)
µ , D] =− 1

4
Kµ

[Σ
(8)
αβ , D] =0

[Ξ(8)
µν , D] =0 (77)
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