E8 Cohomology and Physics

Frank Dodd (Tony) Smith, Jr. - 2017

Cohomology structure of E8 represents realistic E8 Lagrangian Physics as described in <u>http://vixra.org/abs/1602.0319</u>

Weyl Symmetric Polynomial Degrees N of E8: 2, 8, 12, 14, 18, 20, 24, 30 and their product = I Weyl Group of E8 I and their sum = | Weyl Reflections | + 8(N-1 = 1, 7, 11, 13, 17, 19, 23, and 29 = exponents are all relatively prime to E8 Coxeter Number = 30) Topological Types (2N-1) of E8: 3, 15, 23, 27, 35, 39, 47, 59 center = Z1 = 1 = trivialThe cohomology structure of E8 describes the base manifold spacetime and the gauge bosons and ghosts and the first-generation fermions (second and third fermion generations are not fundamental, but are emergent) of a realistic Lagrangian (see viXra 1602.0319 and 1701.0495 and 1701.0496). E8 = 3 + 15 + 23 + 27 + 35 + 39 + 47 + 59 = 248E8 has a maximal subalgebra D8 whose cohomology structure is 11 **D8** 3 7 15 15 19 23 27 = 120 = 28 + 28 + 64_____ _____ D8 represents Gauge Bosons+Ghosts and 8x8 Spacetime **D4 Gravity Gauge Bosons** 3 7 3 3 and Standard Model Ghosts 4 8 together make up a D4 subalgebra of D8: D4grav 3 7 7 11 = 28 **D4 Standard Model Gauge Bosons** 8 4 7 and Gravity Ghosts 3 3 3 together make up another D4 subalgebra of D8: D4stdmod 7 7 3 = 2811 8x8 Spacetime is represented by $D8 / D4 \times D4 = 64 = 8$ dim momentum x 8dim position 4 4 12 16 4 24 = 64E8 / D8 represents 248 - 120 = 128 components for 8dim Spacetime of 8 first-generation fermion particles and 8 first-generation antiparticles: Fermions 8 12 12 20 20 24 32 = 128

Here is more detail about E8 Cohomology structure of Fermions:

Fermions have 8 Spacetime components - Octonion Basis = 1 i j k E I J K

8F = 8 Fermion Types = e rUq gUq bUq n rDq gDq bDq 4Fe = 4 Electron Fermion Types = e rUq gUq bU 4Fn = 4 Neutrino Fermion Types = n rDq gDq bDq Fp = Fermion particle Fap = Fermion antiparticle										
Fermions	8	12	12	20	20	24	32 = 128			
1 x 8Fp ijk x 8Fp	8					24				
EIJK x 8Fp		12			20					
1ijk x 8Fap			12	20						
EIJK x 8Fap							32			

Here is more detail about E8 Cohomology structure of 8x8 Spacetime = 8x8DST

The 8x8 is physically 8 momentum x 8 position of 8-dim Octonionic Spacetime. The Octonion Basis elements represent 8 momentum components of each M4 x CP2 position.

Octonion Basis = 1 i j k E I J K x M4 x CP2 Kaluza-Klein

8x8DST	4	4	4	12	16	24 = 64
1 x M4 1 x CP2 E x CP2 ijk x M4 EIJK x M4 ijkIJK x CP2	4	4	4	12	16	24

References:

Mimura and Toda, "Topology of Lie Groups, I and II", AMS 1991 Humphreys, "Reflection Groups and Coxeter Groups", Cambridge 1990 Kane, "The Homology of Hopf Spaces", North-Hoilland 1988