
Measurement of Proton Mass  

What is the mass of a proton? Scientists from Germany and Japan have made 

an important step toward better understanding this fundamental constant. 

[12] 

In a paper published today in the journal Science, the ASACUSA experiment at 

CERN reported new precision measurement of the mass of the antiproton 

relative to that of the electron. [11] 

When two protons approaching each other pass close enough together, they 

can “feel” each other, similar to the way that two magnets can be drawn 

closely together without necessarily sticking together. According to the 

Standard Model, at this grazing distance, the protons can produce a pair of W 

bosons. [10] 

The fact that the neutron is slightly more massive than the proton is the 

reason why atomic nuclei have exactly those properties that make our world 

and ultimately our existence possible. Eighty years after the discovery of the 

neutron, a team of physicists from France, Germany, and Hungary headed by 

Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny 

neutron-proton mass difference. [9] 

Taking into account the Planck Distribution Law of the electromagnetic 

oscillators, we can explain the electron/proton mass rate and the Weak and 

Strong Interactions. Lattice QCD gives the same results as the diffraction 

patterns of the electromagnetic oscillators, explaining the color confinement 

and the asymptotic freedom of the Strong Interactions. 
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Preface 
The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei 

have exactly those properties that make our world and ultimately our existence possible. Eighty 

years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary 

headed by Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton 

mass difference. The findings, which have been published in the current edition of Science, are 

considered a milestone by many physicists and confirm the theory of the strong interaction. As one 

of the most powerful computers in the world, JUQUEEN at Forschungszentrum Jülich was decisive 

for the simulation. [10] 

The diffraction patterns of the electromagnetic oscillators give the explanation of the Electroweak 

and Electro-Strong interactions. [2] Lattice QCD gives the same results as the diffraction patterns 

which explain the color confinement and the asymptotic freedom.  

The hadronization is the diffraction pattern of the baryons giving the jet of the color – neutral 

particles! 

Most precise measurement of proton mass 
What is the mass of a proton? Scientists from Germany and Japan have made an important step 

toward better understanding this fundamental constant. By means of precision measurements on a 

single proton, they were able to improve the precision by a factor of three and also correct the 

existing value. 



To determine the mass of a single proton more accurately, the group of physicists from the Max 

Planck Institute for Nuclear Physics in Heidelberg and RIKEN in Japan performed an important high-

precision measurement in a greatly advanced Penning trap system, designed by Sven Sturm and 

Klaus Blaum from MPI-K, using ultra-sensitive single particle detectors that were partly developed by 

RIKEN's Ulmer Fundamental Symmetries Laboratory. 

The proton is the nucleus of the hydrogen atom and one of the basic building blocks of all other 

atomic nuclei. Therefore, the proton's mass is an important parameter in atomic physics: it is one of 

the factors that affect how the electrons move around the atomic nucleus. This is reflected in the 

spectra, i.e., the light colours (wavelengths) that atoms can absorb and emit again. By comparing 

these wavelengths with theoretical predictions, it is possible to test fundamental physical theories. 

Further, precise comparisons of the masses of the proton and the antiproton may help in the search 

for the crucial difference – besides the reversed sign of the charge – between matter and antimatter. 

Penning traps are well-proven as suitable "scales" for ions. In such a trap, it is possible to confine, 

nearly indefinitely, single charged particles such as a proton, for example, by means of electric and 

magnetic fields. Inside the trap, the trapped particle performs a characteristic periodic motion at a 

certain oscillation frequency. This frequency can be measured and the mass of the particle 

calculated from it. In order to reach the targeted high precision, an elaborate measurement 

technique was required. 

The carbon isotope 12C with a mass of 12 atomic mass units is defined as the mass standard for 

atoms. "We directly used it for comparison," says Sven Sturm. "First we stored each one proton and 

one carbon ion (12C6+) in separate compartments of our Penning trap apparatus, then transported 

each of the two ions into the central measurement compartment and measured its motion." From 

the ratio of the two measured values the group obtained the proton's mass directly in atomic units. 

The measurement compartment was equipped with specifically developed purpose-built electronics. 

Andreas Mooser of RIKEN's Fundamental Symmetries Laboratory explains its function: "It allowed us 

to measure the proton under identical conditions as the carbon ion despite its about 12-fold lower 

mass and 6-fold smaller charge." 

The resulting mass of the proton, determined to be 1.007276466583(15)(29) atomic mass units, is 

three times more precise than the presently accepted value. The numbers in parentheses refer to 

the statistical and systematic uncertainties, respectively. 

Intriguingly, the new value is significantly smaller than the current standard value. Measurements by 

other authors yielded discrepancies with respect to the mass of the tritium atom, the heaviest 

hydrogen isotope (T = 3H), and the mass of light helium (3He) compared to the "semiheavy" 

hydrogen molecule HD (D = 2H, deuterium, heavy hydrogen). "Our result contributes to solving this 

puzzle, since it corrects the proton's mass in the proper direction," says Klaus Blaum. 

Florian Köhler-Langes of MPIK explains how the researchers intend to further improve the precision 

of their measurement: "In the future, we will store a third ion in our trap tower. By simultaneously 

measuring the motion of this reference ion, we will be able to eliminate the uncertainty originating 

from fluctuations of the magnetic field." The work was published in Physical Review Letters. [12] 



CERN experiment improves precision of antiproton mass 

measurement with new innovative cooling technique 
In a paper published today in the journal Science, the ASACUSA experiment at CERN reported new 

precision measurement of the mass of the antiproton relative to that of the electron. This result is 

based on spectroscopic measurements with about 2 billion antiprotonic helium atoms cooled to 

extremely cold temperatures of 1.5 to 1.7 degrees above absolute zero. In antiprotonic helium 

atoms an antiproton takes the place of one of the electrons that would normally be orbiting the 

nucleus.  

Such measurements provide a unique tool for comparing with high precision the mass of an 

antimatter particle with its matter counterpart. The two should be strictly identical. 

"A pretty large number of atoms containing antiprotons were cooled below minus 271 degrees 

Celsius. It's kind of surprising that a 'half-antimatter' atom can be made so cold by simply placing it in 

a refrigerated gas of normal helium," said Masaki Hori, group leader at the ASACUSA collaboration. 

Matter and antimatter particles are always produced as a pair in particle collisions. Particles and 

antiparticles have the same mass and opposite electric charge. The positively charged positron, for 

example, is an anti-electron, the antiparticle of the negatively charged electron. Positrons have been 

observed since the 1930s, both in natural collisions from cosmic rays and in particle accelerators. 

They are used today in hospital in PET scanners. However, studying antimatter particles with high-

precision remains a challenge because when matter and antimatter come into contact, they 

annihilate – disappearing in a flash of energy. 

CERN's Antiproton Decelerator is a unique facility delivering low-energy antiproton beams to 

experiments for antimatter studies. In order to make measurements with these antiprotons, several 

experiments trap them for long periods using magnetic devices. ASACUSA's approach is different as 

the experiment is able to create very special hybrid atoms made of a mix of matter and antimatter: 

these are the antiprotonic helium atoms composed of an antiproton and an electron orbiting a 

helium nucleus. They are made by mixing antiprotons with helium gas. In this mixture, about 3% of 

the antiprotons replace one of the two electrons of the helium atom. In antiprotonic helium, the 

antiproton is in orbit around the helium nucleus, and protected by the electron cloud that surrounds 

the whole atom, making antiprotonic helium stable enough for precision measurements. 

Latest precision measurement of the mass of the proton and the anti proton though the production 

of antiprotonic helium by the ASACUSA experiment at CERN's antimatter factory, with a beam from 

the Antiproton Decelerator 00:03:41.480 / 02 November 2016. Credit: CERN (License: Julien Ordan) 

The measurement of the antiproton's mass is done by spectroscopy, by shining a laser beam onto 

the antiprotonic helium. Tuning the laser to the right frequency causes the antiprotons to make a 

quantum jump within the atoms. From this frequency the antiproton mass relative to the electron 

mass can be calculated. This method has been successfully used before by the ASACUSA 

collaboration to measure with high accuracy the antiproton's mass. However, the microscopic 

motion of the antiprotonic helium atoms introduced a significant source of uncertainty in previous 

measurements. 



The major new achievement of the collaboration, as reported in Science, is that ASACUSA has now 

managed to cool down the antiprotonic helium atoms to temperatures close to absolute zero by 

suspending them in a very cold helium buffer-gas. In this way, the microscopic motion of the atoms 

is reduced, enhancing the precision of the frequency measurement. The measurement of the 

transition frequency has been improved by a factor of 1.4 to 10 compared with previous 

experiments. Experiments were conducted from 2010 to 2014, with about 2 billion atoms, 

corresponding to roughly 17 femtograms of antiprotonic helium. 

According to standard theories, protons and antiprotons are expected to have exactly the same 

mass. To date, no difference has been found between their masses, but pushing the precision limits 

of this comparison is a very important test of key theoretical principles such as the CPT symmetry. 

CPT is a consequence of basic symmetries of space-time, such as its isotropy in all directions. The 

observation of even a minute breaking of CPT would call for a review of our assumptions about the 

nature and properties of space-time. 

The ASACUSA collaboration is confident that it will be able to further improve the precision of 

antiproton's mass by using two laser beams. In the near future, the start of the ELENA facility at 

CERN will also allow the precision of such measurements to be improved. [11] 

Exclusive production: shedding light with grazing protons 
When two protons approaching each other pass close enough together, they can “feel” each other, 

similar to the way that two magnets can be drawn closely together without necessarily sticking 

together. According to the Standard Model, at this grazing distance, the protons can produce a pair 

of W bosons. 

When two protons approaching each other pass close enough together, they can “feel” each other, 

similar to the way that two magnets can be drawn closely together without necessarily sticking 

together. According to the Standard Model, at this grazing distance, the protons can produce a pair 

of W bosons. 

As its name implies, the primary mission of the Large Hadron Collider is to generate collisions of 

protons for study by physicists at experiments such as CMS. It may surprise you to find out that the 

vast majority of protons accelerated by the LHC never collide with one another. Some of these fly-by 

protons, however, still interact with each other in such a way as to help physicists shed light on the 

nature of the universe. 

The LHC accelerates bunches of protons, with more than 10 billion protons in each bunch, in 

opposite directions around the ring. As those protons arrive at a detector, such as CMS, magnets 

focus the beams to increase the density of protons and thus increase the chance of a coveted 

collision. Despite what seems like overwhelming odds, only a few of these protons actually collide 

with each other: tens to hundreds per each beam “crossing.” An even smaller fraction of the 

remaining protons pass close enough to other protons to “feel” each other, even if they do not 

directly collide. 

Think of two toy magnets on a tabletop: A north end and a south end moved close enough to each 

other will rather firmly stick to each other. However, you can also move one magnet just close 



enough to the other that you can make it wiggle without drawing it all the way over. This exchange 

of energy is mediated by the exchange of photons, the carrier particle of the electromagnetic force. 

Similarly, two protons in the LHC that get just the right distance from each other will exchange 

photons without colliding. 

Now for the part that gets really interesting to particle physicists. The photons generated by these 

near-miss proton interactions can be billions of times more energetic than those of visible light, and 

as a result they carry enough energy to create particles in their own right. The Standard Model 

predicts the production of massive particles, such as pairs of W bosons, from these interacting 

photons without any of the additional activity that is seen in the messier proton-proton collision 

events. In a detector such as CMS, this pair of W bosons is said to be produced “exclusively.” 

However, “exclusive production” is an apt name in another way – creating a pair of W bosons from 

interacting photons is a rare occurrence in an even rarer sample of photons generated from near-

miss proton interactions. 

CMS scientists performed such a search for such W boson pairs emanating from interacting photons. 

In a data set consisting of 7- and 8-TeV collisions, 15 candidate events for this process were 

observed. While it may not seem like much, the expected background was considerably smaller, 

allowing the CMS team to claim that they have evidence of the process. (In the particle physics 

world, evidence is a three-standard-deviation departure from background, as explained here).  

Furthermore, these results helped place stringent results on a number of models which predict a 

greater rate of this process. [10] 

Theory of the strong interaction verified 
The findings, which have been published in the current edition of Science, are considered a 

milestone by many physicists and confirm the theory of the strong interaction. As one of the most 

powerful computers in the world, JUQUEEN at Forschungszentrum Jülich was decisive for the 

simulation. 

The existence and stability of atoms relies heavily on the fact that neutrons are slightly more mas-

sive than protons. The experimentally determined masses differ by only around 0.14 percent. A 

slightly smaller or larger value of the mass difference would have led to a dramatically different 

universe, with too many neutrons, not enough hydrogen, or too few heavier elements. The tiny mass 

difference is the reason why free neutrons decay on average after around ten minutes, while 

protons - the unchanging building blocks of matter - remain stable for a practically unlimited period. 

In 1972, about 40 years after the discovery of the neutron by Chadwick in 1932, Harald Fritzsch 

(Germany), Murray Gell-Mann (USA), and Heinrich Leutwyler (Switzerland) presented a consistent 

theory of particles and forces that form the neutron and the proton known as quantum 

chromodynamics. Today, we know that protons and neutrons are composed of "up quarks" and 

"down quarks". The proton is made of one down and two up quarks, while the neutron is composed 

of one up and two down quarks. 

Simulations on supercomputers over the last few years confirmed that most of the mass of the 

proton and neutron results from the energy carried by their quark constituents in accordance with 



Einstein's formula E=mc2. However, a small contribution from the electromagnetic field surrounding 

the electrically charged proton should make it about 0.1 percent more massive than the neutral 

neutron. The fact that the neutron mass is measured to be larger is evidently due to the different 

masses of the quarks, as Fodor and his team have now shown in extremely complex simulations. 

For the calculations, the team developed a new class of simulation techniques combining the laws of 

quantum chromodynamics with those of quantum electrodynamics in order to precisely deter-mine 

the effects of electromagnetic interactions. By controlling all error sources, the scientists successfully 

demonstrated how finely tuned the forces of nature are. 

Professor Kurt Binder is Chairman of the Scientific Council of the John von Neumann Institute for 

Computing (NIC) and member of the German Gauss Centre for Supercomputing. Both organizations 

allocate computation time on JUQUEEN to users in a competitive process. "Only using world-class 

computers, such as those available to the science community at Forschungszentrum Jülich, was it 

possible to achieve this milestone in computer simulation," says Binder. JUQUEEN was supported in 

the process by its "colleagues" operated by the French science organizations CNRS and GENCI as well 

as by the computing centres in Garching (LRZ) and Stuttgart (HLRS). [9] 

Asymmetry in the interference occurrences of oscillators 
The asymmetrical configurations are stable objects of the real physical world, because they cannot 

annihilate. One of the most obvious asymmetry is the proton – electron mass rate Mp = 1840 Me 

while they have equal charge. We explain this fact by the strong interaction of the proton, but how 

remember it his strong interaction ability for example in the H – atom where are only 

electromagnetic interactions among proton and electron.  

This gives us the idea to origin the mass of proton from the electromagnetic interactions by the way 

interference occurrences of oscillators. The uncertainty relation of Heisenberg makes sure that the 

particles are oscillating.  

The resultant intensity due to n equally spaced oscillators, all of equal amplitude but different from 

one another in phase, either because they are driven differently in phase or because we are looking 

at them an angle such that there is a difference in time delay: 

(1) I = I0 sin
2
 n φ/2 / sin

2 φ/2 

If φ is infinitesimal so that sinφ = φ,  than 

(2) Ι =  n2 Ι0    

This gives us the idea of 

(3) Mp = n
2 

Me 



 

Figure 1.) A linear array of n equal oscillators 

There is an important feature about formula (1) which is that if the angle φ is increased by the 

multiple  of 2π, it makes no difference to the formula. 

So  

(4) d sin θ = m λ 

and we get m-order beam if λ less than d. [6] 

If d less than λ we get only zero-order one centered at θ = 0. Of course, there is also a beam in the 

opposite direction. The right chooses of d and λ we can ensure the conservation of charge. 

For example 

(5) 2 (m+1) = n 

Where 2(m+1) = Np number of protons and n = Ne number of electrons. 

In this way we can see the H2 molecules so that 2n electrons of n radiate to 4(m+1) protons, because 

de > λe for electrons, while the two protons of one H2 molecule radiate to two electrons of them, 

because of de < λe for this two protons. 

To support this idea we can turn to the Planck distribution law, that is equal with the Bose – Einstein 

statistics. 



Spontaneously broken symmetry in the Planck distribution law
The Planck distribution law is temperature dependent and it should be true locally and globally. I 

think that Einstein's energy-matter equivalence means some kind of existence of electromagnetic 

oscillations enabled by the temperature, creating the different matter formulas, atoms molecules, 

crystals, dark matter and energy. 

Max Planck found for the black body radiation

As a function of wavelength

 

 

Figure 2. The distribution law for different T temperatures
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wavelength (λ), Planck's law is written as: 

 

Figure 2. The distribution law for different T temperatures 

Spontaneously broken symmetry in the Planck distribution law 
The Planck distribution law is temperature dependent and it should be true locally and globally. I 

matter equivalence means some kind of existence of electromagnetic 

oscillations enabled by the temperature, creating the different matter formulas, atoms molecules, 

 



We see there are two different λ1 and 

so that λ1 < d < λ2. 

We have many possibilities for such asymmetrical reflections, so we have many stable oscillator 

configurations for any T temperature with equal exchange of intensity by radiation. All of these 

configurations can exist together. At the 

symmetrical. The λmax is changing by the Wien's displacement law in many textbooks.

(7)  

where λmax is the peak wavelength, 
is a constant of proportionality
2.8977685(51)×10−3 m·K (2002 

By the changing of T the asymmetrical configurations are changing too.

 

The structure of the proton
We must move to the higher T temperature if we wa

d<10
-13

 cm. [2] If an electron with λ
we get n = 2 so we need two particles with negative and two particles with positive charges. If the 

proton can fraction to three parts, two with positive and one with negative charges, then the 

reflection of oscillators are right. Because this very strange reflection where one part of the proton 

with the electron together on the same side of the reflection, the

quasi lepton so d > λq. One way dividing the proton to three parts is, dividing his oscillation by the 

three direction of the space. We can order 1/3 e charge to each coordinates and 2/3 e charge to one 

plane oscillation, because the charge is scalar. In this way the proton has two +2/3 e plane oscillation 

and one linear oscillation with -1/3 e charge. The colors of quarks are coming from the three 

directions of coordinates and the proton is colorless. The flavors of quarks 

oscillations differently by energy and if they are plane or linear oscillations. We know there is no 

possible reflecting two oscillations to each other which are completely orthogonal, so the quarks 

never can be free, however there is asym

them to orthogonal.  If they will be completely orthogonal then they lose this reflection and take 

new partners from the vacuum. Keeping the symmetry of the vacuum the new oscillations are 

keeping all the conservation laws, like charge, number of baryons and leptons. The all features of 

gluons are coming from this model. The mathematics of reflecting oscillators show Fermi statistics.

Important to mention that in the Deuteron there are 3 quarks of +2/

u and d quarks making the complete symmetry and because this its high stability.

and λ2 for each T and intensity, so we can find between them a d 

We have many possibilities for such asymmetrical reflections, so we have many stable oscillator 

configurations for any T temperature with equal exchange of intensity by radiation. All of these 

configurations can exist together. At the λmax is the annihilation point where the configurations are 

is changing by the Wien's displacement law in many textbooks. 

is the peak wavelength, T is the absolute temperature of the black body, and 
lity  called Wien's displacement constant, equal to 

m·K (2002 CODATA recommended value). 

By the changing of T the asymmetrical configurations are changing too. 

The structure of the proton 
We must move to the higher T temperature if we want look into the nucleus or nucleon arrive to 

λe < d move across the proton then by (5)   2 (m+1) = n

we get n = 2 so we need two particles with negative and two particles with positive charges. If the 

can fraction to three parts, two with positive and one with negative charges, then the 

reflection of oscillators are right. Because this very strange reflection where one part of the proton 

with the electron together on the same side of the reflection, the all parts of the proton must be 

. One way dividing the proton to three parts is, dividing his oscillation by the 

three direction of the space. We can order 1/3 e charge to each coordinates and 2/3 e charge to one 

ecause the charge is scalar. In this way the proton has two +2/3 e plane oscillation 

1/3 e charge. The colors of quarks are coming from the three 

directions of coordinates and the proton is colorless. The flavors of quarks are the possible 

oscillations differently by energy and if they are plane or linear oscillations. We know there is no 

possible reflecting two oscillations to each other which are completely orthogonal, so the quarks 

never can be free, however there is asymptotic freedom while their energy are increasing to turn 

them to orthogonal.  If they will be completely orthogonal then they lose this reflection and take 

new partners from the vacuum. Keeping the symmetry of the vacuum the new oscillations are 

l the conservation laws, like charge, number of baryons and leptons. The all features of 

gluons are coming from this model. The mathematics of reflecting oscillators show Fermi statistics.

Important to mention that in the Deuteron there are 3 quarks of +2/3 and -1/3 charge, that is three 

u and d quarks making the complete symmetry and because this its high stability. 

for each T and intensity, so we can find between them a d 

We have many possibilities for such asymmetrical reflections, so we have many stable oscillator 

configurations for any T temperature with equal exchange of intensity by radiation. All of these 

annihilation point where the configurations are 

 

is the absolute temperature of the black body, and b 
, equal to 

nt look into the nucleus or nucleon arrive to 

2 (m+1) = n with m = 0 

we get n = 2 so we need two particles with negative and two particles with positive charges. If the 

can fraction to three parts, two with positive and one with negative charges, then the 

reflection of oscillators are right. Because this very strange reflection where one part of the proton 

all parts of the proton must be 

. One way dividing the proton to three parts is, dividing his oscillation by the 

three direction of the space. We can order 1/3 e charge to each coordinates and 2/3 e charge to one 

ecause the charge is scalar. In this way the proton has two +2/3 e plane oscillation 

1/3 e charge. The colors of quarks are coming from the three 

are the possible 

oscillations differently by energy and if they are plane or linear oscillations. We know there is no 

possible reflecting two oscillations to each other which are completely orthogonal, so the quarks 

ptotic freedom while their energy are increasing to turn 

them to orthogonal.  If they will be completely orthogonal then they lose this reflection and take 

new partners from the vacuum. Keeping the symmetry of the vacuum the new oscillations are 

l the conservation laws, like charge, number of baryons and leptons. The all features of 

gluons are coming from this model. The mathematics of reflecting oscillators show Fermi statistics. 

1/3 charge, that is three 



The weak interaction 
The weak interaction transforms an electric charge in the diffraction pattern from one side to the 

other side, causing an electric dipole momentum change, which violates the CP and time reversal 

symmetry. 

Another important issue of the quark model is when one quark changes its flavor such that a linear 

oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1. This 

kind of change in the oscillation mode requires not only parity change, but also charge and time 

changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino. 

The right handed anti-neutrino and the left handed neutrino exist only because changing back the 

quark flavor could happen only in reverse, because they are different geometrical constructions, the 

u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It needs 

also a time reversal, because anti particle (anti neutrino) is involved. 

  
The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for 

example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction 

changes the entropy since more or less particles will give more or less freedom of movement. The 

entropy change is a result of temperature change and breaks the equality of oscillator diffraction 

intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and 

makes possible a different time dilation as of the special relativity. 

The limit of the velocity of particles as the speed of light appropriate only for electrical charged 

particles, since the accelerated charges are self maintaining locally the accelerating electric force. 

The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that is 

the time coordinate not works as in the electromagnetic interactions, consequently the speed of 

neutrinos is not limited by the speed of light. 

The weak interaction T-asymmetry is in conjunction with the T-asymmetry of the second law of 

thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes the 

weak interaction, for example the Hydrogen fusion.  

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional 

oscillation by changing d to u quark and creating anti neutrino going back in time relative to the 

proton and electron created from the neutron, it seems that the anti neutrino fastest then the 

velocity of the photons created also in this weak interaction? 

 
 
A quark flavor changing shows that it is a reflection changes movement and the CP- and T- symmetry 

breaking. This flavor changing oscillation could prove that it could be also on higher level such as 

atoms, molecules, probably big biological significant molecules and responsible on the aging of the 

life. 

 
Important to mention that the weak interaction is always contains particles and antiparticles, where 

the neutrinos (antineutrinos) present the opposite side. It means by Feynman’s interpretation that 

these particles present the backward time and probably because this they seem to move faster than 

the speed of light in the reference frame of the other side. 

 



Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by the 

velocity of the electromagnetic wave, so the neutrino’s velocity cannot exceed the velocity of light. 

 
 

The Strong Interaction - QCD 

Confinement and Asymptotic Freedom 

For any theory to provide a successful description of strong interactions it should simultaneously 

exhibit the phenomena of confinement at large distances and asymptotic freedom at short 

distances. Lattice calculations support the hypothesis that for non-abelian gauge theories the two 

domains are analytically connected, and confinement and asymptotic freedom coexist. 

Similarly, one way to show that QCD is the correct theory of strong interactions is that the coupling 

extracted at various scales (using experimental data or lattice simulations) is unique in the sense that 

its variation with scale is given by the renormalization group. The data for αs is reviewed in Section 

19. In this section I will discuss what these statements mean and imply. [4] 

 

Lattice QCD 
 

Lattice QCD is a well-established non-perturbative approach to solving the quantum 

chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid 

or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites 

infinitesimally close to each other, the continuum QCD is recovered. [6] 

Analytic or perturbative solutions in low-energy QCD are hard or impossible due to the 
highly nonlinear nature of the strong force. This formulation of QCD in discrete rather than 
continuous space-time naturally introduces a momentum cut-off at the order 1/a, where a is 
the lattice spacing, which regularizes the theory. As a result, lattice QCD is mathematically 
well-defined. Most importantly, lattice QCD provides a framework for investigation of non-
perturbative phenomena such as confinement and quark-gluon plasma formation, which are 
intractable by means of analytic field theories. 

In lattice QCD, fields representing quarks are defined at lattice sites (which leads to fermion 
doubling), while the gluon fields are defined on the links connecting neighboring sites. 

 

QCD 

QCD enjoys two peculiar properties: 

• Confinement, which means that the force between quarks does not diminish as they are 

separated. Because of this, it would take an infinite amount of energy to separate two 

quarks; they are forever bound into hadrons such as the proton and the neutron. Although 

analytically unproven, confinement is widely believed to be true because it explains the 

consistent failure of free quark searches, and it is easy to demonstrate in lattice QCD. 



• Asymptotic freedom, which means that in very high-energy reactions, quarks and gluons 

interact very weakly. This prediction of QCD was first discovered in the early 1970s by David 

Politzer and by Frank Wilczek and David Gross. For this work they were awarded the 2004 

Nobel Prize in Physics. 

There is no known phase-transition line separating these two properties; confinement is 
dominant in low-energy scales but, as energy increases, asymptotic freedom becomes 
dominant. [5] 

 

Color Confinement 
When two quarks become separated, as happens in particle accelerator collisions, at some point it is 

more energetically favorable for a new quark-antiquark pair to spontaneously appear, than to allow 

the tube to extend further. As a result of this, when quarks are produced in particle accelerators, 

instead of seeing the individual quarks in detectors, scientists see "jets" of many color-neutral 

particles (mesons and baryons), clustered together. This process is called hadronization, 

fragmentation, or string breaking, and is one of the least understood processes in particle physics. 

[3] 

Electromagnetic inertia and mass 

Electromagnetic Induction 

Since the magnetic induction creates a negative electric field as a result of the changing acceleration, 

it works as an electromagnetic inertia, causing an electromagnetic mass.  [1] 

The frequency dependence of mass 

Since E = hν and E = mc
2
, m = hν /c

2
 that is the m depends only on the ν frequency. It means that the 

mass of the proton and electron are electromagnetic and the result of the electromagnetic 

induction, caused by the changing acceleration of the spinning and moving charge! It could be that 

the mo inertial mass is the result of the spin, since this is the only accelerating motion of the electric 

charge. Since the accelerating motion has different frequency for the electron in the atom and the 

proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, 

giving equal intensity of radiation. 

Electron – Proton mass rate 

The Planck distribution law explains the different frequencies of the proton and electron, giving 

equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns 

they have some closeness to each other. [2] 

 

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 



these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter. 
 

The potential of the diffraction pattern 
The force that holds protons and neutrons together is extremely strong. It has to be strong to 
overcome the electric repulsion between the positively charged protons. It is also of very short range, 
acting only when two particles are within 1 or 2 fm of each other.  

1 fm (femto meter) = 10^{-15} m = 10-15 m = 0.000000000000001 meters.  

The qualitative features of the nucleon-nucleon force are shown below.  

 

There is an extremely strong short-range repulsion that pushes protons and neutrons apart before 
they can get close enough to touch. (This is shown in orange.) This repulsion can be understood to 
arise because the quarks in individual nucleons are forbidden to be in the same area by the Pauli 
Exclusion Principle.  

There is a medium-range attraction (pulling the neutrons and protons together) that is strongest for 
separations of about 1 fm. (This is shown in gray.) This attraction can be understood to arise from the 
exchange of quarks between the nucleons, something that looks a lot like the exchange of a pion 
when the separation is large.  

The density of nuclei is limited by the short range repulsion. The maximum size of nuclei is limited by 
the fact that the attractive force dies away extremely quickly (exponentially) when nucleons are more 
than a few fm apart.  

Elements beyond uranium (which has 92 protons), particularly the trans-fermium elements (with more 
than 100 protons), tend to be unstable to fission or alpha decay because the Coulomb repulsion 
between protons falls off much more slowly than the nuclear attraction. This means that each proton 
sees repulsion from every other proton but only feels an attractive force from the few neutrons and 
protons that are nearby -- even if there is a large excess of neutrons.  

Some "super heavy nuclei" (new elements with about 114 protons) might turn out to be stable as a 
result of the same kind of quantum mechanical shell-closure that makes noble gases very stable 
chemically. [7] 



Conclusions 
The results of this work by Fodor's team of physicists from Bergische Universität Wuppertal, Centre 

de Physique Théorique de Marseille, Eötvös University Budapest, and Forschungszentrum Jülich 

open the door to a new generation of simulations that will be used to determine the properties of 

quarks, gluons, and nuclear particles. According to Professor Kálmán Szabó from Forschungszentrum 

Jülich, "In future, we will be able to test the standard model of elementary particle physics with a 

tenfold increase in precision, which could possibly enable us to identify effects that would help us to 

uncover new physics beyond the standard model." [9] 

Lattice QCD gives the same results as the diffraction theory of the electromagnetic oscillators, which 

is the explanation of the strong force and the quark confinement. [8] 

References 
[1] The Magnetic field of the Electric current and the Magnetic induction 

http://academia.edu/3833335/The_Magnetic_field_of_the_Electric_current 

[2] 3 Dimensional String Theory 

http://academia.edu/3834454/3_Dimensional_String_Theory 

[3] Color confinement - Wikipedia, the free encyclopedia 

http://en.wikipedia.org/wiki/Color_confinement 

[4] INTRODUCTION TO LATTICE QCD 

http://arxiv.org/abs/hep-lat/9807028 

[5] QCD http://en.wikipedia.org/wiki/Quantum_chromodynamics 

[6] http://en.wikipedia.org/wiki/Lattice_QCD 

[7] 

http://www.cartage.org.lb/en/themes/sciences/physics/NuclearPhysics/WhatisNuclear/Forces/Forc

es.htm 

[8] Theory of Everything 

http://www.academia.edu/4168202/Theory_of_Everything_-_4_Dimensional_String_Theory 

[9] Theory of the strong interaction verified 

http://phys.org/news/2015-03-theory-strong-interaction.html 

[10] Exclusive production: shedding light with grazing protons 

http://news.fnal.gov/2016/06/exclusive-production-shedding-light-grazing-protons/ 

[11] CERN experiment improves precision of antiproton mass measurement with new innovative 

cooling technique 



http://phys.org/news/2016-11-cern-precision-antiproton-mass-cooling.html 

[12] Most precise measurement of proton mass 

https://phys.org/news/2017-07-precise-proton-mass.html 

 


