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Abstract

We point to a significant mismatch between the nature of the baryon number and
of the electric charge of baryons in the Skyrme topological model. Requirement
of consistency between these two then demands a significant improvement in
how the electric charge is defined in this model. The Skyrme model thereafter
has a consistent electric charge which has a unique colour dependence built into
it. Its relationship with other theoretical model structures is also studied.
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1. Skyrme topological model:

The Skyrme Lagrangian is [1,2]

LS =
fπ

2

4
Tr(LµL

µ) +
1

32e2
Tr[Lµ, Lν ]

2
(1)

where Lµ = U†∂µU . The U field for the three flavour case is

U(x) = exp[
iλaφa(x)

fπ
] (2)

Here φa is the pseudoscalar octet of π, K and η mesons. In the full topological
Skyrme model this is supplemented with a Wess-Zumino effective action gievn
as [1,3],

ΓWZ =
−i

240π2

∫
Σ

d5xεµναβγTr[LµLνLαLβLγ ] (3)

Thus with this anomaly term the effective action is.

Seff =

∫
d4x Tr [LµL

µ] + n ΓWZ + quartic term (4)

where the winding numbber n is an integer n ∈ Z, the homotopy group of
mapping being Π5(SU(3)) = Z.

Under an electromagnetic gauge transformation, generated by the charge
operator Q, the WZ term gives rise to an anomalous electromagnetic current.
It turns out that this current is purely isoscalar and therefor it is proportional
to the quark model baryon current. One finds the Noether current as [1,2]

Jµ(x) =
1

48π2
εµναβTr[Q(LαLβLγ −RαLβRγ)] (5)

with Lµ = U∂µU
†

Demanding gauge invariance in the presence of the electromagnetic field, the
effective action becomes,

ˆSeff =
fπ

2

4

∫
d4x Tr [DµU(DµU)

†
] + n ˆΓWZ + quartic term (6)

One of the terms in n ˆΓWZ is applied [1,3] to calculate the anomalous decay
rate of π0 → γγ with u- and d- quarks going around in the triangular loop as,

A =
1

8π2

1

fπ
[n(Q(u)2 −Q(d)2)]e2Fµν F̄µνφπ0 (7)

2. Static charges and the Standard Model:

With static quark charges 2/3 and -1/3, in eqn. (7) the term (Q(u)2 −
Q(d)2) = 1

3 . Then identifying the winding number with colour, we get n =
Nc = 3. Note that the number of colours taken as 3 is what matches the
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experiment well. Thus again, note that it is only for three colours that the
expermemntal data is matched.

Note that in eqn. (7) the square bracket has two terms - first the winding
number ”n” and the second one is the square charge differences. This charge
part gives (as above) 1/3 for the static charges. By static we mean these are
independent of the colour degree of freedom.

Wherefrom arises this unique static charge structure used in Witten’s paper
[1,3]? To get the static charges of quarks 2/3 and -1/3 one defines the electric
charge operator in the standard way [3, 4 p. 309] as,

Q = T3 +
1

6
(8)

To get these static charges, the term 1
6 is fixed, i.e. is independent of colour.

Actually these are the well know charges obtained in the Standard Model
(SM). The electric charge that arise here are actually of the electro-weak group
SU(2)W ⊗U(1)W , A commonly used definition of the electric charge in the SM
is [2 p. 368,5 p. 346]:

Q = T3
W +

YW
2

(9)

The value of the weak-hypercharges is put in by hand to ensure that for
example the electric charges of the u- and the d-quarks are:

Q(u) =
2

3
, Q(d) = −1

3
(10)

Later the electro-weak group was extended to include the colour group to
make the whole product group of the SM to be SU(3)c⊗SU(2)W⊗U(1)W . This
then was christened the Standard Model (SM). However the same static charges
as above were taken over to hold for the bigger product group of the SM. Thus
these static charges are also by definition assumed to hold for arbitrary number
of colours in SU(N)c ⊗ SU(2)W ⊗ U(1)W .

Note that the electric charge is pre-defined in the SM with respect to the
Spontaneous Symmetry Breaking (SSB) with an Englert-Brout-Higgs (EBH)
field. SSB then generates massses for the gauge fields and also for the matter
particles. Posteriori these SM charges do satisfy the anomaly cancellations for
each generation separately [2,5]. However these charges are arbitarily defined
and as such also are not quantized - and this has been known to be a major
weakness of the SM [2,5].

Next note that for say, with five colours, the association n = Nc = 5 will
not match the experimental pion decay rate for fixed charges 2/3 and -1/3. But
anyway Witten took eqn. (7) to hold good for

n = Nc (11)

for arbitrary number of colours and ”with three in the real world” [3].
Then it can be shown that from eqn. (8), the Noether current in eqn. (5)

Jµ, is an isoscalar. Thus Witten obtained the baryon current from eqn. (5)
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by replacing Q by 1
Nc

, the baryon number carried by each quark in a baryon.

Thus the composite baryon number is finite B = 1
Nc
× Nc. Then he identified

nJµ → nJµB , as

nJµB(x) =
1

48π2

n

Nc
εµναβTr[(LαLβLγ −RαLβRγ)]

=
1

24π2
εµναβTr(LαLβLγ) (12)

This is exactly the same as the topological current [1,2].
Now we have seen above that for arbitrary Nc, the composite baryon number

is finite, i.e. 1. As well known in quark model, the electric charge depends upon
baryon number as well. So as baryon number B=1 is finite, we would expect the
electric charges of proton and neutron to be finite as well. In standard manner
we take, Nc = 2k + 1 to ensure that the number of colours are odd. Then
e.g. proton is made up of (k+1) number of u-quarks and k number of d-quarks
[6,7,8]. Then for static individual quark charges 2/3 and -1/3, the composite
proton and neutron charges are, ,

Q(p) =
Nc + 1

2
(
2

3
) +

Nc − 1

2
(−1

3
) =

Nc + 3

6
(13)

Q(n) =
Nc − 1

2
(
2

3
) +

Nc + 1

2
(−1

3
) =

Nc − 3

6
(14)

Surprisingly these charges of composite baryons are colour dependent. Only
for Nc = 3 the correct baryon charges arise. In general these are blowing up
with colour, and neutron does not even remain charge neutral.

This should be considered a major inconsistency in this analysis. So what is
the source of the problem? Notice that from eqns. (8) (9), the non-T3 part are
static and colour independent. On the other hand in the baryon number above
the hypercharge part was only contributing. We therefore surmise that the
above inconsistency must be arisisng from the the static nature of the electric
charges.

3. Consistent electric charges of quarks:

Let us propose a general definition of electric charge for quarks, taking cue
from eqns. (8) and (9) as

Q(q) = T3 + b (15)

where b is an unknown. In keeping with the spirit of our discussion here, we fix
it by making sure that the proton charge is 1 and neutron is charge neutral. So
for proton,

Q(p) =
Nc + 1

2
(
1

2
+ b) +

Nc − 1

2
(−1

2
+ b) = 1 (16)

This gives b = 1
2Nc

. And thus, the proper definition of electric charge here
is,
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Q(q) = T3 +
1

2Nc
(17)

Now with the above colour dependent charges the the square bracket in eqn.
(7) and with n = Nc for arbitrary number of colours,

Nc(Q(u)2 −Q(d)2) = Nc

[{
1

2

(
1 +

1

Nc

)}2

−
{

1

2

(
−1 +

1

Nc

)}2
]

= 1 (18)

And hence overall there is no Nc− dependence left in the decay rate of π0 →
γγ and the subsequent result matches the experiment well for any arbitrary
colour. So when proper colour dependent electric charges of the quarks are
taken, the decay rate is actually independent of the colour degrees of freedom.
Thus this is a major success of the above colour dependent charges of the quarks
for the Skyrme-Witten model.

Thus we have now with these colour dependent charges, complete consistency
between baryon number and the electric charges, and which in additiuon also
leads to consistency of the pion decay for arbitrary number of colours.

We would like to point out similar colour dependent charges had earlier been
obtained by the author [8,9].

In line with the full group stucture for arbitary number of colours SU(N)c⊗
SU(2)L ⊗ U(1)Y (also for Nc = 3 as well), and having the same generational
structure as the above Standard Model (SM) and with the same Englert-Brout-
Higgs mechanism of spontaneous symmetry breaking etc., but with the major
difference that the anomaly cancellations play a more direct role in fixing the
hypercharges, that one obtains a more general definition of the quark electric
charges [8,9] as,

Q(u) = Q(c) = Q(t) =
1

2
(1 +

1

Nc
) (19)

Q(d) = Q(s) = Q(b) =
1

2
(−1 +

1

Nc
) (20)

Thus amazingly, in this model the electric charges of quarks intrinsically
know of the colour degree of freedom. It was also shown convincingly [8] that
the correct charge does not merely take the static values of 2/3 and -1/3 (i.e.,
independent of any colour), but can differ from these values for arbitrary number
of colours as given above. Also note that the square factor as being equal to 1,
and as given in eqn. [18] was also obtained in the Quantized Charge Standard
Model (QCSM) [10] (also see below).

Now an important distinction may be emphasized. In the SM the charges
are of the electro-weak sector only with no colour dependence. In addition they
are put in by hand and are pre-defined with respect to the SSB. Thus, by its
very definition, colour in electric charge is completely outside the purview of
the SM.

In contrast in the new model above, if is fully quantized and has intrinsic
colour dependence. It gets defined by the process of the SSB itself, with an
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EBH field and where the anomalies play a basic role in fixing the unknown
hypercharges [8,9]. Amazingly though the QCD is independent of QED, the
electric charge however knows of the colour itself. Thus SU(N)c ⊗ SU(2)L ⊗
U(1)Y (also for Nc = 3) is actually already an unified model. So in this
model not only is mass generated in the SSB, but the electric charge itself gets
generated by the SSB. Thus this model is fundamentally different from the SM.
Though it has the same family structure as the SM and uses similar EBH field
structure for SSB, it goes beyond the limitations of the SM, and thus provides a
more fundamental description of the physical reality. We should thus distinguish
it from the SM and hence we call it as the Quantized Charge Standard Model
(QCSM).

4. Conclusions:

Note that in this paper we obtain a satisfying consistency of two apparently
distinct theoretical structures - the Skyrme topological model and the Quan-
tized Charge Standard Model. What seems to connect the two are the anoma-
lies. These anomalies manifest themselves quite differently in these models, but
intrinsically these provide consistent baryon numbers and electric charges of the
matter fields. Our work here prompts for further studies on the relationship of
these two theoretical structures.

In summary, here we have shown that the static charges 2/3 and -1/3 of the
Standard Model appear to be inconsistent when used in the Skyrme topological
model. Consistency here, within the complete structure of the Skyrme model,
demands that the electric charges of quarks have colour dependence in them,
This colour dependence is exactly the same as that provided by the Quantized
Charge Standard Model as well. Thus these new consistency structure effects
in the Skyrme model provide support to the structures arising in the Quantized
Charge Standard Model (QCSM).
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