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We present the formula for the mass spectrum of the charged 
composite particles (CP). This formula includes the 
renormalized fine-structure constant  =1/128.330593928, the 
rest mass of a new electrically charged particle m = 
156.3699214 eV/c2 and two quantum numbers of n and k.  The 
half–integer and integer quantum number n is the projection of 
an orbital angular momentum electrically charged particle on the 
symmetry axis of the CP, and the integer k defines the magnetic 
charges of two Dirac magnetic monopoles, which have opposite 
signs of magnetic charges and masses. The presented model 
predicts the values of spins, masses, charge orbit radii and 
magnetic moments for an infinite number of charged fermions 
and bosons in the infinite range of mass. 

 
 

1. Introduction 
 

120 years ago J. J. Thomson discovered the first subatomic particle – the electron 
[1]. Now several hundred subatomic particles are experimentally known, however, the 
question about the nature of the mass and the mass spectrum of subatomic particles is 
one of the most fundamental problems in physics, which unfortunately is not solved yet. 

By the early 20th century J. J. Thomson, A. M. Abraham, H. A. Lorentz and H. H. 
Poincaré had put forward a very promising idea concerning the electromagnetic nature 
of the electron mass in the framework of classical electrodynamics [1–4]. Lorentz has 
applied this idea for the extended electron model and has estimated quantity named the 
classical electron radius re equating electrostatic energy of the charge e to the electron 
rest energy:  re = e2/mec

2 = 2.81710-12 cm, where e and me are the electron charge and 
mass and c is the speed of light. However, the problem of electron mass has not found 
any consistent solution neither in classical electrodynamics nor later in quantum 
electrodynamics, mainly due to the divergence of electron self-energy in a point particle 
models and the problems with electron stability in extended particle models [5, 6]. 
      The presently successful standard model (SM) of modern particle physics considers 
tree known families of the charged leptons (e, , ) and the quarks (u, d, s, c, b, t) as the 
fundamental (elementary) point-like particles [7]. However, in this approach the SM 
cannot explain nor predict the possible numbers of the families of the fundamental 
particle, its masses and spins and it takes all of them outside the theory as 
experimentally known parameters. Thus, not all of us understand yet the reason of the 
muon existence and the muon-electron universality. Another theoretical problem is the 
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parameters proliferation. The SM depends on more than twenty parameters, which are a 
priori arbitrary. The masses of leptons and quarks in the structure of this theory, as is 
assumed, are proportional to the coupling constants of the charged fermions with the 
scalar Higgs field [8]. As these coupling constants cannot be consistently defined in the 
Higgs theory, this mechanism actually does not provide any deeper understanding of the 
nature and the hierarchy of the mass of fundamental particles. 

 It is reasonable that the solutions of the problem of mass can lie in the developing of 
a new fundamental theory on the basis of a new fundamental structural level which 
allows to explain naturally the known experimental results and in addition to predict 
new phenomena. As it is known from the history of physics, a similar problem was 
successfully solved at the beginning of the last century thanks to the discovery of the 
structure of atom and the development of the quantum theory. 

Various phenomenological models of composite subatomic particles have been 
proposed with the aim to reproduce quantum numbers of leptons and quarks [9–12]. An 
excellent analysis of this field has been presented by Lyons [13]. These models, 
however, in spite of some success in the classification of possible quantum states of 
composite particles (Quantum Numerology), have not solved the mass spectrum 
problem, because they have not contained any convincing dynamics at the fundamental 
level. 

To find the way to the future fundamental theory of subatomic particles it would be 
useful to find for particles at first an analogous to the Balmer-like formula or the Bohr 
theory for hydrogen atom. In this line Barut [14] has proposed the following formula for 
the muon mass calculation: m = me(1+(3/2)-1), where input parameters are the 
electron mass me and the fine–structure constant . This formula has been extended 
further by him, predicting in addition the masses of two heavy leptons [15]. Other 
empirical mass formulas for charged leptons and quarks have also been proposed [16, 
17].  
      In this work we present the formula for the mass spectrum of charged composite 
particles, which we have derived by using the Bohr–Sommerfeld quantization rule for 
an electrically charged particle moving on the circular orbit at relativistic velocity in the 
magnetic field of two Dirac magnetic monopoles. The details of our model and 
derivation of the mass formula will be presented in a future publication. This formula 
includes the renormalized fine-structure constant  = 1/128.330593928, the rest mass m 
= 156.3699214 eV/c2 of a new electrically charged particle and two quantum numbers n 
and k.  The half-integer and integer quantum number n is the projection of the orbital 
angular momentum of an electrically charged particle on the symmetry axis of the CP 
and the integer number k defines the magnetic charges of two Dirac’s magnetic 
monopoles (MM), which have opposite signs of magnetic charges and masses. 
 
 

2. Mass spectrum formula of charged fermions and bosons 
 
     Our model of the charged composite particles includes two massive spineless Dirac’s 
magnetic monopoles (which having opposite signs of magnetic charges and masses) and 
a light spineless electrically charged particle moving on the circular orbit at relativistic 
velocity in magnetic field of two Dirac magnetic monopoles on the symmetry plain 
perpendicular to the magnetic monopoles axis.  

The following form represents the formula for a mass spectrum of the charged CP, 
received by us from this structure of particles:  
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Here E(n, k)  is the rest energy of the charged CP, m is the rest mass of the new 

spineless electrically charged particle, c is the velocity of light,  = e2/@c is the fine-

structure constant (@ is Plank’s constant), n = 0, 1/2, 1, 3/2…  is the projection of 

the orbital angular momentum of the electrically charged particle on the symmetry axes 
of the CP and k = 0, 1, 2, 3… is the quantum number, which defines the magnetic 

monopole charge of g through the Dirac relation modified by us eg/@c = k/4 [16]. 

The first term in equation (1) is the sum of two terms of the contribution of energy: 
the repulsion energy Er  n2/4 between the moving charge and two magnetic 
monopoles and the Coulomb attraction energy Ec  k2/3 between two magnetic 
monopoles. The second term in equation (1)  Ek  n/2  is the total relativistic energy 
of the moving charged particle with the rest mass m. There is an obvious inequality Er, 
Ec  Ek, because   10-2 and thus the sum of repulsion and attraction energy terms 
gives the main contribution to the rest energy E(n, k) of the charged CP. In our model 
we have neglected the kinetic energy of two magnetic monopoles because of a large 
value of its masses M  108 GeV/ c2 [19]. Due to the opposite signs of the mass of two 
Dirac magnetic monopoles both masses cancel each other and therefore do not give any 
contribution to the rest energy of the charged CP.  

According to equation (1) the rest energy E(n, k) of the charged CP is independent of 
the sign of the electric charge of the moving particle (because   e2) and of the signs 
of the quantum numbers n and k. Therefore, we have a twofold degeneracy connected 
with the opposite signs of n, corresponding to the clockwise and counterclockwise 
rotations of the electrically charged particle. This behaviour of the charged CP is similar 
to a two-dimensional quantum-rigid rotator, because both systems for each state with n 
> 0 have twofold degeneracy connected with the opposite signs of the projections of the 
orbital angular momentum n. Taking into account two possible signs of a moving 
particle mass m and a projection of the orbital angular momentum n, our model 
predicts two degenerate states n for the particle with positive rest energy E(n, k)  > 0 
for m > 0  and two degenerate states n for the antiparticle with negative rest energy 
E(n, k)  < 0 for m < 0, which is consistent with the Dirac theory for the electron [20]. 

Further, accepting (in agreement with the experiments) that the elementary particles 
in the quantum theory can be considered as scattering (metastable) states with positive 
rest energy and the antiparticles – as scattering states with negative rest energy (see also 
[21]), we receive the following condition from the numerator of the first term in 
equation (1) 

2 22 0.n k                                                                      (2) 

Substituting in the first approximation value  = 1/137 in inequality (2) and having cut 
off the factor (1/(2))1/2  up to the closest integer 8, we find k  8n. From the 
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denominator of the first term in equation (1) we find the second condition of k/(4n) > 1. 
Summing up these two inequalities, we obtain the following constraints on the values k 
for the given value n: 

4 8 .n k n                                                                      (3) 

For the minimum possible value of the quantum number n = 0 inequalities (3) have 
no any possible values for the quantum number k and, thus, in our model there is no 
charged CP with zero spin. The first family of the charged CP begins for n = 1/2 with 2 
possible values for k = 3, 4 providing 2 fermions. The second family of the charged CP 
corresponds to n = 1 with 4 possible bosons states for k = 5, 6, 7, 8. For the next value 
of n = 3/2 there are 6 possible values for k = 7, 8, 9, 10, 11, 12 for 6 fermions. In a 
general case for the given value of the quantum number n there are N = 4n states of the 
charged CP. Therefore, within the framework of our model, there are infinite numbers of 
charged composite particles  fermions and bosons, connected with half-integer and 
integer values of n, respectively. 

As follows from equation (1), the rest energy E(n, k)  of the charged CP quickly 
enhanced with the increasing of the projection of the orbital angular momentum of the 
mowing charged particle n, mainly due to the increasing of the repulsion energy Er  
n2/4.  For the given n the rest energy E(n, k)  of the charged CP decreased with the 
increasing of k due to the increasing of the attraction energy Ec  k2/3 between two 
magnetic monopoles.  Thus, on the basis on equation (1) we expect a periodic change of 
the rest energy E(n, k)  of the charged CP as a function of the magnetic monopole 
charge k for different values of an orbital angular momentum n of the moving charged 
particle.   

The global minimum of E(n, k)  clearly belongs to the charged CP with the  minimal 
possible value of n = 1/2 together with the maximal possible value of k = 4, which is to 
the E(1/2, 4) state. This state can be naturally interpreted as the lightest spin 1/2 charged 
fermion  the electron. The second and the last possible state in this family is the E(1/2, 
3) state, which can be connected to one more massive spin 1/2 charged lepton - the 
muon. On the basis of this interpretation we can have the value of the fine-structure 
constant determined as compared to the theoretical and experimental values of muon 
and electron mass 

(1/ 2,3)
206.7682826,

(1/ 2,4) e

mE

E m
                                               (4) 

where me = 0.5109989461(31) MeV/c2 and m = 105.6583745(24) MeV/c2 are the 
electron and muon masses received from CODATA  [22]. Having solved numerically 
equation (4), we have found the value of the renormalized fine-structure constant  = 
1/128.330593928 = 0.00779237412836.  This value of  is about 6.8% larger than the 

standard value of  = e2/@c = 1/137.035999139(31), obtained in the low energy limit 

[22]. The obtained value of  is in agreement with the value  = 1/128.5(25) extracted 
from the analysis of the electron-positron scattering at the momentum transfer Q2 = 
(57.66 GeV/c)2 [23] and also with the value  = 1/128.7862(87), obtained from the 
analysis of the empirical formulas for charged leptons [18]. 

Using equation (1), the obtained value of the renormalized fine-structure constant  
and the experimentally known electron mass, we have determined the rest mass of a 
new electrically charged particle m = 156.3699214 eV/c2. Thus, this new particle is very 
light even in comparison with the electron mass (m/me  0.000306). 
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After estimating the values of these two parameters in equation (1) and assuming in 
the first approximation their constant values for all allowed values of quantum numbers 
n and k, we can calculate the rest masses E(n, k)/c2 of the charged fermions and bosons 
for any allowed pair  n and k. 

The results of calculation for n = 1/2, 1, 3/2, 2, 5/2, 3 and the corresponding values 
of k are listed in table 1 and also shown in Figure 1. As we can see from Figure 1, the 
rest energy E(n, k) of the charged CP has a characteristic periodic dependence as a 
function of the magnetic charge of magnetic monopoles.  The rest energy of the charged 
CP E(n, k) achieves the maximum value at the beginning of every period when k has the 
minimum possible value for the fixed value of n. The increasing of k along the period 
the rest energy E(n, k) of the charged CP quickly decreases due to  the negative 
contribution of the attraction energy  Ec  k2/3  between two magnetic monopoles. 
The transition to the next period through the increasing of n repeats the general 
behaviour of the rest energy E(n,k)  and also includes the increasing of the maximal and 
minimal values of E(n, k) due to the bigger contribution of the repulsion energy Er  
n2/4 between the moving of electrically charged particle and  two magnetic monopoles. 
Note also that a similar periodicity exists also for the orbit radii R(n, k) of the mowing 
charge. 
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Fig. 1: The rest energy E(n, k) of the charged CP as a function of the quantum 

number k (which defines the magnetic charge of magnetic monopoles) for six values of 
the orbital angular momentum n = 1/2, 1, 3/2, 2, 5/2, 3 electrically charged particle. 
Symbols e, , , K, p,  represent the position of the corresponding charged elementary 
particles on the graph. 

 
The orbit radius of the mowing charge R(n, k) is defined by the form: 

2/3
3 2( , ) 2 1 .

4

k
R n k

m c n

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Using equation (5) and the known values of parameters for  and m, we have calculated 
the charge orbit radii R(n, k) of a moving electrically charged particle for 6 periods of 
the charged CP  for n = 1/2, 1, 3/2, 2, 5/2, 3. The results of calculations are listed in 
table 1 and shown in Figure 2. Figure 2 illustrates the characteristic periodicity of the 
charge orbit radii R(n, k) as a function of magnetic monopoles charge k for different 
values of n. The charge orbit radius R(n, k) has the minimum value at the beginning of 
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every period when k has the minimum possible value for the fixed value of n. With the 
increasing of k along the period the charge orbit radius R(n, k) as a function of k is 
increased and reaches the same maximum value Rmax = 0.36007879510-10 cm in every 
period for the same ratio value k/n = 8, when the rest energy E(n, k) of the charge CP 
reaches the minimum value, i. e. at the end of the period  (see also Figures. 1, 2 and 
table 1).   
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      Fig. 2: The charge orbit radius R(n, k) of the charged CP as function of the quantum 
number k (which defines the magnetic charge of  magnetic monopoles) for six values of 
the orbital angular momentum n = 1/2, 1, 3/2, 2, 5/2, 3 electrically charged particle. 
Symbols e, , , K, p,  represent the position of the corresponding charged elementary 
particles on the graph. 

     Table 1:  The values of the rest energy E(n, k) and the charge orbit radius R(n, k)  for 
the charged CP calculated according to equation (1) and equation (5), where n is the 
orbital angular momentum  electrically charged particle and quantum number k  defines 
the  magnetic charge of magnetic monopoles. 

 
n k E(n,k) 

(MeV) 
         R(n,k) 
      (10-10 cm) 

1/2 3 105.6583743 0.190258268   
1/2 4 0.510998946 0.360078795   
1 5 1576.135023  0.098324021   
1 6  421.5963438  0.190258268   
1 7 129.4757510 0.277197915   
1 8 1.495985078 0.360078795   

3/2 7 6919.793736 0.066347368   
3/2 8 2136.991621 0.129597318   
3/2 9 947.8139087 0.190258268   
3/2 10 444.4930987  0.248708387   
3/2 11 172.7064655 0.305238602   
3/2 12 2.954958477 0.360078795   
2 9 19433.67801 0.050074511   
2 10 6300.526284 0.098324021   
2 11 3047.688652 0.144988686   
2 12 1684.311069 0.190258268   
2 13 959.575117 0.234286009   
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2 14 516.479278 0.277197915   
2 15 218.890831 0.319099184   
2 16 4.887919133 0.360078795   

5/2 11 43041.66493 0.040214389   
5/2 12 14288.95571 0.079226532   
5/2 13 7173.263627 0.117168489   
5/2 14 4201.192819 0.154148849   
5/2 15 2631.087824 0.190258268   
5/2 16 1679.690103 0.225573426   
5/2 17 1048.094258 0.260159915   
5/2 18 600.2540707 0.294074394   
5/2 19 266.3548445 0.327366236   
5/2 20 7.294867044 0.360078795   
3 13 82205.67430 0.033599455   
3 14 27670.25249 0.066347368   
3 15 14173.17378 0.098324021   
3 16 8543.398636 0.129597318   
3 17 5577.586735 0.160225341   
3 18 3788.144175 0.190258268   
3 19 2607.036691 0.219739819   
3 20 1775.592174 0.248708387   
3 21 1161.010580  0.277197915   
3 22 688.8864579 0.305238602   
3 23 314.6542934 0.332857465   
3 24 10.17580221 0.360078795   

 
     Note also that the distance between the two magnetic monopoles of the charge CP is 
given by d(n, k) = 2R(n, k)(k/(4n)2/3-1)1/2 and it shows the periodicity similar to a 
charge orbit radius R(n, k). 

The periodicity of the rest energy E(n, k), the charge orbit radii R(n, k) and the 
distance between the two magnetic monopoles d(n, k) as the functions of the magnetic 
charge of magnetic monopoles for the charged CP are analogous to the periodicity of the 
first ionisation energy and atomic radii on the nucleus electric charge in the Mendeleev 
periodic table of chemical elements [24]. 

On the basis of analogy with the Mendeleev periodic table of chemical elements it is 
useful to introduce the definition of the groups in addition to the periods of the charged 
CP, which are characterized by the same values of charge orbit radii and the distance 
between magnetic monopoles, caused by the identical value of ratio k/n. In this 
connection we assume that the charged CP of the same group can have good wave 
functions overlapping and thus would have a large resonance cross section for various 
reactions of elementary particles belonging to the same group. The first group – the 
group of the ground states of the charged CP, has the maximum value k/n = 8 and begins 
in the first period including the electron and another bosons and fermions from other 
periods. The second group for the value k/n = 6 begins also in the first period and it 
includes the muon and other fermions and bosons from other periods. The other two 
new groups of the charged CP with the values k/n = 5 and 7 begin in the second period 
(see table 1 and Figure 2). 

As we already mentioned, the first period (n = 1/2) of the charged CP has only 2 
possible fermions states, k = 3, 4 belonging to the muon and to the electron, 
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respectively. Our model represents correctly the values of its spins and masses. The 
distinction between the values of the magnetic charges of the magnetic monopoles for 
the electron and muon causes a large difference between their rest masses due to the 
effect of cancellation the repulsive and attractive energy terms in equation (1). Thus, for 
the electron the sum of repulsion and attraction energies is Er + Ec = 91.997 – 91.760 = 
0.237 MeV, which is comparable with the total relativistic energy 0.274 MeV of a 
moving electrically charged particle. For the muon the sum of repulsion and attraction 
energies is Er + Ec = 239.526 –134.386 =105.14 MeV, giving the main contribution to 
the muon rest energy and being much larger than the total relativistic energy Ek = 0.519 
MeV of a moving electrically charged particle. This cancellation effect is also present 
for the ground states of other periods of the charged CP. 

The electron charge orbit radius in our model is 0.36007879510-10 cm and it is only 

7% less than the electron Compton wavelength c = @/mec = 0.386159267410-10 cm. 

For comparison, the radius of the muon charge is equal to 0.19025826810-10 cm and it 
is approximately a hundred times bigger than the muon Compton wavelength 
0.185759430710-12 cm [22]. 

Insofar there is no place for the  lepton in the first period of the charged CP, but we 
have found the place for it in the middle part of the fourth period (see below).  

The second period of the charged CP for n = 1 includes 4 bosons states in the energy 
interval 1.5  1576 MeV for k = 5, 6, 7, 8. This interval contains masses of  and  

mesons at 139.57018(35) and 493.677(13) MeV/c2 [25], respectively. We accept for 
assignment  and  mesons to the charge CP states E(1, 7) = 129.5 MeV and E(1, 6) = 
421.6 MeV, respectively. The distinction between the experimental and the predicted 
mass values for  and  mesons can be reduced through the parameters 
renormalization in equation 1, i.e. by decreasing the fine-structure constant  at a level 
of 1.06% and 3.06% or by increasing the rest mass of a moving electrically charged 
particle at a level of 7.80% and 17.1%, respectively. 

As is known, the SM considers  and -mesons as zero spin bosons. However, our 
model does not include the charged CP with zero spin because of the absence of a 
repulsive force between the moving electrically charged particle and two magnetic 
monopoles, which makes them unstable. The charged CP with the non-zero orbital 
angular momentum n of an electrically charged particle has the magnetic moment 
distinct from zero (see below), which in principle can be measured for  and  

mesons in a strong magnetic field.  
The third period of the charged CP (n = 3/2) contains 6 fermions in the energy 

interval 3-6920 MeV for k = 7, 8, 9, 10, 11, 12.  The rest energy of the state E(3/2, 9) = 
947.81 MeV matches with the proton rest energy 938.2720813(58) MeV with the 
accuracy of 1% [25], and we naturally connect this state with  the proton. The small 
difference between the theoretical and experimental proton mass values can be reduced 
by means of tiny increasing in fine-structure constant  at a level of 0.192% or a small 
decreasing of the rest mass m of the electrically charged particle at a level of 1.02%. 

The ratio of the masses of proton and electron is an important dimensionless physical 
constant with the experimental value mp/me = 1836.15267389(17) [22]. According to 
equation (1), this ratio in our model is defined by the value of the renormalized fine-
structure constant , the values of quantum numbers n and k for proton and electron and 
it provides the theoretical value mp/me = 1854.8 in good agreement with the 
experimental data. 



 

 

9

9

As is known, the SM considers the proton as a strongly bounded state of three quarks 
(uud) and the electron as the structureless point-like particle and in this approach it 
cannot give the theoretical prediction of mp/me ratio. On the contrary, our model, being 
in line with [26], defines this ratio through the dimensionless constant of the 
electromagnetic interaction , which in our model is a universal interaction constant for 
all charged CP. 

The other two problems are connected with the proton’s spin and magnetic moment. 
The SM describes the proton as a spin 1/2 particle with two possible spin projections sz 
= 1/2. In our model the proton also has only two projections of the orbital angular 
momentum (spin) n = 3/2.  As is known, a point-like particle with electric charge e, 
rest mass m, and spin 1/2 in the Dirac theory has the intrinsic magnetic moment D = 

e@/(2mc). CODATA gives for the proton experimental value of the magnetic moment p 

= 2.7938473508(85)D  3D [22]. Our model predicts for the charged CP with an 
orbital angular momentum of the moving electrically charged particle n the value of the 
magnetic moment   = 2nD and, thus, for the proton (n = 3/2) the magnetic moment is 
given by p = 3D in agreement with experimental data. 

The proton charge orbit radius predicted in our model is R(3/2, 9) = 1.90258268×10-

11 cm, but the proton charge radius extracted from the analyses of the electron-proton 
elastic scattering is only Rp = 0.8759(77) ×10-13 cm [22, 27]. However, we assume that 
this value of the proton charge radius is necessary for increasing by the dimensionless 
factor 1/  102. This factor can naturally occur through the change of the proton 
electromagnetic form factors due to the possible influence of the large magnetic charge 
of magnetic monopoles g  e/ existing inside of every charged CP. Thus, after a 
correction by the factor 1/ the proton charge radius extracted from the electron-proton 
scattering data would reach the value  Rp  1×10-11 cm in agreement with the result of 
our model. 

Experimentally are known only two practically stable charged fermions – the 
electron and the proton, which have the mean lifetimes   6.6×1028 years [28] and   
6.6 ×1033 years [29], respectively. However, their positions in table 1 of the charged CP 
are different. The electron is located in the ground state of the first period of the charged 
CP and it has the absolute minimum of rest energy. But the proton is located in the 
middle part of the third period in the muon group (see table 1 and Figure 1).  What is the 
physical reason of proton stability among six other states of this period and what 
dynamical mechanism prevents proton’s decay to the lower energy states of the charged 
CP, which have a common structure. This important problem deserves a further 
theoretical investigation, including our model as well. 
     The fourth period (n = 2) includes 8 bosons in the rest energy interval 4.89  19434 
MeV for k = 9, 10, 11, 12, 13, 14, 15, 16. We assume the state E(2, 12) = 1684.3 MeV in 
the middle part of this period to be assigned on the  particle with the experimental 
value of rest mass 1776.82(16) MeV/c2 [30]. The distinction (5.49%) between the 
theoretical and the experimental mass values of the  particle can be reduced by 
decreasing the fine-structure constant  at a level of 1.02% or by increasing the rest 
mass m of the electrically charged particle at the level of 5.49%. 
     The fifth period of the charged CP (n = 5/2) has 10 fermions in the rest energy 
interval 7.3  43042 MeV for k = 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.  
     The sixth period (n = 3) of the charged CP includes 12 bosons states in the rest 
energy interval 10.282206 MeV for k = 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24.   
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     Three bosons states in the muon group (k/n = 6) at E(3, 18) = 3.79,  E(4, 24) = 6.73 
and E(6, 36) = 15.1 GeV are close to the rest mass of 3 new particles at 3.6, 7.3 and 15 
GeV/c2 obtained by the CDF collaboration in the analysis of the multi-muon events 
[31]. These multi-muon events were produced in proton-antiproton interactions and 
discovered at the Fermilab Tevatron collider by the CDF collaboration [32]. It was 
supposed that the heavier new particles cascade-decay into lighter ones, whereas the 
lightest state decays into  pair with a lifetime of the order of 20 ps. In the framework 
of our model these processes are quite reasonable because all the interacting particles 
belong to some muon group and thus have the resonance condition for the processes of 
cascade-decay, because all particles have the same charge orbit radii of the moving 
charge and the distance between magnetic monopoles. Thus, the mass predictions from 
our model are in agreement with the results of the phenomenological analysis of multi-
muon events by the CDF collaboration. 

In addition to bosons, the muon group contains also fermions (see table 1 and Figure 
2). We have already connected the second fermion’s state of this group E(3/2, 9) = 
0.9478 GeV to the  proton. Another 4 fermions states in the muon group in the rest 
energy interval 2.513 GeV are: E(5/2, 15) = 2.63 , E(7/2, 21) = 5.16, E(9/2, 27) = 8.59 
and  E(11/2, 33) = 12.7 GeV, respectively. 

The standard model of cosmology indicates that 3 stable particles - protons, neutrons 
and electrons, form the ordinary (baryonic) matter, which constitutes only 5% of the 
Universe mass. The remaining non-baryonic part of the Universe (with the unknown 
nature) belongs to dark matter 27% and dark energy 68% [33]. 

During the search of dark matter (DM) particles the CoGeNT and DAMA 
collaboration [34] has found an excess of low energy events and the possibility that 
these events originate from the elastic scattering of a light mDM 510 GeV/c2 weakly 
interacting with the massive particle has been discussed. This mass interval is in 
agreement with the asymmetric models for dark matter generation, which predict the 
values of the DM mass at mDM 515 GeV/c2 [35]. 

Thus, if 4 charged fermions from the muon group in the rest energy interval 2.513 
GeV are stable particles (similar to the proton) and can create the stable neutral partners 
(similar to the neutron), then these new neutral particles can be the possible candidates 
for dark matter particles, predicted by our model. 

Let us go back to the group of ground states (k/n = 8) of the charged CP, i. e. the 
electron group. As we already mentioned, all these fermions and bosons of this group 
have the same charge orbit radii of the electrically charged particle and the same 
distance between magnetic monopoles. The rest energy for 13 members of this group is 
located in the range of 0.511 – 43.6 MeV. Below we consider the results of various 
experiments, which can be considered as the evidence of the emergence of particles of 
this group. 

The so-called heavy electrons with the rest mass m  3me  1.5 MeV/c2 and m  6me 
 3 MeV/c2 were found in air showers as particles that were more penetrating than 
electrons [36]. These particles in our model can be connected to the first boson state of 
the electron group with the rest energy E(1, 8) = 1.50 MeV and  to the second fermion 
state of this group E(3/2, 12) = 2.95 MeV, respectively. 
     A new particle with the mass m  11.4me  5.8 MeV/c2 was observed together with 
electrons in the cloud chamber [37].  We hope to connect this particle to the second 
boson state in the electron group E(2, 16) = 4.89 MeV. 

Further, when studying the optical characteristics of the pulsed laboratory 
synchrotron LIS-2 (the orbit radius 6 cm) [38], we noticed that a considerable part of the 
accelerated electrons (up to 100%) can drop out from synchronous mode acceleration.  
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This effect was observed as sharp intensity reduction of synchrotron radiation when 
electrons reached the region of the maximal energy in the range Emax  37-40 MeV [39]. 
Now we are trying to explain this effect in the framework of our model as the revealing 
of the resonant transition of relativistic electrons, receiving the total energy equal to the 
rest energy of the charge CP, which belongs to the boson state of the electron group E(6, 
48) = 37.4 MeV. The momentum excess of the accelerated electrons in this resonant 
transition is transferred to the magnetic field of the synchrotron practically without any 
energy transmission. This resonant transition is similar to the Mössbauer effect when in 
resonance recoil-free absorption of gamma photons by atomic nucleus the photon 
momentum is transferred to the whole crystal. 

 
3. Conclusions 

 
In this work we have presented the formula for the mass spectrum of the composite 

charged fermions and bosons.  
     This formula includes only two parameters – the mass of the new electrically 
charged particle m = 156.3699214 eV/c2 and the renormalized fine-structure constant  
= 1/128.330593928, and also two quantum numbers n and k. The half-integer and 
integer quantum number n is the projection of the orbital angular momentum of 
electrically charged particle on the symmetry axis of the CP, and the integer quantum 
number k defines the magnetic charges of two Dirac magnetic monopoles. 
     Taking into account two possible signs of the mass m of the moving particle and 
two projections of the orbital angular momentum (spin) n, our model predicts two 
degenerate states n for the particles with positive rest energy E(n, k)  > 0 for m > 0 and 
two degenerate states n for the antiparticles with negative rest energy E(n, k)  < 0 for m 
< 0 in agreement with the Dirac theory for the electron. 
     In addition, our model shows the characteristic periodic dependence of the predicted 
masses and the charge orbit radius as the function of the magnetic charges of magnetic 
monopoles. Both periodic dependences are analogous to the periodicity of the first 
ionization energy and the atomic radius on the electric charge of the nucleus in the 
Mendeleev periodic table of chemical elements. 
     Thus, the presented model predicts the values of spins, masses, charge orbit radii and 
magnetic moments for the infinite numbers of the charged fermions and bosons in the 
infinite range of mass. 
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