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Abstract. In this paper, we propose a novel nonconvex penalty function for compressed sensing using

integral convolution approximation. It is well known that an unconstrained optimization criterion based on

ℓ1-norm easily underestimates the large component in signal recovery. Moreover, most methods either perform

well only under the measurement matrix satisfied restricted isometry property (RIP) or the highly coherent

measurement matrix, which both can not be established at the same time. We introduce a new solver to

address both of these concerns by adopting a frame of the difference between two convex functions with integral

convolution approximation. What’s more, to better boost the recovery performance, a weighted version of it

is also provided. Experimental results suggest the effectiveness and robustness of our methods through several

signal reconstruction examples in term of success rate and signal-to-noise ratio (SNR).
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1 Introduction

The following lasso problem

min
x∈Rn

{
P (x;λ) =

1

2
∥y−Ax∥22 + λ∥x∥1

}
(1.1)

with ℓ2-norm data fidelity and ℓ1-norm penalty, where λ is a positive parameter controlling the trade-off between

the two terms, has been the subject of extensive research in various fields of science and engineering, including

compressed sensing (CS) [7], regression analysis [23], signal processing [15], etc. In term of regression analysis,

our goal is to approximate the response variables y = (y1, · · · , ym) by exploiting the properties of lasso, i.e.,

the shrinkage and selection of variables. For compressed sensing, based on the hypothesis that signals can be

of sparse representation, we try to reconstruct the n-dimensional original signal x from m-dimensional noisy
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observation y = Ax+ e with noise level ∥e∥2 ≤ ϵ, where A is an m× n measurement matrix with m ≪ n and

satisfies the following Restricted Isometry Property (RIP) [3]:

Definition 1.1. For an m × n measurement matrix A, the k-restricted isometry constant 0 < δk < 1 of A is

the smallest quantity such that

(1− δk)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δk)∥x∥22

holds for all k-sparse signals x.

Given a deterministic matrix A, it is generally NP-hard, however, to verify whether A is a RIP matrix.

Fortunately, some random matrices have been proved to satisfy RIP with overwhelmingly high probability, such

as Gaussian random matrices, Bernoulli random matrices and partial Fourier random matrices, etc.

ℓ1-norm penalty is widely used as a regularizer, since among convex relaxation for ℓ0-norm (counting the

number of nonzero elements) it has a more concise form. However, the obtained solution by this method is not

necessarily the most sparse solution and minimizing ℓ1 problem can easily lead to underestimate high-amplitude

components compared with ℓ0 regularised optimisation, which is illustrated by threshold functions of ℓ0 problem

and ℓ1 problem in Fig.1.1.
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Fig. 1.1: Thresholding function

For the limit of ℓ1-norm, many known nonconvex surrogates of ℓ1-norm have been proposed, such as ℓp-norm

(0 < p ≤ 1) [25, 27], Exponential-Type Penalty (ETP) [9], Fraction Function Penalty [14], Smoothly Clipped

Absolute Deviation (SCAD) [8] and ℓ1-ℓ2 [26, 30]. Studies have shown that the nonconvex penalty usually

induces sparsity more effective than convex penalty in signal recovery. It is noteworthy that ℓ1-ℓ2 outperforms

many state-of-the-art methods when A has high coherence. To be formal, one defines the coherence of a matrix

A as

µ(A) = max
i̸=j

|⟨Ai, Aj⟩|
∥Ai∥2∥Aj∥2

,

where Ai and Aj denote the i-th and j-th columns of A. We say that a matrix is high coherence if µ is big.

Specifically, a RIP matrix has small coherence in general. Yet regrettably, from numerical experiments of [30],

ℓ1-ℓ2 method suffers from a poor performance when A is a RIP matrix. Inspired by the above conclusion, we

propose the following novel criterion which addresses this concern

min
x∈Rn

{
J(x;λ) =

1

2
∥y−Ax∥22 + λΦ(x; θ, q)

}
, (1.2)
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where the parameterized function Φ(x; θ, q) is defined as the difference between two convex functions denoted

by Φ(x; θ, q) = f1(x) − f2(x; θ, q). Concretely, in this paper, ℓ1-norm is adopted as f1 and f2 is defined as the

convolution of generalized Gauss function [16] with the absolute value function. There is a notably different

point from ℓ1 penalty. Φ(x; θ, q) does not penalize large values of signals, thus which will not cause that

underestimating high-amplitude components. Although our penalty function is concave, the parameterized

Φ(x; θ, q) allows us to more flexibly analyze the convexity of the objective function J(x;λ). The question

remains of how to solve (1.2) effectively. The difference of convex functions algorithm (DCA) is a descent

method without line search introduced by Tao and An [20, 21]. Owing to the objective function J(x;λ) can be

considered as a difference between two parts of 1
2∥y−Ax∥

2
2+ f1(x) and f2(x; θ, q), thus we use the DCA to find

the optimal value of (1.2) iteratively in the alternating direction method of multipliers (ADMM) framework [2].

Numerical experiments in Section 5 show that our method can reduce the requirements for sampling number

and possess a good performance whether a RIP matrix or a high coherence matrix.

Candès and Wakin [4] have pointed out that: larger coefficients are penalized more heavily in the ℓ1-norm

than smaller coefficients, unlike the more democratic penalization of the ℓ0-norm. To address this imbalance,

they propose a weighted formulation of ℓ1 minimization designed to more democratically penalize nonzero

coefficients. Just like its “unweighted” counterpart (1.1), the “weighted” ℓ1 minimization problem can be

expressed as

min
x∈Rn

{
Pw(x;λ) =

1

2
∥y−Ax∥22 + λ∥Wx∥1

}
, (1.3)

whereW is the diagonal matrix with positive weights w1, · · · , wn on the diagonal and zeros elsewhere. There is a

range of valid weights for will help us to find the more sparse and accurate solution. An example of 2 dimensions

is illustrated in Fig.1.2. In order to further improve the performance of our model for signal recovery, we present

a weighted version of (1.2) as follows

min
x∈Rn

{
Jw(x;λ) =

1

2
∥y−Ax∥22 + λΦw(x; θ, q)

}
. (1.4)

In Algorithm 5.2, a valid set of weights can be obtained.
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Fig. 1.2: (a) “unweighted” ℓ1 ball. There exists x♯2 ̸= x♯1 such that ∥x♯2∥1 ≤ ∥x♯1∥1. (b) “weighted” ℓ1 ball. There exists no x♯2 ̸= x♯1

such that ∥Wx♯2∥1 ≤ ∥Wx♯1∥1.
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The paper is organized as follows. In Section 2, we introduce some notations and definitions in term of

convolution. In Section 3, we construct a concave penalty function and analyze the convexity of the objective

function. In Section 4, we extend the results of the Section 3 to the multivariate case. In Section 5, this

optimization problem is done by DCA based on ADMM and we carry out some numerical simulation experiments

on signal reconstruction and recovery performance of several CS solvers is present. Finally, the conclusion is

addressed in Section 6.

2 Preliminaries

We commence with a recall of the relevant background material.

2.1 Notations

We use lower case letters for the entries, e.g. xj , bold lower case letters for vectors, e.g. x and upper case

letters for matrices, e.g. X. For any vector x ∈ Rn, its ℓp-norm (0 < p <∞) is defined ∥x∥p = (
∑n

i=1 |xi|p)1/p.

⟨·, ·⟩, (·)T and exp(·) stand for the inner product, transpose and exponential function, respectively. df(·) and

∇f(·) stand for the differential and gradient of the function f . In is the identity matrix of dimension n.

A − B < 0, that is A < B, means that A − B is positive semidefinite. x(l) represents the value of the l-th

iteration of x. The diagonal matrix Diag{xj , j = 1, · · · , n} has xj as its j-th diagonal entry.

2.2 Two existing convolution techniques

Definition 2.1. The infimal convolution (or epi-sum) [1] of two functions η and ξ is defined as

(η#ξ)(x) := inf
c∈Rn

{η(c) + ξ(x− c)}.

In the notation of infimal convolution, the Moreau envelope [1] with a scale parameter θ > 0 of function η

is defined as

eη(x; θ) = {η# 1

2θ
∥ · ∥22}(x) = inf

c∈Rn
{η(c) + 1

2θ
∥x− c∥22}.

Another approach is integral convolution [19]. Before introducing its definition, we first present the concept of

(non-negative) mollifier [6] as follows:

Definition 2.2. If η is a smooth function on Rn, satisfying the following four requirements

(a) it has a bounded support;

(b)
∫
Rn η(c)dc = 1;

(c) lim
θ→0

η(c; θ) = lim
θ→0

θ−nη(c/θ) = δ(c), where δ(c) is the Dirac delta function and the limit must be understood

in the space of Schwartz distributions, then η is a mollifier;

(d) η(c) ≥ 0, then it is called a non-negative mollifier.
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The integral convolution of two functions is defined as:

Definition 2.3. Let η(·; θ) is a mollifier on Rn and ξ(·) is a locally integrable function written as ξ(·) ∈ L1
loc(Ω),

where Ω ⊆ Rn. We extend ξ(·) to all Rn by setting it to be equal to zero outside Ω. The convolution of η(·; θ)

and ξ(·) is written η(·; θ) ∗ ξ(·), which is defined by

{η(·; θ) ∗ ξ}(x) :=
∫
Rn

η(x− c; θ)ξ(c)dc =

∫
Rn

η(c; θ)ξ(x− c)dc

converges uniformly to ξ(·) on Ω, as θ → 0.

3 Penalty Function in Scalar Case

In this section, we present a novel penalty for the case of a scalar scope via the integral convolution technique,

which promotes the sparsity of solution to a great extent. It is formed in the way of contrasting with the infimal

convolution, the process of which consists of function approximate and doing subtraction of two convex functions.

Further, a convex condition is proposed to ensure that the scalar objective function is convex.

3.1 Improving sparsity

The objective function of (1.3) can be re-expressed as

Pw(x;λ) =
1

2

m∑
i=1

(yi −
n∑

j=1

aijxj)
2 + λ

n∑
j=1

|wjxj |.

Let’s first consider a single element setting, then the above formula takes the form

Pw(xj ;λ) =
1

2
(yi − aijxj)

2 + λ|wjxj |. (3.5)

Notice that there is a non-smooth part in (3.5), namely the absolute value function. This is not a good property

for algorithmic design. It is natural to ask: How can one approximate the absolute value function with a smooth

function? The most famous and very useful answer to this question is provided by the Moreau envelope. For

the absolute value function, the Huber function [12] is a fairly normative instance of the Moreau envelope. The

details are as follows:

Definition 3.1. The Huber approximation (HA) of absolute value function on R is defined as

h(xj ; θ) :=


x2j
2θ
, |xj | ≤ θ;

|xj | −
θ

2
, |xj | ≥ θ.

In the framework of infimal convolution, the Huber function can be written equivalently as

h(xj ; θ) = {| · |# 1

2θ
(·)2}(xj) = min

c∈R
{|c|+ 1

2θ
(xj − c)2}. (3.6)

Meanwhile, (3.6) also means that infimal convolution is exact, i.e., the infimum is acquired for certain c. If we

consider the weighted technique mentioned in the introduction, then its definition is given by:
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Definition 3.2. The weighted-based Huber approximation (WHA) of absolute value function on R is defined as

hw(xj ; θ) :=


(wjxj)

2

2θ
, |wjxj | ≤ θ;

|wjxj | −
θ

2
, |wjxj | ≥ θ,

and

hw(xj ; θ) = {| · |# 1

2θ
(·)2}(wjxj) = min

c∈R
{|wjc|+

1

2θ
(wjxj − wjc)

2}.

When it comes to this, we have to ask whether there is a better smooth approximation to the absolute value

function. It is no doubt that the answer is affirmative. Other approaches to smoothing are Ghomi’s integral

convolution method [10], Seeger’s ball rolling technique [17], and Teboulle’s entropic proximal mappings [22].

What we are interested in is such a smooth function computed via integral convolution with a generalized

Gaussian function represented in the form:

Definition 3.3. The generalized Gaussian function (GGF) is a parametric family of continuous function on R

defined by

g(xj ;µ, θ, q) :=
q

2θΓ(1/q)
exp{−(

|xj − µ|
θ

)q},

where µ, θ > 0, q > 0 are mean, scale parameter and shape parameter, respectively. Γ denotes the gamma

function by Γ(z) =
∫∞
0
tz−1e−tdt.

Remark 3.4. The GGF includes all normal and Laplace distributions. To speak in detail, the GGF reduces to

the Laplace distribution when q = 1; the GGF degenerates into the normal distribution when q = 2; moreover,

if q → 0, then the limit distribution of GGF is the Dirac delta function; and if q → ∞, then the uniform

distribution will be as the limit of GGF. These statements are illustrated in Fig.3.3.

Since our goal is to approximate absolute value function (Y-axis symmetry) by jointly Mollifiers and the

operation of convolution, we then analyze whether g(xj ; θ, q) satisfies four conditions in the definition 2.2 in the

case µ = 0. First of all, g(xj ; θ, q) is first order derivable at x = 0 provided that q > 1. In addition, though

bounded support is not available for g(xj ; θ, q), the function is coercive so that this condition is approximately

met. Moreover, we have∫ ∞

−∞
g(xj ; θ, q)dxj =

∫ ∞

−∞

q

2θΓ(1/q)
exp{−(

|xj |
θ

)q}dxj =
q

θΓ(1/q)

∫ ∞

0

exp{−(
xj
θ
)q}dxj

=
1

Γ(1/q)

∫ ∞

0

z
1
q−1e−zdz =

1

Γ(1/q)
Γ(1/q) = 1.

Furthermore, for fix q, it’s easy to check that when xj = 0, lim
θ→0

g(0; θ, q) → ∞ and when xj ̸= 0, we have

lim
θ→0

g(xj ; θ, q) = lim
θ→0

q

2θΓ(1/q)
exp{−(

|xj |
θ

)q} =
q

2Γ(1/q)
lim
θ→0

1

θ exp{( |xj |
θ )q}

t= 1
θ=

q

2Γ(1/q)
lim
t→∞

t

exp{(|xj |t)q}
,

if q ≥ 1,
q

2Γ(1/q)
lim
t→∞

t

exp{(|xj |t)q}
(1)
=

1

2Γ(1/q)
lim
t→∞

1

|xj |(|xj |t)q−1 exp{(|xj |t)q}
= 0;
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and if 1
r ≤ q < 1 (r ̸= 1),

q

2Γ(1/q)
lim
t→∞

t

exp{(|xj |t)q}
(r)
=

(1− q)(1− 2q) · · · (1− rq + q)

2qr−1Γ(1/q)
lim
t→∞

1

|xj |(|xj |t)rq−1 exp{(|xj |t)q}
= 0;

further if 1
r+1 ≤ q < 1

r ,

q

2Γ(1/q)
lim
t→∞

t

exp{(|xj |t)q}
(r+1)
=

(1− q)(1− 2q) · · · (1− rq)

2qrΓ(1/q)
lim
t→∞

1

|xj |(|xj |t)rq+q−1 exp{(|xj |t)q}
= 0,

where
(1)
=,

(r)
=, and

(r+1)
= mean that utilizing one, r, and r+ 1 times L’Hôpital’s rule, respectively. So, these just

verifies the (c) of definition 2.2. Last, it is obvious that g(xj ; θ, q) ≥ 0 for θ > 0, q > 0. In conclusion, g(xj ; θ, q)

is an approximate non-negative mollifier.

-3 -2 -1 0 1 2 3
xj

0

0.1

0.2

0.3

0.4

0.5

0.6
Generalized Gaussian function

q=0.5
q=1
q=1.5
q=2
q=3
q=8

Fig. 3.3: The generalized Gaussian function (GGF) with µ = 0, θ = 1 and different values of q.

Based on the above analysis and inspired by definition 2.3, we have the following results

ψ(xj ; θ, q) = {g(·; θ, q) ∗ | · |}(xj) =
q

2θΓ(1/q)

∫ ∞

−∞
|xj − t| exp{−(

|t|
θ
)q}dt,

which is an approximate to the absolute value function |xj | and called the integral convolution approximate

(ICA). Similarly, the weighted-based convolution approximate (WICA) is defined as

ψw(xj ; θ, q) = {g(·; θ, q) ∗ | · |}(wjxj) =
q

2θΓ(1/q)

∫ ∞

−∞
|wjxj − t| exp{−(

|t|
θ
)q}dt.

By some simple calculations, one can verify the following results:

Proposition 3.5. For any θ > 0, q ∈ E+ (positive even numbers) and xj ∈ R, ψw(xj ; θ, q) can be expressed as

ψw(xj ; θ, q) = wjxj · erfq(
wjxj
θ

) +
θΓ(2/q)

Γ(1/q)
{1− erf q

2
(
(wjxj)

2

θ2
)}, (3.7)

where

erfq(x) =
q

Γ(1/q)

∫ x

0

exp(−tq)dt ∀x ∈ R,

which is referred to as the generalized error function (GEF) [29].
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Remark 3.6. when q = 2, the GGF and GEF degenerate to Gaussian function and error function, respectively.

Our efforts contain not only the existing results that are described in Lemma 2.4 of [24] but also have preferable

modeling ability of data and generalization performance due to the adjustable shape parameter q. By analyzing

the Fig.3.4 about the generalized error function, one can obtain several important qualities: (1) erfq(x) is odd

and strictly increasing on R; (2) erfq(x) is convex on (−∞, o] and concave on (0,∞); (3) erfq(0) = 0 and

lim
x→±∞

erfq(x) = ±1.

-3 -2 -1 0 1 2 3
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Generalized error function

q=2
q=4
q=6
q=8

Fig. 3.4: The generalized Gaussian function (GEF) with different values of q.

Proof. Given θ, q, T > 0 and let

Lw(xj ; θ, q) =
q

2θΓ(1/q)

∫ T

−T

|wjxj − t| exp{−(
|t|
θ
)q}dt,

then when xj ≥ 0, we have

2θΓ(1/q)

q
Lw(xj ; θ, q) =

∫ T

−T

|wjxj − t| exp{−(
|t|
θ
)q}dt

=

∫ 0

−T

(wjxj − t) exp{−(− t

θ
)q}dt︸ ︷︷ ︸

△1

+

∫ wjxj

0

(wjxj − t) exp{−(
t

θ
)q}dt︸ ︷︷ ︸

△2

+

∫ T

wjxj

(t− wjxj) exp{−(
t

θ
)q}dt︸ ︷︷ ︸

△3

.

Further calculation, we obtain

△1 = wjxj

∫ 0

−T

exp{−(− t

θ
)q}dt−

∫ 0

−T

t exp{−(− t

θ
)q}dt

− t
θ=s
= −wjxjθ

∫ 0

T
θ

exp(−sq)ds− θ2
∫ 0

T
θ

s exp(−sq)ds

=
wjxjθΓ(1/q)

q
erfq(

T

θ
) +

θ2Γ(2/q)

q
erf q

2
(
T 2

θ2
),
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and

△2 = wjxj

∫ wjxj

0

exp{−(
t

θ
)q}dt−

∫ wjxj

0

t exp{−(
t

θ
)q}dt

t
θ=s
= wjxjθ

∫ wjxj
θ

0

exp(−sq)ds− θ2
∫ wjxj

θ

0

s exp(−sq)ds

=
wjxjθΓ(1/q)

q
erfq(

wjxj
θ

)− θ2Γ(2/q)

q
erf q

2
(
(wjxj)

2

θ2
),

moreover

△3 =

∫ T

wjxj

t exp{−(
t

θ
)q}dt− wjxj

∫ T

wjxj

exp{−(
t

θ
)q}dt

t
θ=s
= θ2

∫ T
θ

wjxj
θ

s exp(−sq)ds− wjxj

∫ T
θ

wjxj
θ

exp(−sq)ds

=
θ2Γ(2/q)

q
{erf q

2
(
T 2

θ2
)− erf q

2
(
(wjxj)

2

θ2
)} − wjxjθΓ(1/q)

q
{erfq(

T

θ
)− erfq(

wjxj
θ

)}.

Using the fact that lim
x→∞

erfq(x) = 1, we get

ψw(xj ; θ, q) = lim
T→∞

Lw(xj ; θ, q) = lim
T→∞

(△1 +△2 +△3)q

2θΓ(1/q)

= wjxj · erfq(
wjxj
θ

) +
θΓ(2/q)

Γ(1/q)
{1− erf q

2
(
(wjxj)

2

θ2
)}.

When xj < 0, similar computations yield

ψw(xj ; θ, q) = −wjxj · erfq(−
wjxj
θ

) +
θΓ(2/q)

Γ(1/q)
{1− erf q

2
(
(wjxj)

2

θ2
)}.

It follows from the definition of generalized error function that, erfq(x) is odd on R, i.e., erfq(−x) = −erfq(x) if

q ∈ E+. Therefore, for xj ∈ R we get

ψw(xj ; θ, q) = wjxj · erfq(
wjxj
θ

) +
θΓ(2/q)

Γ(1/q)
{1− erf q

2
(
(wjxj)

2

θ2
)}.

To sum up, the proof of proposition is completed.

Notice that the value of the absolute value function at the origin is equal to zero. Although our approximation

function ψw(0; θ, q) =
θΓ(2/q)
Γ(1/q) > 0, which does tend to zero as θ → 0. In order to deal with this , one omit the

second term of (3.7), analogous to the method in [24]. Hence, our WICA is rewritten as

ψ⋆
w(xj ; θ, q) = ψw(xj ; θ, q)−

θΓ(2/q)

Γ(1/q)
{1− erf q

2
(
(wjxj)

2

θ2
)} = wjxj · erfq(

wjxj
θ

),

and ψ⋆
w(0; θ, q) = 0. On account of d

dxerfq(x) = q exp(−xq)
Γ(1/q) > 0 that means erfq(x) is a monotone increasing

function, then the subtracted term is a monotone decreasing function and only has much effect for wjxj close

to zero. Thus this treatment is reasonable and feasible.

The following proposition depicts the properties of WHA and WICA.

Proposition 3.7. For any xj ∈ R and q ∈ E+, we have
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(a) lim
θ→0

hw(xj ; θ) = |wjxj | and lim
θ→0

ψ⋆
w(xj ; θ, q) = |wjxj |;

(b) lim
θ→∞

hw(xj ; θ) = 0 and lim
θ→∞

ψ⋆
w(xj ; θ, q) = 0;

(c) 0 ≤ hw(xj ; θ) ≤ |wjxj | and 0 ≤ ψ⋆
w(xj ; θ, q) ≤ |wjxj | for fixed θ;

(d) ψ⋆
w(xj ; θ, q)“ ≥ ”hw(xj ; θ) for fixed θ, where “ ≥ ” means to approximate the absolute value function better.

Proof. It is obvious that (a), (b) and (c) hold for any xj ∈ R and q ∈ E+. In order to prove (d) we introduce

the distance of two real-valued function f and g as

∥f − g∥∞ = max
x∈R

{f(x)− g(x)}.

Notice that for fixed θ,

lim
xj→∞

|hw(xj ; θ)− |wjxj || =
θ

2
and hw(0; θ) = 0.

Moreover, when xj ≥ 0 and q ∈ E+, combining the fact that 0 < erfq(x) < 1 and the inequality by Alzer [2] as

follows

erfq(x) ≥ {1− exp(−xq)}1/q,

we have

|ψ⋆
w(xj ; θ, q)− |wjxj || = |wjxj · erfq(

wjxj
θ

)− wjxj |

= |wjxj{erfq(
wjxj
θ

)− 1}|

= wjxj{1− erfq(
wjxj
θ

)}

≤ wjxj{1− (1− exp(−(wjxj)
q))1/q}

≤ wjxj · exp{−
(wjxj)

q

q
},

where the last inequality is established by exploiting that (a − b)1/q ≥ a1/q − b1/q for a ≥ b ≥ 0 and q > 1.

Hence, we obtain

lim
xj→∞

|ψ⋆
w(xj ; θ, q)− |wjxj || ≤ lim

xj→∞
wjxj · exp{−

(wjxj)
q

q
} = 0,

and then

lim
xj→∞

|ψ⋆
w(xj ; θ, q)− |wjxj || = 0 and ψ⋆

w(0; θ, q) = 0.

So

max
xj∈R

|hw(xj ; θ)− |wjxj || =
θ

2
, max

xj∈R
|ψ⋆

w(xj ; θ, q)− |wjxj || = 0.

Therefore, we get

∥ψ⋆
w(xj ; θ, q)− |wjxj |∥∞ < ∥hw(xj ; θ)− |wjxj |∥∞,

which shows that ψ⋆
w(xj ; θ, q) best approximates the function |wjxj |. This conclusion is amply illustrated in

Fig.3.5.

We now consider the scalar penalty. In 2017, Selesnick proposed the minimax-concave penalty (MCP)

function [18] based on the Huber approximation (HA). Its weighted version is shown below:
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Fig. 3.5: The weighted-based integral convolution approximate (WICA) vs the weighted-based Huber approximation (WHA) in

the cases with varying parameters.

Definition 3.8. The weighted-based minimax-concave penalty (WMCP) function is defined as

Φw(xj ; θ) := |wjxj | − hw(xj ; θ) =


|wjxj | −

(wjxj)
2

2θ
, |wjxj | ≤ θ;

θ

2
, |wjxj | ≥ θ.

By the same token, we can share the idea and provide an innovative penalty on the strength of the weighted-

based convolution approximate (WICA).

Definition 3.9. The weighted-based integral convolution penalty (WICP) function is defined as

φw(xj ; θ, q) := |wjxj | − ψ⋆
w(xj ; θ, q) = |wjxj | − wjxj · erfq(

wjxj
θ

).

Remark 3.10. In Fig.3.6, we offer the relationship among the absolute value function, WMCP and WICP. It is

obvious that of the three penalties the WICP as a function of xj increases the slowest for the fixed value of θ and

q, which means the WICP becomes more concave at xj = 0+ and induces sparsity more strongly. Meanwhile,

we find that the absolute value function excessively penalize the big xj and the WMCP mildly penalize the large

value, but it can’t avoid to underestimate high-amplitude components in signal recovery. It’s surprising that our

method can hardly punish the large component such that the shortcomings of the former two are eliminated.

3.2 Convexity analysis

In this section, we replace the absolute value function of (3.5) by the WICP as a regularization term and

briefly discuss the convexity of the new objective function and present a convexity condition.

Proposition 3.11. Let λ,wj > 0 and q ∈ E+. The convexity of objective with weighted-based integral convolu-

tion penalty (WICP) function as follows

Jw(xj ;λ) =
1

2
(yi − aijxj)

2 + λφw(xj ; θ, q) (3.8)
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Fig. 3.6: The weighted-based integral convolution penalty (WICP) function vs the weighted-based minimax-concave penalty

(WMCP) function in the cases with varying parameters.

is guaranteed provided

w2
j ≤ θΓ(1/q)

2λq
a2ij .

Remark 3.12. Given aij and wj, the convexity condition is easily achieved by tuning the value of the scale

parameter θ and the shape parameter q. In other words, the objective function (3.8) has more freedom of

conversion between convex and nonconvex. If (3.8) is convex, the solution will not fall into the local minima.

Proof.

Jw(xj ;λ) =
1

2
(yi − aijxj)

2 + λφw(xj ; θ, q) =
1

2
(yi − aijxj)

2 − λwjxj · erfq(
wjxj
θ

) + λ|wjxj |.

Obviously, λ|wjxj | is convex for λ > 0. Thus it suffices to prove that

S =
1

2
(yi − aijxj)

2 − λwjxj · erfq(
wjxj
θ

)

is convex. That is to say, we need to prove that the second derivative of S is nonnegative. Hence, we have

d

dxj
S = a2ijxj − yiaij − λwj{erfq(

wjxj
θ

) +
qwjxj
θΓ(1/q)

exp(−(
wjxj
θ

)q)},

so

d2

dx2j
S = a2ij −

2λqw2
j

θΓ(1/q)
{exp(−(

wjxj
θ

)q)− q

2
(
wjxj
θ

)q exp(−(
wjxj
θ

)q)}

= a2ij −
2λqw2

j

θΓ(1/q)
·
1− q

2 (
wjxj

θ )q

exp{(wjxj

θ )q}

≥ a2ij −
2λqw2

j

θΓ(1/q)
·
1− q

2 (
wjxj

θ )q

1 + (
wjxj

θ )q

≥ a2ij −
2λqw2

j

θΓ(1/q)
, (3.9)
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where the first inequality is founded by ex ≥ 1+x and the second inequality follows from the fact that
1− q

2x
q

1+xq ≤ 1

for q ∈ E+. Therefore, S is convex if d2

dx2
j
S ≥ a2ij −

2λqw2
j

θΓ(1/q) ≥ 0.

4 Penalty Function in Vector Case

In this section, We extend the univariate WICP to the multivariate penalty function which is used as a

regularization term.

4.1 Multivariate penalty

In term of compressed sensing, the null space property [5] is an important sufficient and necessary condition

for the exact recovery of any sparse signal. This condition can be utilized if and only if the corresponding

function satisfies the separability, for instance, ∥x∥1 =
∑n

j=1 |xj |. Because the generalized weighted-based Huber

approximation has no a simple explicit expression and the separability, so obviously its analysis is unnecessary

and more difficulty. Here we only present our penalty function according to the previous method.

Definition 4.1. The generalized weighted-based integral convolution approximate (g-WICA) of ℓ1-norm is de-

fined as

ψw(x; θ, q) :=
n∑

j=1

{wjxj · erfq(
wjxj
θ

)}.

There are some evident properties of the g-WICA as follows:

Proposition 4.2. For any x ∈ Rn and q ∈ E+, we have

(a) lim
θ→0

ψw(x; θ, q) = ∥Wx∥1;

(b) lim
θ→∞

ψw(x; θ, q) = 0;

(c) 0 ≤ ψw(x; θ, q) ≤ ∥Wx∥1 for fixed θ;

We put forward a satisfactory penalty function to replace ℓ1-norm penalty by exploiting the difference

between two convex functions based on the g-WICA.

Definition 4.3. The generalized weighted-based integral convolution penalty (g-WICP) function is defined as

Φw(x; θ, q) := ∥Wx∥1 − ψw(x; θ, q).

4.2 Convexity analysis

Proposition 4.4. Let λ > 0 and q ∈ E+. The convexity of objective with generalized weighted-based integral

convolution penalty (g-WICP) function as follows

Jw(x;λ) =
1

2
∥y−Ax∥22 + λΦw(x; θ, q)
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is guaranteed provided

WTW 4 θΓ(1/q)

2λq
ATA. (4.10)

Remark 4.5. Notice that the convexity condition (4.10) is equivalent to saying that xT {ATA− 2λq
θΓ(1/q)W

TW}x ≥

0 holds for the real symmetric matrices ATA, WTW and any nonzero vector x. Also because xT {ATA −
2λq

θΓ(1/q)W
TW}x = ∥Ax∥22 − 2λq

θΓ(1/q)∥Wx∥22, where ∥Ax∥22 ≥ 0 with equality holds if and only if x ∈ kerA and

∥Wx∥22 > 0, so it could hardly reach to the convexity condition. But we can control the scale parameter θ and the

shape parameter q such that xT {ATA − 2λq
θΓ(1/q)W

TW}x ≥ −ι (ι is rather small). Specially, from the property

(b) of proposition 4.2, the g-WICP reduces to ∥Wx∥1 as θ → ∞, then Jw(x;λ) will become a convex function.

In summary, the convexity condition could be almost satisfied.

Proof.

Jw(x;λ) =
1

2
∥y−Ax∥22 + λΦw(x; θ, q) =

1

2
∥y−Ax∥22 − λ

n∑
j=1

{wjxj · erfq(
wjxj
θ

)}+ λ∥Wx∥1.

Obviously, λ∥Wx∥1 is convex when λ > 0. Thus it suffices to prove that

S =
1

2
∥y−Ax∥22 − λ

n∑
j=1

{wjxj · erfq(
wjxj
θ

)}

is convex. That is to say, we need to prove that the Hessian matrix of S is nonnegative definite. Hence, we have

∇xS = AT (Ax− y)− λ

{
wjerfq(

wjxj
θ

) +
qw2

jxj

θΓ(1/q)
exp(−(

wjxj
θ

)q)

}n

j=1

,

so

∇2
xS = ATA− 2λq

θΓ(1/q)
WTW ·Diag{exp(−(

wjxj
θ

)q)− q

2
(
wjxj
θ

)q exp(−(
wjxj
θ

)q)}.

It follows from the proof of (3.9) that

Diag{exp(−(
wjxj
θ

)q)− q

2
(
wjxj
θ

)q exp(−(
wjxj
θ

)q)} 4 In,

then

∇2
xS < ATA− 2λq

θΓ(1/q)
WTW.

Hence, if ATA < 2λq
θΓ(1/q)W

TW that means ∇2
xS is nonnegative definite, then S is convex.

5 Numerical simulations

In this section, we provide an efficient algorithm and a series of numerical simulations to evaluate the

performance of our model (1.2) and (1.4) for signal recovery.
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5.1 Optimization Algorithm

Here, we first consider the optimization algorithm for solving the unweighted version problem (1.2) and then

extend it to the weighted case. It is worth to notice that we can rewrite the objective function in (1.2) as follows

J(x;λ) =
1

2
∥y−Ax∥22 + λΦ(x; θ, q) =

(
1

2
∥y−Ax∥22 + λ∥x∥1

)
− λ

n∑
j=1

{xj · erfq(
xj
θ
)} = C1(x)− C2(x), (5.11)

where C1(x) and C2(x) are proper lower semicontinuous convex function. The form (5.11) is known as a

DC decomposition of the function J(x;λ), i.e. difference of convex functions. Corresponsively, there exists a

difference of convex functions algorithm (DCA) for solving this kind of problem. The core idea of the DCA is

to search for the optimal solution of J(x;λ) iteratively via the following two steps
z(υ) ∈ ∂C2(x

(υ)),

x(υ+1) = arg min
x∈Rn

C1(x)− (C2(x
(υ)) + ⟨z(υ),x− x(υ)⟩).

First, the subgradient sequences {z(υ)} of the convex function C2(x) at the x
(υ) is calculated and then we obtain

the sequences {x(υ)} that reduces monotonically the objective function J(x;λ) by utilizing the definition of the

subgradient. From the previous analysis we can see that C2(x) = λ
∑n

j=1{xj · erfq(
xj

θ )} is differentiable with

gradient z = λ
{
erfq(

xj

θ ) +
qxj

θΓ(1/q) exp(−(
xj

θ )q)
}n

j=1
, thus we have

x(υ+1) = arg min
x∈Rn

1

2
∥y−Ax∥22 + ⟨α(υ),x⟩+ λ∥x∥1 + ρ,

where ρ = −λ
∑n

j=1
q(xj

(υ))2

θΓ(1/q) exp(−(
xj

(υ)

θ )q) and α(υ) = −z(υ) can be treated as a constant and a constant vector

at (υ + 1)-th iteration, respectively. Therefore, we turn to solve the following modified optimization problem

x(υ+1) = arg min
x∈Rn

1

2
∥y−Ax∥22 + ⟨α(υ),x⟩+ λ∥x∥1. (5.12)

The form (5.12) is used as outer iteration with a termination criterion ∥x(υ+1)−x(υ)∥2

max(∥x(υ)∥2,1)
≤ ϵ for a preset moderately

small threshold ϵ. Because of its separable structure, problem (5.12) can be efficiently solved by the alternating

direction method with multipliers (ADMM), which decomposes the original joint minimization problem into

two easily solved subproblems. More specifically, we introduce an auxiliary variable β ∈ Rn, the problem (5.12)

can be equivalently reformulated as

min
x∈Rn

1

2
∥y−Ax∥22 + ⟨α(υ),x⟩︸ ︷︷ ︸

f1(x)

+λ∥β∥1︸ ︷︷ ︸
f2(β)

s.t. x− β = 0.

The corresponding augmented Lagrangian function is given by

L(x,β,γ) = f1(x) + f2(β) + γT (x− β) +
τ

2
∥x− β∥22,

where τ is a positive scalar for controlling the speed of the algorithm and γ is the Lagrangian multiplier vector.

It is obviously difficult to solve the above function directly. We can first minimize a variable for fixed the other
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variables as follows 
x(l+1) = arg min

x∈Rn
{f1(x) +

τ

2
∥x− β(l) + γ(l)∥22}, (5.13)

β(l+1) = arg min
β∈Rn

{f2(β) +
τ

2
∥x(l+1) − β + γ(l)∥22}, (5.14)

γ(l+1) = γ(l) + τ(x(l+1) − β(l+1)).

Computing x(l+1):

Since the corresponding objective function of sub-problem (5.13) is quadratic, and then letting its first-order

derivative equal to zero directly yields

x(l+1) = (ATA+ τI)−1(ATy−α(υ) + τx(l) − β(l)).

Computing β(l+1):

As suggested by Hale et al. [11], the solution to the sub-problem (5.14) can be gained as

Sλ
τ
(z) = arg min

β∈Rn

1

2
∥β − z∥22 +

λ

τ
∥β∥1,

where Sλ
τ
(zj) = sign(zj)max(|zj | − λ

τ , 0) is the soft-thresholding operator.

The above alternative updating steps as inner iteration are repeated until the convergence condition is

satisfied or the number of iteration exceeds a preset threshold. Following the suggestions in [30], when ∥x(l) −

β(l)∥2 ≤
√
nϵabs + ϵrel max(∥x(l)∥2, ∥β(l)∥2) and ∥τ(β(l) − β(l−1))∥2 ≤

√
nϵabs + ϵrel∥γ(l)∥2 with an absolute

tolerance ϵabs and a relative tolerance ϵrel, an approximate solution of problem (5.12) can be fully guaranteed.

All solving processes can be summed up as Algorithm 5.1.

Now we consider the algorithm for solving the weighted version problem (1.4). We add a weighted step

on the basis of the solution obtained by Algorithm 5.1, which is similar to the idea of iterative reweighted ℓ1-

minimization algorithm (IRL1) [4]. The proposed simple iterative algorithm that alternates between estimating

x and redefining the weights as described in Algorithm 5.2.

In Algorithm 5.2, for the sake of providing at ability and ensuring that a zero-valued component in x̄(υ) does

not rigidly forbid a nonzero estimate at the next step, the nonnegative parameter ϱ is introduced. Moreover,

the wj-update and ϱ-update are in accordance with suggestions of [13] and r(·)k+1 denotes (k + 1)-th value of

the rearrangement of | · | where k is the sparsity of vector x.

5.2 Experimental Results on Noiseless Data

In this section we provide simulations to compare our methods with four state-of-the-art algorithms for sparse

recovery: lasso-ADMM [2], which solves the lasso problem (1.1) by ADMM; ℓ1−2-DCA [30] that addresses the

unconstrained ℓ1-ℓ2 minimization problem based on the DCA; Half thresholding [28] for ℓ1/2 regularization; and

the iteratively reweighted ℓ1 minimization algorithm (IRL1). All the above-mentioned solvers are coded on a

PC with 4 GB of RAM and Intel core i5-4200M (2.5GHz). In order to avoid the randomness, we perform 100

times against each test and report the average result.
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Algorithm 5.1 An algorithm for the minimization problem with g-ICP (gICP-DCA)

1: Input: y ∈ Rm, A ∈ Rm×n(m ≪ n), λ, q, θ and τ .

2: Output: x♯ ∈ Rn.

3: Initialize x(0) = 0 and υ = 0.

4: // Outer loop

5: while no convergence do

6: Initialize β(0) = 0, γ(0) = 0 and l = 0.

7: // Inner loop (ADMM)

8: while no convergence do

9: x(l+1) = (ATA+ τI)−1(ATy−α(υ) + τx(l) − β(l)).

10: β(l+1) = Sλ
τ
(x(l+1) + γ(l)/τ).

11: γ(l+1) = γ(l) + τ(x(l+1) − β(l+1)).

12: l = l + 1.

13: end while

14: x(υ+1) = x(l).

15: Update α(υ).

16: υ = υ + 1.

17: end while

18: return x♯ = x(υ).

5.2.1 Experimental Setup

In the absence of noise, we generate a measurement matrix A ∈ R64×256 with entries drawn independently

from the standard Gaussian distribution, Such measurement matrix A is known to satisfy (with high probability)

the RIP . The locations of nonzero components of the signals x ∈ R256 are uniformly randomly generated, and

the nonzero values are chosen from a Gaussian distribution with mean 0 and standard deviation 1. Given

A and x, the measurements y are produced by y = Ax. We deem that the signal x♯ can be as a successful

reconstruction for the original signal x from the measurements y if the relative error (abbreviation: RelError)

meets ∥x♯ − x∥2/∥x∥2 < 10−3.

In our experiments, the parameters of lasso-ADMM, Half thresholding, IRL1 and ℓ1−2-DCA are tuned to

achieve the best performance. For gICP-DCA and gWICP-DCA, we set tolerances both ϵ = 10−2, ϵabs = 10−7,

and ϵrel = 10−5. Specially, we set the number of outer and inter loop in Algorithm 5.1 to be 10 and 5000,

respectively. For gWICP-DCA, we set the maximum number of iterations to be 20 and see that much of the

benefit comes from few reweighting iterations, and so the added computational cost for improved signal recovery

is quite moderate. In addition, for gICP-DCA and gWICP-DCA, the shape parameter q of GGF is empirically

set to be 2 (maybe it’s because the elements of the signal x are subject to the Gauss distribution). Fixed q,

we employ a “trial and error” strategy to choose the scale parameter θ and the regularization parameter λ (set

the penalty parameter τ = 10λ). As illustrated in Fig.5.7, gICP-DCA reaches the minimum relative error when

θ = 0.7, λ = 10−8 and τ = 10−7 (in the noiseless case where λ should be always set to a small number such that
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Algorithm 5.2 An algorithm for the minimization problem with g-WICP (gWICP-DCA)

1: Input: y ∈ Rm, A ∈ Rm×n(m ≪ n), λ, q, θ and τ .

2: Output: x♯ ∈ Rn.

3: Initialize A(0) = A, W (0) = I, x(0) = 0 and υ = 0.

4: while no convergence do

5: Ã(υ+1) = A(υ)(W (υ))−1.

6: x̄(υ+1) = gICP-DCA(Ã(υ), y, λ, q, θ, τ).

7: x(υ+1) = (W (υ))−1x̄(υ+1).

8: Update weights w
(υ+1)
j = {(xj

(υ))2 + (ϱ(υ))2}−
1
2 .

9: ϱ(υ) = min{ϱ(υ), c · r(x(υ+1))k+1} where c ∈ (0, 1) is a constant.

10: υ = υ + 1.

11: end while

12: return x♯ = x̄(υ).

ℓ2-norm data fidelity possesses a slight effect). Here gWICP-DCA shares same parameters with gICP-DCA.
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Fig. 5.7: Parameters selection for gICP-DCA with sparsity k = 20. (a) for θ versus RelError with λ = 10−8 and τ = 10−7. (b) for

λ versus RelError with θ = 0.7.

5.2.2 Results for RIP Matrix

In this section, we implement two sets of experiments for the Gaussian measurement matrix satisfied RIP.

Fig.5.8 (a) depicts the relationship between sparsity k and success rate (the success ratio of 100 experiments).

It is easy to see that an increasing k leads to a poor reconstruction, however gWICP-DCA owns the highest

success rate at various sparsity levels and followed by gICP-DCA. The performance of IRL1 is slightly lower

than that of gICP-DCA. The gap between remaining three algorithms and our solvers is pretty big.

Fig.5.8 (b) shows the relative error performance versus the number of measurements m for a signal with

length n = 256 and sparsity k = 5. We notice that when m ≤ 25, there are no obvious differences. Comparing
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the gap between these algorithms for m > 25, we remark that gWICP-DCA has the lowest relative error and

is about three orders of magnitude different from other methods. In a word, the sampling number required for

gWICP-DCA is the least in the same case.
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Fig. 5.8: Comparison of algorithms using RIP matrix. (a) for k versus Success rates with sampling number m = 64. (b) for m

versus RelError with sparsity k = 5.

5.2.3 Results for Highly Coherent Matrix

In addition, we also test a more ill-posed and significantly higher coherence sensing matrix which is generated

by creating a randomly oversampled partial DCT matrix A ∈ Rm×n with Ai = cos(2(i− 1)πϖ/F )/
√
m, where

the elements in ϖ ∈ Rn draw independently from the uniform distribution and F is a positive integer that

is closely related to the coherence of A. In general, a bigger F corresponds to a larger coherence. The test

signal is produced by creating an k-sparse signal x whose k entries are independently sampled from a standard

normal distribution and located at supports drawn uniformly in {1, 2, · · · , n}. Similar to [30], we restricted the

elements i, j in supp(x) to satisfy mini ̸=j |i− j| ≥ 2F .

Fig.5.9 provides an example with A ∈ R50×1000 and F = 14. It’s remarkable that such an ill-posed and

inverse problem is an enormous challenge for the vast majority of the algorithms, however, our gWICP-DCA

and ℓ1−2-DCA still maintain a high recovery success rate for different sparsity levels with gICP-DCA in hot

pursuit. In contrast, other algorithms encounter a general performance, especially Half thresholding is almost

incapable of signal recovery in the case of a highly coherent measurement matrix.

5.3 Experimental Results on Noise Data

In this section, we conduct some numerical experiments to support the robustness of our solvers in the

presence of noise. We compare the performance of our two methods with the other representative algorithms

including lasso-ADMM and ℓ1−2-DCA and Half thresholding. Here we do not take IRL1 into consideration
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Fig. 5.9: Comparison of algorithms using highly coherent matrix for k versus Success rates with m = 50, n = 1000 and F = 14.

in the comparison, because IRL1 is often used to solve constrained noiseless signal recovery problems, so it

is not appropriate in this example. Throughout the rest of experiments, all settings are consistent with the

corresponding experiments in 5.2 Section except the scale parameter θ, the regularization parameter λ and the

penalty parameter τ (to be chosen later). Using x and A, the measurements y are produced by y = Ax + e,

where e is the Gaussian white noise with mean 0 and standard deviation 0.05. We uniformly evaluate the

recovery performance of all the methods by signal-to-noise ratio (SNR) defined as 20 log(∥x∥2/∥x − x♯∥2) in

decibels (dB).

In order to find the better θ, λ, τ that obtain the maximal SNR, two sets of trails have been conducted based

on the “trial and error” strategy. From Fig.5.10 and Fig.5.11, the parameters θ = 0.3, λ = 10−2, τ = 10−1 for

gICP-DCA and θ = 2.4, λ = 10−4, τ = 10−3 for gWICP-DCA are two good choices.
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Fig. 5.10: Parameters selection for gICP-DCA with sparsity k = 10. (a) for θ versus SNR with λ = 10−2 and τ = 10λ. (b) for λ

versus SNR with θ = 0.3.
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Fig. 5.11: Parameters selection for gWICP-DCA with sparsity k = 10. (a) for θ versus SNR with λ = 10−4 and τ = 10λ. (b) for

λ versus SNR with θ = 2.4.

5.3.1 Results for RIP Matrix and Highly Coherent Matrix

In this section, under the condition that measurement matrix A satisfies RIP and high coherence, respectively,

we study the SNR performance of methods influenced by sparsity levels k. According to Fig.5.12 (a), when

k ≤ 15, all the methods tend to perform better. However, our gICP-DCA and Half thresholding methods rand

first and second, respectively, followed by the gWICP-DCA, ℓ1−2-DCA and lasso-ADMM in order. Besides,

when sparsity k increases and k > 15 or in order words, the difficulty of signal recovery increases, our gWICP-

DCA is obviously superior to the other solvers. One can easily see from Fig.5.12 (b) that our proposed two

methods behave better than the rest of the methods on the whole. In particular, our gWICP-DCA shows

stability for different k’s and the gap between other algorithms and our methods is quite clear.

6 Conclusion

This work introduced a robust formulation for signal recovery, which employs two key ideas that 1) the inte-

gral convolution approximation of the absolute value function; 2) the difference between two convex functions.

Moreover, we generalized the result of the univariate to the multivariate case. Two efficient algorithms, i.e.,

gICP-DCA and gWICP-DCA, have been provided to solve this criterion. To verify the effectiveness and robust-

ness of our methods, several sets of contrast tests include noise and noiseless case as well as RIP matrix and

highly coherent matrix case have been implemented. The obtained results show that our methods outperform

other state-of-the-art methods in recovering signals. Some extensions of our work are of interest. For example,

this formulation can be extended to structured sparse signal recovery and non-Gaussian noise modeling where

the data fidelity term is measured by ℓp-norm (p ̸= 2).
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Fig. 5.12: (a) Comparison of algorithms using RIP matrix for sparsity k versus SNR with m = 64, n = 256. (b) Comparison of

algorithms using highly coherent matrix for sparsity k versus SNR with m = 50, n = 1000.
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