Universal Forecasting Scheme

Author: Ramesh Chandra Bagadi Affiliation: Associate Professor & Head, Department Of Civil Engineering, Sanketika Vidya Parishad Engineering College, Visakhapatnam-41, India Tel: +91-9440032711, +91-7989732257, +91-891-2501619 Email: rameshcbagadi@uwalumni.com

Abstract

In this research investigation, the author has detailed a novel method of forecasting.

Theory

Method 1

Firstly, we define the definitions of Similarity and Dissimilarity as follows: Given any two real numbers a and b, their Similarity is given by

Similarity
$$(a,b) = \frac{a^2 \text{ if } a < b}{b^2 \text{ if } b < a}$$

and their Dissimilarity is given by

Dissimilarity
$$(a,b) = ab - a^2$$
 if $a < b$
 $ab - b^2$ if $b < a$

Given any time series or non-time series sequence of the kind

$$S = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$$

We can now write y_{n+1} as

$$y_{(n+1)} = y_{(n+1)S} + y_{(n+1)DS}$$
 where

$$y_{(n+1)S} = y_{(n+1)S} + y_{(n+1)DS} \text{ where}$$

$$y_{(n+1)S} = \sum_{i=1}^{n} y_{i} \left\{ \frac{\sum_{\substack{j=1\\j\neq i}}^{n} \left(\frac{Total \ Exhaustive \ Similarity(y_{i}, y_{j})}{Total \ Exhaustive \ Similarity(y_{i}, y_{j}) + Total \ Exhaustive \ Dissimilarity(y_{r}, y_{j})} \right\} \left\{ \frac{\sum_{\substack{j=1\\j\neq i}}^{n} \left(\frac{Total \ Exhaustive \ Similarity(y_{r}, y_{j}) + Total \ Exhaustive \ Dissimilarity(y_{r}, y_{j})}{Total \ Exhaustive \ Similarity(y_{r}, y_{j}) + Total \ Exhaustive \ Dissimilarity(y_{r}, y_{j})} \right\} \right\}$$

and

$$y_{(n+1)DS} = \sum_{i=1}^{n} y_{i} \begin{cases} \sum_{\substack{j=1\\j\neq i}}^{n} \left(\frac{Total\ Exhaustive\ Dissimilarity(y_{i},y_{j})}{Total\ Exhaustive\ Similarity(y_{i},y_{j}) + Total\ Exhaustive\ Dissimilarity(y_{r},y_{j})} \right) \\ \frac{\sum_{r=1}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} \left(\frac{Total\ Exhaustive\ Dissimilarity(y_{r},y_{j})}{Total\ Exhaustive\ Similarity(y_{r},y_{j}) + Total\ Exhaustive\ Dissimilarity(y_{r},y_{j})} \right) \end{cases}$$

The definitions of Total Exhaustive Similarity and Total Exhaustive Dissimilarity are detailed as follows:

```
Total Exhaustive Similarity (y_i, y_j) = Similarity (y_i, y_j) + Similarity (S_1, S_2) +
Similarity (S_3, S_4) + Similarity (S_4, S_5) + ...... + Similarity (S_k, S_{k+1}) till S_k = S_{k+1}
where S_1 = \{Smaller(y_i, y_i)\}\ and S_2 = \{Larger(y_i, y_i) - Smaller(y_i, y_i)\}\ 
where S_3 = \{Smaller(S_1, S_2)\}\ and S_4 = \{Larger(S_1, S_2) - Smaller(S_1, S_2)\}\ 
where S_4 = \{Smaller(S_3, S_4)\}\ and S_5 = \{Larger(S_3, S_4) - Smaller(S_3, S_4)\}\
```

and so on so forth.

Total Exhaustive Dissimilarity (y_i, y_j) = Dissimilarity (y_i, y_j) + Dissimilarity (S_1, S_2) + Dissimilarity (S_3, S_4) + Dissimilarity (S_4, S_5) + + Dissimilarity (S_m, S_{m+1}) till $S_m = S_{m+1}$ where $S_1 = \{Smaller(y_i, y_i)\}\$ and $S_2 = \{Larger(y_i, y_i) - Smaller(y_i, y_i)\}\$ where $S_3 = \{Smaller(S_1, S_2)\}\$ and $S_4 = \{Larger(S_1, S_2) - Smaller(S_1, S_2)\}\$ where $S_A = \{Smaller(S_3, S_A)\}\$ and $S_5 = \{Larger(S_3, S_A) - Smaller(S_3, S_A)\}\$ and so on so forth.

Similarly, we can write the Total Exhaustive Similarity and Total Exhaustive Dissimilarity for (y_r, y_i)

Method 2

Firstly, we define the definitions of Similarity and Dissimilarity as follows: Given any two real numbers a and b, their Similarity is given by

Similarity
$$(a,b) = a$$
 if $a < b$
bif $b < a$

and their Dissimilarity is given by

Dissimilarity
$$(a,b) = b-a$$
 if $a < b$
 $a-b$ if $b < a$

Given any time series or non-time series sequence of the kind

$$S = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$$

We can now write y_{n+1} as

$$y_{(n+1)} = y_{(n+1)S} + y_{(n+1)DS}$$
 where

$$y_{(n+1)S} = \sum_{i=1}^{n} y_{i} \begin{cases} \sum_{\substack{j=1\\j\neq i}}^{n} \left(\frac{Total \ Exhaustive \ Similarity \left(y_{i}, y_{j}\right)}{Total \ Exhaustive \ Similarity \left(y_{i}, y_{j}\right) + Total \ Exhaustive \ Dissimilarity \left(y_{i}, y_{j}\right)} \\ \frac{\sum_{r=1}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} \left(\frac{Total \ Exhaustive \ Similarity \left(y_{r}, y_{j}\right)}{Total \ Exhaustive \ Similarity \left(y_{r}, y_{j}\right) + Total \ Exhaustive \ Dissimilarity \left(y_{r}, y_{j}\right)} \right)} \end{cases}$$

and

$$y_{(n+1)DS} = \sum_{i=1}^{n} y_{i} \begin{cases} \sum_{\substack{j=1\\j\neq i}}^{n} \left(\frac{Total\ Exhaustive\ Dissimilarity(y_{i},y_{j})}{Total\ Exhaustive\ Similarity(y_{i},y_{j}) + Total\ Exhaustive\ Dissimilarity(y_{r},y_{j})} \\ \frac{\sum_{r=1}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} \left(\frac{Total\ Exhaustive\ Dissimilarity(y_{r},y_{j})}{Total\ Exhaustive\ Similarity(y_{r},y_{j}) + Total\ Exhaustive\ Dissimilarity(y_{r},y_{j})} \right) \end{cases}$$

The definitions of Total Exhaustive Similarity and Total Exhaustive Dissimilarity are detailed as follows:

Total Exhaustive Similarity
$$(y_i, y_j)$$
 = Similarity (y_i, y_j) + Similarity (S_1, S_2) + Similarity (S_3, S_4) + Similarity (S_4, S_5) + + Similarity (S_k, S_{k+1}) till $S_k = S_{k+1}$ where $S_1 = \{Smaller(y_i, y_j)\}$ and $S_2 = \{Larger(y_i, y_j) - Smaller(y_i, y_j)\}$ where $S_3 = \{Smaller(S_1, S_2)\}$ and $S_4 = \{Larger(S_1, S_2) - Smaller(S_1, S_2)\}$ where $S_4 = \{Smaller(S_3, S_4)\}$ and $S_5 = \{Larger(S_3, S_4) - Smaller(S_3, S_4)\}$ and so on so forth.

Similarly, we can write the Total Exhaustive Similarity and Total Exhaustive Dissimilarity for (y_r, y_i)

References

1. http://vixra.org/author/ramesh_chandra_bagadi