E8 Physics: Cayley-Dickson and Clifford Algebras -
- Braids - Cellular Automata

Frank Dodd Tony Smith Jr - 2018

Louis H. Kauffman in arxiv 1710.04650 said:
“... Let Bn denote the Artin braid group on n strands ... Bn is generated by elementary
braids { s1, ..., s(n-1) } with relations
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Figure 1: Braid Generators
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1. si8; = s;8; for |i — j| > 1,

2. 8;8;118 = S;188 g fori=1,..., n—2.
Braiding operators associated with Majorana operators are described as follows. Let {¢;, ¢5,--- , ¢, }
denote a collection of Majorana operators such that ¢ = 1fork = 1,--- ,nand ¢;¢; + ¢j¢; =0
when i # j. Take the indices {1,2,...,n} as a set of residuces modulo n so that n+ 1 = 1. Define
operators o = (1+ cry1ce) V2
for k = 1,---n where it is understood that ¢, .1 = ¢; since n + 1 = 1 modulo n. Then one can
verify that 0;0; = 0;0;
when |i — j| > 2 and that 0:i0;110; = 0;,10;0;11
foralli =1,---n. Thus {01, ,0n_1} describes a representation of the n-strand Artin braid group B,,.

... the three braid generators of B4 are shown, and ... the inverse of the first generator ..
Clifford Braiding Theorem. Let C be the Clifford algebra over the real numbers generated by
linearly independent elements {c;, ¢s, ... ¢, } with ¢; = 1 for all k and cre; = —eiex for k # L.
Then the algebra elements 7 = (1 + cxs1ck)/ V2, form a representation of the (circular) Artin
braid group. That is, we have {7y, Ts,...T,_1, 7} Where 7, = (1 + ¢puq6:)/V2for1 <k <n
and 7, = (1 + clcn)/ﬁ, and TiTk 41Tk = Tk41TkTke for all k and 737; = 7;7 when |i — j| > 2.
Note that each braiding generator 7; has order 8.

Remark. It is worth noting that a triple of Majorana Fermions say z, y, 2 gives rise to a repre-
sentation of the quaternion group.

Therefore: Braid Group B3 corresponds to the Clifford Algebra Cli(0,2)
and to the Cayley-Dickson Quaternion Algebra H



Tao Cheng, Hua-Lin Huang, and Yuping Yang in arxiv 1510.04408 said “...

Many interesting algebras appear as twisted group algébras. Here we recall some examples
presented in [1, 2, 15]. Let R denote the field of real numbers, Za = {0,1} the cyclic group of
order 2, and Z% the direct product of n copies of Z;. Elements of Z3 are written as n-tuples
of {0,1} and the group product is written as +. Define functions fn,: Z5 x Zj — Zs for all
1<m<3hby

fi(z,y) = E Z:%i, fo(z,y) = E Z:Y5, f3(z,y) = E TiT5 Y-
i i<i distinct 4,3,k
'<J

1. Let Fo: Z2 x Z3 — R* be a function defined by
Fai(z,y) = (—1)1=v)+f2(z9)

Then the associated twisted group algebra Ry, [Z3] is the well-known real Clifford alge-
bra Clp, see [2] for detail. This recovers the algebra of complex numbers C when n =1
and the algebra of quaternions H when n = 2. Note that Cly, is associative in the usual
sense since the function F¢ is a 2-cocycle.

2. Assume n > 3. Define the function Fg: Z§ x Z5 — R* by
Fo(z,y) = (—=1)/1@n+f2(z¥)+fa(zy),
Then the twisted group algebra R g [Z]] is the algebra of higher octonions O,, introduced
in [15] by generalizing the realization of octonions via twisted group algebras (i.e., n = 3)

Note that Z2n corresponds to Braid Group B(n+1) so

n =1 gives B2 and CI(0,1) and Complex Numbers and Sphere S1 = U(1)
Photons can be represented by B2 Braids

¥

n = 2 gives B3 and CI(0,2) and Quaternions and Sphere S3 = SU(2)

Sundance Bilson-Thompson in hep-ph/0503213 represents SU(2) Bosons by B3 Braids

( + and - denote twists carrying Electric Charge )

and



n = 3 gives B4 and CI(0,3) and Octonions and Sphere S7
Octonions and CI(0,3) both have 1 3 3 1 graded structure
SU(3) Color Force has 1+1 Neutral Gluons and 3+3 Colored Gluons
( R G B denote twists carrying Color Charge )

G G

MR .

B R

Gl G

L

B B
R

B
G

W_OH-2
W_O_D

G

and



n = 4 gives B5 and CI(0,4) and Sedenions and Sphere S15
Sedenions and CI(0,4) both have 1 4 6 4 1 graded structure
Spin(2,4) Conformal Gravity + Dark Energy has 15 Graviton generators
with similar 1 4 6 4 structure (U(2,2) has 1464 1)

SuU(2,2) =

10 = 4 + 6 for Conformal Gravity + Dark Energy Universe Expansion (blue)
4 Translations for Primordial Black Hole Dark Matter (green)
1 Dilation for Higgs Mass of Ordinary Matter (red)

The basic DE : DM : OM ratioof 10:4:1=0.67:0.27 : 0.6
becomes, due to expansion process of Our Universe, 0.75 : 0.21 : 0.4 as of now

Sedenions have Zero Divisors of the form Spin(7) / Spin(5) = G2 / Spin(3)

12 of the 15 generators form the A3 = D3 Root Vector Polytope of SU(2,2)
3 of the 15 generators form the A3 = D3 Cartan Subalgebra
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Also shown are the corresponding Elementary Cellular Automata

Here are how all 256 Elementary Cellular Automata correspond



to all 256 elements of the CI(8) Real Clifford Algebra = 16x16 Real Matrices:
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n =7 gives B8 and CI(0,7) and 21-dim Spin(7) and S7 + Spin(7) = 28-dim D4
and
Cayley-Dickson 128-ons = Geoffrey Dixon’s 128D T2 = E8 / D8
where 64D T = RxCxHxO
128D T2 has Zero Divisors with structure related to Stiefel Manifold V(63,2)

The 8 Strands of B8 represent 8 First-Generation Fermion Particles
( X denotes left-handed twist carrying no charge, but representing Octonion )
( right-handed massive electron and quarks emerge dynamically )
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and by Triality 8 First=Generation Fermion Antipaticles
( X denotes right-handed twist carrying no charge, but representing Octonion )
( left-handed massive positron and antiquarks emerge dynamically )
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and also by Triality 8D Spacetime - M4 x CP2 Kaluza-Klein
M4 coordinates = {t,x,y,z} CP2 coordinates = {R,G,B,X}
( Spacetime Strands have no Twist )
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Fermions of Second and Third Generations have 2 or 3 Twists
representing Pairs or Triples of Octonions

Second Generation:
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Third Generation:
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Further:

2 copies of 28D D4 + 64D D8 / D4xD4 + (64+64)D /e8 / D8 = 248D E8
that lives in CI(0,16) = tensor product CI(0,8) x CI(0,8)
for E8-CI(16) Physics (see viXra 1602.0319)

Also:

Andre Joyal and Rose Street in Macquarie Mathematics Report NO.860081 Nov 1986
gave diagrams for Braid Groups B1 - B7 and structures in Braids B5-B7



A@(BOC) —— (BOC)@

Bl. - \
a a
(A®B)@C BO(CQA)
c-@\‘ /1 ®c
(B@A)®C = B®(A®C)
B2. (AG8)@C ————C®(A®B)
A®(B®C) (CeA) @B
1N /él
Ae(cea)——T—o-(A@c)eB
a
B5. A /B (|: /I\ B /C
. \ \
B3. Al — 1A 877 G =g ¢ s
F
r \A/f_ \/\ /\/
G " Nwg A c B~ A
c
B4, IC——C |gs. & /B c D A B c 0
NG T \ | | | \/
¢ L /
B A c D = D C
| < </
BS5. (aB)c —<Zl— (aa)c - <0 v |
2/ £ D A c 8 07 A ¢
A(BC) ¢
1€c| cea) JB7. A B C A B C
( %) /a I ~ / l
A(CB)————— (CB)A
g A C/ B 3/ A C
> | - | -
¢ N4 B 8 ¢
C B/ A c/ B A
B6. (48)(c0) —=21— (aa) (c0) BIA(CD)) —22% 8((ac10)
1©c¢ | ® functor Zﬂc: a natwral :IG(IQC)
4 + -
(AB) (0¢)— <% -~ (Ba) (0C)- -2 » B(A(DC)) B2 ik
i 108« B(D(AC))
a~! l a natwral 'a™t ap B((AD)C)
! 211 @ -3 \
(aey0)c (€L patpyc-2 8L & (peap ))ca \
| | \ 1@a™!
a®@1 | B1 (1ec)el | 19(c®@1IN
| N a natural X
(ACBD))C — o ((BDIA)C———> (BOA))C B((DAXC)
B7. A(CB)—2—— (ac)B —<21 (ca)p
1@¢ S a
A(g;) G N s c(AB)
a S \ ‘c\ \\Qc
ks ¢ natural ~
(AB)C ~ s c(BA)
ce B1 > RS " /'a'I
(BA)C IR R (cB)A
a Y c®1
B(AC) B(CA) (BC)A




Tao Cheng, Hua-Lin Huang, and Yuping Yang in arxiv 1510.04408

gave 168 braidings such that Octonions are an Azumaya algebra

Theorem 1.4. There are exactly 168 braidings R such that O is an Azumaya algebra in (Vecggp ,R),

where

Vz,y € Z3

i—1 GijTiVj

3
i,

— T1T2Yz+T1Y2T3+Y1T2T3+Y1Y2T3+Y1 T2Y3+T1Y2YUa+
R(z,y) = (-1) =

with (a11,a12,a13, @21, @22, 23, 31, azz,ass) listed in the following table.

0,0,0,0,0,1,0,0,0
0,0,0,0,1,0,0,1,1

0,0,0,0,0,0,1,1,1

0,0,0,0,0,0,1,0,0
0,0,0,0,0,1,1,1,1

0,0,0,0,0,0,0,1,0

0,0,0,0,0,1,1,0,0

0,0,0,0,0,0,0,0,1
0,0,0,0,0,1,0,1,1

0,0,0,0,1,0,0,0,0
0,0,0,0,1,1,0,1,0

0,0,0,0,1,1,1,0,0

0,0,0,0,1,0,1,1,1 0,0,0,0,1,1,0,0,1

0,0,0,0,1,0,1,0,0

0,0,0,1,0,0,0,1,1
0,0,1,0,0,0,0,0,0
0,0,1,0,0,1,0,1,1

0,0,0,1,0,0,0,1,0
0,0,0,1,1,1,0,1,1

0,0,0,1,0,0,0,0,1
0,0,0,1,1,1,0,1,0
0,0,1,0,0,0,1,1,1
0,0,1,0,1,0,0,0,0

0,0,0,1,0,0,0,0,0
0,0,1,0,1,1,0,1,1

0,0,0,1,1,1,0,0,1

0,0,0,0,1,1,1,1,1

0,0,0,1,1,1,0,0,0
0,0,1,0,0,0,0,1,0
0,0,1,0,0,1,1,0,1

0,0,1,0,0,1,0,0,1
0,0,1,0,1,0,0,1,0

0,0,1,0,1,1,1,0,1

0,0,1,0,0,0,1,0,1
0,0,1,0,0,1,1,1,1

0,0,1,0,1,0,1,0,1

0,0,1,0,1,1,1,1,1

0,0,1,0,1,1,0,0, 1

0,0,1,0,1,0,1,1,1

0,0,1,1,1,0,0,0,0

0,1,0,0,0,0,0,0,1
0,1,0,0,0,1,1,0,0
0,1,0,0,1,0,1,0,1
0,1,0,1,1,0,0,0,0

0,1,0,1,1,1,0,0,1

0,0,1,1,0,0,0,1,1
0,1,0,0,0,0,0,0,0
0,1,0,0,0,1,0,0,1
0,1,0,0,1,0,1,0,0

0,1,0,0,1,1,1,0,1

0,0,1,1,0,0,0,1,0
0,0,1,1,1,0,0,1, 1
0,1,0,0,0,1,0,0,0
0,1,0,0,1,0,0,1, 1
0,1,0,0,1,1,1,0,0
0,1,0,1,1,0,0,1,1

0,0,1,1,0,0,0,0,1
0,0,1,1,1,0,0,1,0
0,1,0,0,0,0,1,0,1
0,1,0,0,1,0,0,1,0

0,1,0,0,1,1,0,1,1

0,0,1,1,0,0,0,0,0
0,0,1,1,1,0,0,0,1
0,1,0,0,0,0,1,0,0
0,1,0,0,0,1,1,0,1
0,1,0,0,1,1,0,1,0
0,1,0,1,1,0,0,0,1
0,1,0,1,1,1,0,1,0
1,0,0,0,0,0,1,1,1

0,1,0,1,1,1,0,0,0

0,1,0,1,1,0,0,1,0

0,1,0,1,1,1,0,1,1

1,0,0,0,0,0,0,1,0 1,0,0,0,0,0,1,0,1

1,0,0,0,0,0,0,0,0
4,0,0,0,0,1,0,1,1

1,0,0,0,0,1,1,1,1

1,0,0,0,0,1,1,0,0

1,0,0,0,0,1,0,0,0

1,0,0,1,0,0,0,1,0
1,0,0,1,1,0,0,1,1

1,0,0,0,1,1,1,0,0 1,0,0,0,1,1,1,0,1

1,0,0,0,1,1,0,1,1

1,0,0,0,1,1,0,1,0
1,0,0,1,0,0,0,1,1

1,0,0,1,1,0,0,0,0

1,0,0,1,1,1,0,1,0
1,0,1,0,0,0,1,0,0

1,0,0,1,0,0,1,0,1
1,0,1,0,0,1,1,1,1

1,0,0,1,0,0,1,0,0
1,0,0,1,1,0,1,1,1
1,0,1,0,0,0,0,0, 1
1,0,1,0,0,1,0,1,1

1,0,0,1,1,1,0,0,0 1,0,0,1,1,1,1,0,1

1,0,0,1,1,0,1,0,0

1,0,0,1,1,1,1,1,1

1,0,1,0,0,0,1,1,1

1,0,1,0,0,0,0,1,0
1,0,1,0,0,1,1,0,1
1,0,1,0,1,0,1,0,1
1,0,1,1,1,0,0,0,1

1,0,1,1,1,1,0,1,1

1,0,1,0,1,0,0,1,0
1,0,1,1,0,0,0,1,1

1,0,1,0,0,1,0,0,1
1,0,1,0,1,0,0,1,1

1,0,1,1,0,0,0,1,0
1,0,1,1,1,0,0,1,0

1,0,1,1,1,1,1,0,1

1,1,0,0,0,1,1,0,1

1,0,1,0,1,0,1,0,0

1,0,1,1,0,0,1,0,1
1,0,1,1,1,1,0,0,1

1,1,0,0,0,1,0,0, 1

1,0,1,1,1,0,1,0,0

1,0,1,1,1,1,1,1,1

1,0,1,1,0,0,1,0,0

1,0,1,1,1,0,1,1,1

1,1,0,0,1,0,0,0,0
1,1,0,0,1,1,0,1,0

1,1,0,0,0,1,1,0,0

1,1,0,0,0,1,0,0,0

1,1,0,0,1,0,1,0,1 1,1,0,0,1,0,1,1,1 1,1,0,0,1,1,0,0,1
1,1,0,1,0,0,0,0,1

1,1,0,0,1,1,1,1,1

1,1,0,0,1,0,0,1,0

1,1,0,1,0,0,1,0,0

1,1,0,1,1,0,1,1,1

1,1,0,1,0,0,0,0,0
1,1,0,1,1,0,0,1,0

1,1,0,1,1,1,1,0,1

1,1,0,0,1,1,1,0,0
1,1,0,1,0,0,1,0,1

1,1,0,1,1,0,1,0,0

1,1,0,1,1,1,1,1,1

1,1,0,1,1,0,0,0,1

1,1,1,0,0,0,0,0,0

1,1,1,0,1,0,0,1,1

1,1,1,0,1,1,1,0,1
1,1,1,1,0,0,1,0,1

1,1,1,1,1,1,0,0,1

1,1,0,1,1,1,0,1,0

,1,1,0,0,0,1,0,0

1,1,1,0,1,0,1,1,1

1,1,0,1,1,1,0,0,0
1,1,1,0,0,0,0,0,1
1,1,1,0,1,0,1,0,0

1,1,1,0,1,1,1,1,1

1,1,1,0,1,0,0,0,0

1,1,1,0,1,1,0,1,1

1,1,1,0,0,0,1,0,1
1,1,1,0,1,1,0,0,1

1,1,1,1,0,0,0,0,1

1,1,1,1,0,0,1,0,0

1,1,1,1,1,0,1,1,1

1,1,1,1,0,0,0,0,0

1,1,1,1,1,0,0,1, 1

1,1,1,1,1,1,1,0,1

1,1,1,1,1,0,1,0,0

1,1,1,1,1,1,1,1,1

1,1,1,1,1,0,0,0,0

1,1,1,1,1,1,0,1,1

“... Azumaya algebra is a generalization of ... algebras ... introduced in ... 1951 ...[by]...

Goro Azumaya ...[and]... developed further ...[by]... Alexander Grothendieck ...”

Alexander Grothendieck visited North Vietnam in late 1967 teaching mathematics to ...

from

S supervision

Hoang Xuan Sinh who ... earned her doctorate under Grothendieck'

Paris Diderot University in 1975, with a handwritten thesis ...

.prefigured much of the modern theory of 2-groups ...

...[ gr-categories that ] ..
[ such as Braid Groups ]...” (from Wikipedia)

on



Here is how CI(16) = tensor product CI(8) x CI(8) works
and how it was known to the builders of the Giza Pyramids and
how CI(16) information corresponds to information in 40 micron Microtubules:

| 52-dim F4 of CP2] in [256-dim Ci(8)|

F4 /B4 = OP2 = Spinor Fermions =
= 8 Particles + 8 AntiParticles
B4 /D4 = 8-dim SpaceTime =
= Kaluza-Klein M4 x CP2
D4 = Spin(8) contains Spin(6) = SU(4)
contains SU(3) Color Force
SU(3) Color Force = Global Symmetry
of CP2 = SU(3)/ SU(2)xU(1)
SU(2)xU(1) ElectroWeak Force =
= Local Symmetry of CP2

&%
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e

Cross section

B4 cP2 (Cnf6 -> M4) x CP2

D8

+5sQqrt(256) =16 =52 F4
CP2 = SU(3) / SUER)XU(1) +(1/2) sqri(65,536) = 128 = 248 E8

65,536 - 40 microns

128 -1 micron

EB Kaluza-Klein (Cnf6 -> M4) x CP2

In { CI(8) of CP2 ) x ( Cl{8) of Cnf6 -> M4 ) = CI{16)
containing E8
at each of the 258 points of CI(8) of Cnf6 -> M4
there are all 256 points of CI(8) of CP2

B4 Cnf6 -> M4

+5qrt(256) =16 =52 F4

E8/D8 = 128-dim Fermion Spinor Space = 8 components of 8+8 Fermions

D8/ D4 x D4 = A7+1 = 64 = 8-dim position x 8-dim momentum

D4 containing D3 = Spin(2,4) = A3 = SU(2,2) for Conformal Gravity + Dark Energy

D4 containing D3 = SU(4) containing Color Force SU(3)

=65,536

52-dim F4 of Cnf6 -> M4| inI 256-dim cI(B)l

F4 /B4 = OP2 = Spinor Fermions =
=8 Particles + 8 AntiParticles
B4/D4 = 8-dim SpaceTime =
= Kaluza-Klein M4 x CP2
D4 = Spin(4,4) contains Spin(2,4) of
Conformal Gravity + Dark Energy
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