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Abstract

In this paper we prove Girsanov theorem for fractional Brownian motion and jump
measures and consider representation form for the stochastic differential equations in
transfer Probability space.
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1 Introduction

Girsanov theorem is foundation of probability measures transform. After the
introduction of Girsanov theorem by Brownian motion, one with jump measures is
considered ([1], [3]) and Girsanovs transform for Backward Stochastic differential
equation is also proved([2]).

Girsanov theorem by fractional Brownian motion is considered in [4].

In this paper we prove Girsanov theorem for fractional Brownian motion and
jump measures and consider representation form for the stochastic differential
equations in transfer Probability space.

If (Q,,%,,P,) is the probability space driven by fractional Brownian motio
n and (Q ,%,P) is one derived by pure jump Levy processes, one to consid
er is (Q7,P)=(Q,xQ ,7, %, P, QP).[6]

On this space fractional Brownian motion, skorohod integral by Poisson rando
m measures, definition and property of Malliavin derivative and Ito formula, et
c are on the basis of [5].

2 Probability measures transform

The stochastic differential equations to consider are as follows.

dX(t)=a(t, X(t))dt +b(t, X(1))dB, (¢)+ J-C(t, X(t), z)p(dt,dz) (1)
/>0

X(0)=X,
Here, {B,(¢)},q0.r, 1s fractional Brownian motion with parameter # (0 < H <1),

that is,
E(B8,(1)=0

Cy(5:0) = BBy (5)B, ) = (1" s |t =5[")

Also, {u(dt,dz)} is Poisson integral random measure, its intensity is



v(dt,dz) and [(dt,dz)= u(dt,dz)—v(dt,dz) denotes the compensated version
of u(dt, dz).
Coefficients a(t, x), b(t, x), c(t, x, z) are measurable and bounded with respect

to every variable.

{7} icro,ry is given by
7= 0{B,(s), u([0,51,T),0<s<1,T B'}
Then, function space L2,([0,7]) and F, are defined as follows with kernel

function ¢, (s,7) (¢, (s,0)=HQH ~Dlt—s|""") and Levy measure v(dz)

L ([0, T ={f;

I =[] £ ) @, (s, 1)dsdt < o}

(@)= [[ 12 (s, 0dsde, [, g € L3, ([0,T])
17, = 7 Gs0S (52) (515 ,)dsds, £ (s) € Ly (10, T))

L, =fg; [ [lats, 2)| V(dz)ds < o,

0 ‘z‘>0

Consider the following linear stochastic differential equation (Dolyan equation) by

above fractional Brownian motion and integral random measure.

M@)=1+ j-e(S)M(S)dBH (s)+ j I/I(S, Z)M (s)u(ds, dz) 2)

0 ‘z‘>0

Here, 0(t)eL’,([0,T]), A(t,z) €L,

Theorem 1.The solution for equation (2) is

M(t) = exp} j 0(s)dB,, (s) — %||9||;t +
. , 3)
+ j j In(l + A(s, 2))i(ds, dz) — j j [A(s, ) = In(1 + A(s, 2))]v(dz)ds}

0 ‘z‘>0 0 ‘z‘>0

Proof. Let Y(z) be as follows.



Y(t) = j 0(s)dB,, (s) —%||9||;[ +
+ j j In(l + A(s, 2))i(ds, dz) — j j [A(s, ) = In(1 + A(s, 2))]v(dz)ds
0z[>0 0z[>0

Then, apply stochastic integral transform formula on function F(y) =e”.
M(@)=F(X (1) =

= F(Y(0))+ [ F(Y())0(s)dB,, (s) —% [JF (500005 (s, 5 )dls, s,

l\)|>—‘
O e

jF(Y(S1 NO(s)0(s,)y; (5,5 5,)ds,ds,

j [F(Y(s)+In(1+ A(s. 2))) = F(Y(5)) = In(1+ A(s, 2))F (Y (s))(d=)ds
|2]>0

j [F(Y(s)+In(l+ A(s, 2)))— F(Y(s))|ii(ds, dz)
|z|>0

o'—,N

_[F(Y(s))[l(s, 2)—In(1+ A(s, 2))v(dz)ds

=1+ j O(s)M (s)dB,, (s) + j j A(s, )M (s)fi(ds, dz)

0]z[>0

Note. In case that the integrand is suitable process, Skorohod integral by fractional

Brownian motion is equal to Ito integral ([5]) and if and if only random process

{F(t,w)} 1s (#)- process, its chaos expansion F(t, )= ZIn (f,(-5t)) 1s
n=0

presented by
F(t’ a)) = zln (]i’[( ' Jt )Z([O,t])@)” ( ' ))
n=0
Here, X0, o (-) ispoint function.

And for random variable

G(@) =Y 1,(f,(-) e1*(P)

,semi conditional expectation is defined by

=S (g e ()

Lemma 1.The solution {M(?)},, ,; forequation (2)is # -semi martingale.



Proof. For anys, 7 (0<s<¢<T), by equation (2),

E[M(0)7]=

7]+ F:[j [A6s,, )M () Ji(ds,, dz)

0]z]>0

=1+E[j0(sl>M(sl>dBH(sl) 7]

t

:1+j9(S1)M(S1)Z(0SSISS)(S1 )dB, (51)‘*'.[ J./l(sl’ Z)M(SI)Z(OSSISS)IE(dSl’ dz)
0

0 ‘z‘>0

14 OGOM (5B, () + [ [ A0, )M (5T, )

0]z[>0

=M(s)

Forany f(¢t)eLl’us([0,T]), g(t,z)€F,,

&y(t; f, )= exp{[ f(s)dB, (5) — %”f 5.+

+I Iln(l + g(s, 2))u(ds, dz) —j I[g(s, z)—1In(1+ g(s, 2))v(dz)ds}

0 ‘z‘>0 0 ‘z‘>0

(6.1 =exl] 1B, )~} )

t

&,(t; g) =expi[ [In(l+g(s, 2))filds, d=) - [ [[g(s, 2)—In(1+ g(s, 2)(dz)ds}

02[>0 0:/>0
We can easily show that
&(1;0, ) =¢,(1;0) &,(1; A) = M (1)

Lemma 2. {&,(# “)},q0.1y. 1012 18 & -exponential martingale.

E[¢(z; -)]=1, i=0,1,2
The proof'is certain by Theorem 1 and Lemma 1.

Let the new probability measure P* define that the Radon-Nikodym derivative
satisfies

dP*
EF&:Mm,mmJ]

3 Representation theorem
We can obtain the following theorems.



Theorem 2.For any f(¢) e L’4 ([0, T]),

{By,(t)},0.r, such that

[ X} (5) = [ 1B, ()= 21 0),

is fractional Brownian motion with parameter H/ by the new probability measure

*

P .
Proof. It is sufficient that the characteristic function of

T
[ £(5)dB;, (s)
0
is semi expectation by the new probability measure P* and

-, X . TR
E’ exp{iu j F(s)B(s)k =expi=—-| ]}

E exp {iujf(s)dBZ (s)} =

~ Elexp iu] £(5XB (5)~ i (£, 0),12,(T: 0, 2)]

~ Elexp [ (uf 5) + 0(s))B, (5) (£, 0), = 3|6 yex(T5 )
= EL&,(T: (if () + 0 (T3 Dlexp =" 1]}
w2
= expt-"| /[
Theorem 3. Random measure i (dt, dz) defined by
I (dt, dz) = p(dt, dz)—v'(dt, dz)

is # -martingale by the new probability measure P”and centralized Poisson

integral random measure.
Here,
vi(dt, dz) = (1+ A(s, 2))v(dt, dz)

Proof. We can similarly prove as in Theorem 2. That is ,



T

E'expliu| [g(s. 2)7 (ds. dz)} =

0 ‘z‘>0
= Efexpliu j j 2(s, 2)Ji(ds, dz) — iu j j g(s, 2)A(s, 2)v(dz)ds}e,(T; 6, 2)]
0 ‘z‘>0 0 ‘z‘>0

= Blexp{[ [(iug +In(1+ 2))fi(ds, dz) -
0 ‘z‘>0
[ [(gA+4~In(+ Aw(dz)ds)e (T 0)]

0 ‘z‘>0

= ﬁ[el(T; 0)&,(T; (iug +In(1+ 1)))exp {J. J-(e"”g”n“”) —1—iug(l+ A)—A)v(dz)ds}]

0 ‘z‘>0
T
= exp/{ j j (" —1—iug)v' (dz)ds}
0 ‘z‘>0
Also, with respect to P’
Es;(t, iug) =
= E*[exp{iuj jg(s, 2t (ds, dz) —j j(ei”g —1—iug )V (dz)ds}]

0 ‘z‘>0 0 ‘z‘>0

=1

Consequently, the theorem is proved.
Theorem 4. The stochastic differential equation (1) in transfer Probability space is

presented as follows.

X(t)=X(0)+ j-a(s, X(s))ds + j-j.b(sl , X (5))0(s,)@y, (s, 5,)ds,ds,

+j- J-c(s, X(5), 2)A(s, z)v(ds, dz)
0 ‘z‘>0
+ jb(s, X(s))dB,,(s) + j Ic(s, X(s), 2) i (ds, dz)

0 ‘z‘>0

The proof of above theorem follows from Theorem 2, 3.
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