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Abstract 

We study the boundary value problem of a partial differential-integral equations that have 

many applications in finance and insurance. We will solve a boundary value problem of the 

partial differential-integral equations by using the solution of conjugate equation and 

reflection method and apply it to determine the probability of company bankruptcy in 

insurance mathematics. 
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Introduction 

The partial differential - integral equations is now more in the application of financial and 

insurance. In many papers have considered the boundary value problem of the differential 

equations,however,a few papers have considered the boundary value problem of the 

partial differential-integral equations. 

In [1~5], authors considered the unique existence of the partial differential-integral 

equations by using viscosity analysis and in [5], author considered the maximum value 

problem of the partial differential-integral equations. 

Firstly, we study the boundary value problem of a partial differential-integral equations 

and secondly, apply its result in insurance mathematics. 

1. The boundary value problem of a partial differential-integral equations 

Let consider the following boundary value problem of a partial differential-integral 

equations: 
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Assumption: 

(H1) 2,1,0, iai  are constant and   dkizcik ,1,2,1,   are satisfyed 
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(H2)     is the finit measure on 
2B ,    00   and can express 
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,where  zpk  is  the hyper-density function on 
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Then, the operator L  can rewrite as following: 
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From assumption (H2), we can rewrite the matrix 
 ija  into the diagonal-matrix  2i   

by using appropriate variable transformation.   

Comfortably, will express ia
~

 into ia . 

Let’s consider following two operators; 
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Theorem 1: For ],0[],0[,, 2  RxTt  , the solution of the partial differential 

equation  
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is as following. Namely,  
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Proof: Let’s assume that the solution of the equation (8) on boundary condition (9) 

exist,and apply following transformation:  

       ,;,,;, , xtkexts x . 

Then for ),(),,( 2121 aaa    the equation (8) is following:  
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Now, for 
2,,  RxTt   instituting i  and   into (11), (9), we obtain the 

following equation: 
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Let’s obtain the solution of above equation by expanding the domain of equation (12) that 

is satisfied the boundary condition (13) the 
 
R  onto 

 R . 

Namely, when s  is the solution of equation (12), we define the expanded solution  as 

following:   
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Also, the condition (13) become as following initial condition: 
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Therefore, we can consider the boundary value problem (12),(13) to following initial value 

problem:   
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The solution of this initial value problem is well-known. Namely, the solution is obtained 

as following:  
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When reduce to 
2
R  the domain in equation (18), we obtain that 
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Theorem 2. The differential-integral equation (1) equal to following integral equation:   
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Where the notation    F ,      xtG are denoted as following: 
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where the notation k  is denoted as the equation (10) of theorem 1. 

Proof: Let the solution u  of equation (1) with respect to operator (4) show equation (19). 

With respect to operator A , *A ,we obtain following equation: 
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From the boundary and initial condition of u ,k ,each term of equation (21) is expressed 

as following:  
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From (21)~(24) and (1), we obtain 
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Therefore, by substituting equation (26) to (27), we obtain equation (19). 

Namely, the solution of equation (1) is solution of (19). 

Conversely, let the solution of (19) show one of (1). 

Assume that u  is solution of (19). From equation (10),integral kernel G  of (19) is as 

following:    
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Therefore, for arbitrary 
 
 R ,   , if u  is the solution of (19), it must satisfy 

following equation: 
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This shows that the braket part of integrade is zero, namely, equation (1) is satisfied.  

The proof is completed. 

Lemma 1: If  xp   is density function of regular distribution and  xp2  is arbitrary 

hyper-density function,  xpp 21   is infinite time differential in usual meaning. Where   

is synthesis multiple symbol.     

Lemma 2:  F ,G  of equation (20) in theorem 2 are infinite time differential on domain 

    2,,  RTt  .  

We omit proof here.  

Theorem 3: On domain   the unique solution of integral equation (19) is as following:   
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where   
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Proof: By means of lemma 2 and convergence property condition of progressive formula it 

is sufficient to show that inequality (29) hold: 
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From the equation (20) of theorem 2, 
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On the other hand, the equation (10) can rewrite as following: 
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Now,  dN ,  jj td    
  ,  jj td    

   are denoted as following: 
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By substituting equation (31) into (30), we have    
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We define  jg     so that 
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Therefore, from equation (33), we obtain that    
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From equation (30), (34), equation (29) is satisfied. Therefore we can apply progressive 

formula of second kinds of integral equations.  

Let the operator      22 ,,0:   RTCRTC   be 
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Then, equation (19) equal to operation equation uu  .   

Now, let     ,,0 Fu                                                (35) 

be zero-order approximation. By applying          
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we obtain the equation (28). 

On the other hand, because the operator   is reduced operator, it has the uniquefixed 

point and therefore, approximation formula (36) converges to the unique solution.  

Their applications in insurance mathematics 

The two-dimensional risk model we consider in this paper can be formally stated as   
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Where    tMtM 21 ,  are the number of claims between time 0 and t, which follows a 

Poisson process with parameter λ.  ikz  are claim size random variables as in the 

univariate risk model. For simplicity, we assume that {X1k,k= 1,2,...} and {X2k,k= 1,2,...} 

are independent, and furthermore, both of them are also independent of M1(t), M2(t). 

iu the initial surplus of eath insurance company, ic  the rate at which the premiums are 

received. 

 tRi  is the surplus of i -th insurance company at time t ≥ 0. 

In this paper, we consider the following type of ruin: 

     0,min｜inf 21  tRtRtT . 

With the time of ruin defined, the corresponding probability of ruin is denoted by 

         212121 ,0,0｜, uuRRTPuu  . 

Set       TtRtRtR 21 , .  We can rewrite the equation (37) as following: 
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  satisfy the following partial differential-integral equation: 
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Therefore, the survival probability   until time T  can be obtained by means of 

equation (28) as following: 
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