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Abstract
I examine the groups which underly classical
mechanics, non-relativistic quantum mechanics,
special relativity, relativistic quantum mechan-
ics, quantum electrodynamics, quantum flavour-
dynamics, quantum chromodynamics, and gen-
eral relativity. This examination includes the
rotations SO(2) and SO(3), the Pauli algebra,
the Lorentz transformations, the Dirac algebra,
and the U(1), SU(2), and SU(3) gauge trans-
formations. I argue that general relativity must
be generalized to Einstein-Cartan theory, so that
Dirac spinors can be described within the frame-
work of gravitation theory.

1 Introduction
I will present my argumentation in a didactic
way. So I will start at a very elementary level.
If not denoted otherwise then Latin indices run
from 1 to 3, Greek indices run from 0 to 3. I will
use the Einstein summation convention, where it
is summed over all indices which appear twice.
Moreover I will use the natural units

h̄ = c = ε0 = 1 (1)

where h̄ = h/2π denotes the reduced Planck con-
stant, c the speed of light, and ε0 the electric
field constant. Inner indices of matrices will be
dropped.

Readers who would like to learn more about
the theories which will be mentioned in this
paper are recommended to the comprehensive
works of Goldstein [1] (classical mechanics),
Jackson [2] (classical electrodynamics), Kilmis-
ter [3] (special relativity), Weinberg [4] and Mis-
ner, Thorne and Wheeler [5] (general relativity),
Hehl et al. [6] (Einstein-Cartan theory), Mes-
siah [7] (non-relativistic quantum mechanics),
Bjorken and Drell [8] (relativistic quantum me-
chanics), Bjorken and Drell [9] (quantum elec-
trodynamics), Taylor [10] (quantum flavourdy-
namics), Politzer [11] and Marciano and Pagels

[12] (quantum chromodynamics), and Kühne
[13] (quantum electromagnetodynamics).

2 Classical Mechanics
The space of classical mechanics is described
by the three-dimensional Euclidian space. The
scalar product of the three-vectors ai and bi is
given by

a · b = δijaibj (2)

where
δij = diag (1, 1, 1) (3)

denotes the Kronecker symbol. The vector prod-
uct is given by

(a× b)k = εijkaibj (4)

where εijk denotes the totally anti-symmetric
Levi-Civita symbol. The square of the infinites-
imal line element is given by

ds2 = δijdxidxj (5)

where dxi denotes the infinitesimal coordinate
difference of the two space-points xi and yi

dxi = lim
yi→xi

(yi − xi) (6)

A rotation R around the rotation angle ϕ in the
two-dimensional subspace is described by the or-
thogonal rotation group SO(2)

R = exp(−iϕD)

=

(
cosϕ − sinϕ
sinϕ cosϕ

)
∈ SO(2) (7)

where, because of the Euler equation

e−iϕ = cosϕ− i sinϕ (8)

the generator of the rotation is

D =

(
0 −i
i 0

)
(9)
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A rotation R around the rotation angle ϕi in
the three-dimensional space is described by the
rotation group SO(3)

R = exp(−iϕiDi) ∈ SO(3) (10)

where the generators Di of the rotation satisfy
the commutator relation

[Di, Dj ] = iεijkDk (11)

A representation of the generators of the SO(3)
group is

D1 =

 0 0 0
0 0 −i
0 i 0

 (12)

D2 =

 0 0 i
0 0 0
−i 0 0

 (13)

D3 =

 0 −i 0
i 0 0
0 0 0

 (14)

Note that the number of generators of the or-
thogonal groups is given by

dim SO(n) = n(n− 1)/2 (15)

and that the generators of SO(n) are Hermitean.

3 Non-Relativistic Quantum
Mechanics

Classical angular momentum is continuous. In
quantum physics orbital angular momentum is
quantized in units of h̄ and intrinsic spin is quan-
tized in units of h̄/2. Intrinsic spin is described
by the unitary group SU(2). Its generators are
the three Pauli matrices σi. An often used rep-
resentation of the Pauli matrices is

σ1 =

(
0 1
1 0

)
(16)

σ2 =

(
0 −i
i 0

)
(17)

σ3 =

(
1 0
0 −1

)
(18)

The commutator of the group SU(2) is given by

[σi, σj ] = 2iεijkσk (19)

The groups SU(2) and SO(3) are local isomor-
phic for angles 0 ≤ ϕ < 2π where the group
SU(2) is covered by the group SO(3). Note also
that the commutators eq. (11) and eq. (19) dif-
fer by a factor of two. The anti-commutator is

{σi, σj} = 2δij (20)

The multiplication of two three-vectors ai and
bi is given by

(σ · a)(σ · b) = (σi · ai)(σj · bj)
= (δij + iεijkσk)aibj

= a · b+ iσ · (a× b) (21)

According to non-relativistic quantum mechan-
ics both spin and isospin are invariant under
global transformations of the group SU(2). If
Ψ denotes a two-component Pauli-spinor, ϕi the
three-component rotation angle vector, σi the
Pauli matrices, and x a space-time point, then

Ψ′(x) = exp(−iϕiσi/2)Ψ(x) (22)

If Ψ denotes a two-component iso-spinor, ϕi the
three-component phase vector, and τi the Pauli
matrices, then

Ψ′(x) = exp(−iϕiτi/2)Ψ(x) (23)

4 Special Relativity
The special theory of relativity is invariant un-
der the semi-simple Poincare group. The pa-
rameters of its translational part are time and
three-position. The parameters of its rotational
part are the rotation angle three-vector and the
three-component Lorentz boost.

The scalar product of the two four-vectors aµ
and bµ is given by

a · b = gµνa
µbν (24)

where gµν denotes the metric tensor. It is

gµν = gµν (25)
gµν = gν

µ = δµν = diag (1, 1, 1, 1) (26)

In Minkowski coordinates the metric tensor is
represented by

gµν = diag (1,−1,−1,−1) (27)

The square of the infinitesimal line element is
given by

ds2 = gµνdx
µdxν (28)

where dxµ denotes the infinitesimal coordinate
difference of the two space-time points xµ and
yµ

dxµ = lim
yµ→xµ

(yµ − xµ) (29)

A rotation around the z-axis by the rotation an-
gle ϕ is given by

aµν =


1 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
0 0 0 1

 (30)
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A Lorentz boost along the x-axis by the speed v
is given by

aµν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 (31)

where

β = v/c (32)

γ = 1/
√

1− v2/c2 (33)

In general, a Lorentz transformation aµν of a
four-position xµ is given by

x′µ = aµνx
ν (34)

The Lorentz transformation of a four-derivative
∂µ = ∂/∂xµ is given by

∂′µ = aµ
ν∂ν (35)

Finally, a Lorentz transformation around the pa-
rameter ωαβ is given by

aµν = exp

(
1

2
ωαβI

αβ

)µ
ν

∈ O(1, 3) (36)

where a representation of the six generators of
the Lorentz group SO(1, 3) is

I10 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (37)

I20 =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 (38)

I30 =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 (39)

I13 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 (40)

I23 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 (41)

I12 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 (42)

5 Relativistic Quantum Me-
chanics

The group which underlies the kinematics of
relativistic quantum mechanics and relativistic
quantum field theory is the Poincare group.
Isospin is invariant under global transformations
of the group SU(2). The generators are the
three Pauli matrices τi. The three Pauli matri-
ces σi of spin are generalized by the four Dirac
matrices γµ. An often used representation of the
Dirac matrices is

γ0 =

(
1 0
0 −1

)
(43)

γi =

(
0 σi
−σi 0

)
(44)

It is

γ0 = γ0 (45)
γi = −γi (46)

The commutator is

[γµ, γν ] = −2iσµν (47)

which is the definition of the generalized Dirac
matrices σµν . The anti-commutator gives

{γµ, γν} = 2gµν (48)

By using the representation eqs. (43) and (44)
of the Dirac matrices and the representation
eqs. (16), (17) and (18) of the Pauli matrices,
the anti-commutator gives the representation eq.
(27) of the metric tensor in Minkowski coordi-
nates. Moreover it is

γ5 = γ5 = −iγ0γ1γ2γ3 (49)

The multiplication of two four-vectors aµ and bµ
is given by

(γ · a)(γ · b) = (γµa
µ)(γνb

ν)

= (gµν − iσµν)aµbν (50)

The Lorentz transformation of a four-component
spin 1/2 Dirac spinor field Ψ(x) is given by

Ψ′(x′) = exp

(
− i

4
σµν

(
1

2
ωαβI

αβ

)µν)
Ψ(x)

(51)
which is a generalization of eq. (36) which con-
siders both the Lorentz transformation of the
elementary particle and its intrinsic spin.

6 Relativistic Quantum
Field Theory

Quantum electrodynamics is invariant under lo-
cal transformations of the gauge group U(1).
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If Ψ describes a four-component Dirac spinor,
x a space-time point, e the elementary electric
charge, ϕ the gauge phase, Dµ the covariant
derivative, ∂µ the partial four-derivative, and
Aµ the electromagnetic four-potential, then the
gauge transformation is

Ψ′(x) = exp(−ieϕ(x))Ψ(x) (52)
iDµ = i∂µ − eAµ(x) (53)

A′µ(x) = Aµ(x)− ∂µϕ(x) (54)

Note that U(1) and SO(2) are isomorphic.

Quantum flavourdynamics is invariant un-
der local transformations of the gauge group
SU(2)×U(1). If Ψ denotes an eight-component
iso-spinor Dirac spinor, x a space-time point,
g the weak coupling constant, ϕi the three-
component gauge phase isovector, τi the Pauli
matrices, and W i

µ the weak isovector four-
potentials, then the gauge transformations of the
SU(2) part are

Ψ′(x) = exp(−igϕi(x)τi/2)Ψ(x) (55)

iDµ = i∂µ −
g

2
W i
µ(x)τi (56)

W ′µi (x) = Wµ
i (x)− ∂µϕi(x)

−gεijkϕj(x)Wµ
k (x) (57)

Quantum chromodynamics is invariant un-
der local transformations of the gauge group
SU(3). If Ψ denotes a twelve-component colour-
vector Dirac spinor, x a space-time point, g
the strong coupling constant, ϕi the eight-
component gauge phase vector, λi the eight Gell-
Mann matrices, and Giµ the eight gluon four-
potentials, then the gauge transformations are

Ψ′(x) = exp(−igϕi(x)λi/2)Ψ(x) (58)

iDµ = i∂µ −
g

2
Giµ(x)λi (59)

G′µi (x) = Gµi (x)− ∂µϕi(x)

−gfijkϕj(x)′Gµk(x) (60)

where the indices i, j, k run from 1 to 8.

A representation of the Gell-Mann matrices is

λ1 =

 0 1 0
1 0 0
0 0 0

 (61)

λ2 =

 0 −i 0
i 0 0
0 0 0

 (62)

λ3 =

 1 0 0
0 −1 0
0 0 0

 (63)

λ4 =

 0 0 1
0 0 0
1 0 0

 (64)

λ5 =

 0 0 −i
0 0 0
i 0 0

 (65)

λ6 =

 0 0 0
0 0 1
0 1 0

 (66)

λ7 =

 0 0 0
0 0 −i
0 i 0

 (67)

λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 (68)

The commutator of the Gell-Mann matrices is

[λi, λj ] = 2ifijkλk (69)

and the anti-commutator is

{λi, λj} =
4

3
δij + 2dijkλk (70)

Note that the number of the generators of the
unitary groups is given by

dim SU(n) = n2 − 1 (71)

and that the generators of the SU(n) groups are
Hermitean.

According to relativistic quantum mechan-
ics and relativistic quantum field theory, the
energy-momentum tensor Σµν of a Dirac spinor
Ψ is asymmetric

Σµν(x) = −1

2

((
DµΨ̄(x)

)
γνΨ(x)

)
+

1

2

(
Ψ̄(x)γνDµΨ(x)

)
(72)

where the covariant derivative Dµ is given by
the equations (53), (56) and (59).

7 General Relativity
The general theory of relativity is invariant un-
der arbitrary curvilinear transformations. It
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is invariant under local transformations of the
Lorentz group SO(1, 3). The Lorentz boosts de-
pend on the four-position xµ. Note that the
Poincare group which underlies special relativity
has ten generators, whereas the Lorentz group
which underlies general relativity has only six
generators. Therefore general relativity is not a
generalization of special relativity.

The scalar product of the four-vectors aµ and
bµ is given by

a · b = gµν(x)aµbν (73)

where the metric tensor gµν depends on the
space-time point x. The square of the infinites-
imal line element is

ds2 = gµν(x)dxµdxν (74)

The local Lorentz transformation is

aµν = exp

(
1

2
ωαβ(x)Iαβ

)µ
ν

(75)

which is a generalization of eq. (36).
When a four-vector Cα is parallely displaced

from the four-position xµ to the four-position
xµ + dxµ, then it changes according to the pre-
scription

dCα = −Γαµν(x)Cνdxµ (76)

This is the definition of the four-position-
dependent affine connection Γαµν . According to
general relativity it has only a symmetric part

{}αµν(x) =
1

2

(
Γαµν(x) + Γανµ(x)

)
(77)

which is named Christoffel symbol. The Rie-
mann curvature tensor is given by

Rλµνκ = ∂κΓλµν(x)− ∂νΓλµκ(x)

+Γαµν(x)Γλκα(x)− Γαµκ(x)Γλνα(x)

(78)

By contraction one gets the Ricci tensor

Rµν(x) = Rλµλν(x) (79)

and the Ricci scalar

R(x) = Rµµ(x) (80)

The Einstein field equations are

Rµν(x)− 1

2
gµν(x)R(x) = κΣµν(x) (81)

where
κ = −8πG (82)

denotes the Einstein field constant and Σµν the
energy-momentum tensor.

Since the affine connection (Christoffel sym-
bol) is symmetric it follows that the energy-
momentum tensor of general relativity is sym-
metric. This is in contrast to the asymmet-
ric energy-momentum tensor of a Dirac spinor
of relativistic quantum mechanics. This means
that a Dirac spinor cannot be described by the
geometry that underlies general relativity.

8 Einstein-Cartan Theory
Einstein-Cartan theory is a generalization of
general relativity, because within the framework
of this theory the anti-symmetric part of the
affine connection which is named Cartan’s tor-
sion tensor

Tαµν(x) =
1

2

(
Γαµν(x)− Γανµ(x)

)
(83)

is nonzero. In contrast to the Christoffel symbol
the torsion tensor transforms as a tensor under
arbitrary curvilinear transformations. Cartan’s
torsion tensor is related to the spin tensor by

Tαµν(x) = κταµν(x) (84)

where κ = −8πG denotes the Einstein field con-
stant known from general relativity.

The Dirac spinor can be described by the ge-
ometry that underlies Einstein-Cartan theory,
because this theory describes an asymmetric
affine connection and therefore an asymmetric
energy-momentum tensor.

Einstein-Cartan theory is invariant under lo-
cal transformations of the Poincare group. So
Einstein-Cartan theory is a generalization of
special relativity.

In quantum Einstein-Cartan theory the local
Lorentz gauge transformation of a Dirac spinor
field Ψ is given by

Ψ′(x′) = exp

(
− i

4
σµν

(
1

2
ωαβ(x)Iαβ

)µν)
Ψ(x)

(85)
This equation is a combination of eqs. (51) and
(75).

9 Conclusion
I argued that the general theory of relativity
must be generalized by the Einstein-Cartan the-
ory, because the asymmetric energy-momentum
tensor of relativistic quantum mechanics re-
quires the existence of an asymmetric affine con-
nection and therefore the existence of a nonzero
torsion tensor. Moreover I pointed out that spin
is the source of a gauge field which is associ-
ated with Cartan’s torsion. This is analogous to
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the situation of isospin which is a pure quantum
number in quantum mechanics, but the source
of the weak gauge field in quantum flavourdy-
namics.
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