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Abstract 

 
We have recently conjectured that the flow from the ultraviolet (UV) to the infrared (IR) sector of any 

multivariable field theory approaches chaotic dynamics in a universal way. A key assumption of this 

conjecture is that the flow evolves in far-from-equilibrium conditions and it implies that the end-point 

attractor of effective field theories replicates the geometry of multifractal sets. Our conclusions are further 

reinforced here in the framework of nonlinear dynamical systems and bifurcation theory. In particular, it is 

found that steady-state perturbations near the IR attractor induce formation of Dark Matter structures 

while oscillatory perturbations lead to the field content of the Standard Model.  
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1. Introduction and motivation 

The Renormalization Group (RG) is a well-established framework for the analysis of 

complex physical systems at both ends of the energy scale. Over the years, the principles 

and methods of RG have found a wide range of applications, from critical behavior in 

Statistical Physics and Condensed Matter to perturbative and non-perturbative models in 

Quantum Field Theory (QFT) [7, 26, 42]. An appealing feature of RG equations is that 

they resemble the evolution equations of dynamical systems [16-17, 20]. In particular, the 
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Callan-Symanzik equation stems from the independence of QFT from its subtraction 

point, which is on par with self-similarity of autonomous flows approaching attractors.  

In the Wilsonian formulation of the RG, the flow in coupling space is associated with the 

trajectory of QFT towards a subspace of relevant and marginal operators. Conventional 

wisdom asserts that the attractors of the RG flow consist of a finite number of isolated 

fixed points (FP). There is now mounting evidence that this assumption is too restrictive, 

that RG flows – echoing the onset of turbulence in fluid mechanics – may evolve towards 

limit cycles or tori as well as strange attractors, the latter denoting invariant sets having 

chaotic structure [20, 38-41]. 

The goal of this work is to extrapolate the conventional RG paradigm to a framework 

which minimizes the potential loss of generality due to simplifying assumptions. To this 

end, we posit that all trajectories connecting the UV and IR sectors of a generic field 

theory are characterized by the following initial conditions:  

a) a large count of independent or coupled variables,  

b) a large count of independent or coupled control parameters,  

c) far-from-equilibrium settings, 

d) non-perturbative and non-integrable dynamics.   

In our view, the motivation for this extended framework is that the combined use of a) to 

d) enable a more realistic picture of complex dynamics that is likely to define the UV to 

IR flow. This view is backed up by many examples. For instance, integrable dynamical 

systems are isomorphic to free, non-interacting theories, which are unable to account for 

the arrow of time in transient regimes, the physics of self-organization and complex 

evolution outside equilibrium [19, 24-25, 60-61]. Another instance is provided by 
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Sakharov’s non-equilibrium conditions for baryogenesis and the observed baryon 

asymmetry of the Universe [35].   

This paper expands on the line of research initiated and developed in [  ] and is organized 

as follows: the interpretation of RG flows as autonomous dynamical systems is detailed 

in section 2. Section 3 delves into the universal theory of flows evolving in far-from-

equilibrium conditions and their reduction to normal form equations. The bifurcations 

generated by these equations and their connection to the structure of the Standard Model 

(SM) and Dark Matter form the topic of next three sections. Conclusions are summarized 

in the last section. For reader’s convenience, a glossary of text abbreviations is also 

included. 

We caution the reader on the introductory and tentative nature of our work. The intent is 

to draw attention to the many unexplored implications of nonlinear science and 

complexity theory on the dynamics of the SM and beyond. Independent research is 

needed to reject or expand the body of ideas discussed here.  

2. RG flows as autonomous dynamical systems   

The RG flow in the space of couplings g   is a continuous map R    called 

the “beta function” and associated with [20] 
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 ( , ( , )) ( , )s g s g        (3) 

where the “RG time” is 
0

)log (


  and   is the RG scale. A FP (equilibrium or 

conformal point) of (1) is a coupling 0g   for which 
0 0

( , )R g g  . The FP of the RG flow 

correspond to zero or infinite correlation lengths and are accordingly classified as “trivial” 

or “non-trivial”. The existence of FP reflects the asymptotic approach towards scale-

invariance and it relates to the self-similarity of fractal structures [see e.g. 7].  A subset 

    is an invariant set of the flow if 

 ( , ) ( , )R


  


    
R

  (4) 

Likewise, the continuous time flow of autonomous dynamical systems is described by the 

differential equation  

 
( )

( ( ))
d x

f x
d





   (5) 

where 
nx R  and : n nf R R  is a function on the n-dimensional phase space nR  [4]. 

There are two ways of relating (5) to a map iteration of the phase space onto itself, namely, 

a) Working in discrete “time” ( 0  ) turns (5) into  

 1 0 ( ) ( )n n n nx x f x F x     ,  0( )nx x n   (6) 

b) If (1) has periodic solutions 0( ) (0)x T x x   for some 0T  , one takes a hyperplane 

1nR   of dimension 1n  transverse to the orbit ( )x   through 0x  and evaluates the 
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distribution of neighboring intersections of the orbit with this hyperplane (the method of 

Poincaré sections).  

Many dynamical systems and maps are dependent on a number of control parameters  

mR . In this case, (5) and (6) take the form 

 
( )

( ( ), ( ))
d x

f x
d


  


   (7) 

 1 0 ( , ) ( , )n n n nx x f x F x        (8a) 

Of particular interest is the long-term evolution of (6)-(8), which reflects the behavior of 

the large thk iterate of the flow in phase-space,  ( )kF x , 1k  . By definition, a period-k 

FP of map (6) satisfies the condition  

 
( )* ( , *) *k

n k n nx F x x     (8b) 

Some flows may converge to specific attractors like a FP or a periodic orbit or erratically 

wander inside a bounded region (  ).  If all iterates remain “trapped” in (  ) for x , then 

(  ) forms an invariant set [5-6]. Moreover, if (  ) has a fine structure, or if there is 

sensitive dependence on initial conditions (two nearby points get farther apart under a 

large number of iterates of f ), then (  ) represents a strange set.  

3. Flows in far-from-equilibrium field theory 

Quantum Field Theories are known to become scale-invariant at large distances. Viewed 

in the context of conformal field theory, this property is typically associated with the FP 

structure of the RG flow [7, 26, 42]. Starting from this observation, we conjecture below 
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that all field theories evaluated at sufficiently low-energy scales emerge from an 

underlying system of high-energy entities called primary variables. Let the UV sector of 

field theory be described by a large set of such variables  , 1,2,...,,ix x i n  , 1n , 

whose mutual coupling and dynamics is far-from-equilibrium. The specific nature of the 

UV variables is irrelevant to our context, as they can take the form of irreducible objects 

such as, but not limited to, spinors, quaternions, twistors, strings, branes, loops, knots, 

bits of information and so on. 

The downward flow of  ix x  may be mapped to a system of ordinary differential 

equations having the universal form  

 ' ( ( ), ( ), ( ))x f x D      (9) 

Here, , ,D   denote, respectively, the control parameters vector  , 1,2,...j j m   , the 

evolution parameter and the dimension of the embedding space. If the dimension of the 

embedding space is taken to be independent variable or control parameter, the system (9) 

further reduces to 

 ' ( ( ), ( ))x f x     (10) 

It is reasonable to assume that the flow (9) or (10) occurs in the presence of non-vanishing 

perturbations induced by far-from-equilibrium conditions. These may surface, for 

example, from primordial density fluctuations in the early Universe or from unbalanced 

vacuum fluctuations in the UV regime of QFT. 

To make explicit the effect of perturbations, we resolve ( )x   into a reference stable state 

( )sx   and a deviation generated by perturbations, i.e.,       
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 ( ) ( ) ( )sx x y     (11) 

Direct substitution in (10) yields the set of homogeneous equations 

 ' ({ }, ) ({ }, )s sy f x y f x      (12) 

Further expanding around the reference state leads to 

 ' ( , ) ({ }, )ij s j i j
j

y L x y h y     (13) 

where i jL  and ih  denote, respectively, the coefficients of the linear and nonlinear 

contributions induced by departures from the reference state. Here, i jL  represents a n n  

matrix dependent on the reference state and on the control parameters vector. Under the 

assumption that parameters   stay close to their critical values ( )c  , it can be shown 

that (13) undergoes bifurcations and its behavior can be mapped to a closed set of 

universal equations referred to as normal forms [1-3]. If, at c   perturbations are non-

oscillatory (steady-state), the normal form equations are 

 2' ( )cz uz      (14a) 

 3' ( )cz z uz      (14b) 

 2' ( )cz z uz      (14c) 

Instead, if perturbations are oscillatory at c  , the normal form equation is given by 

 
2

0' [( ) ]cz i z uz z        (15) 
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where 
0  is the frequency of perturbations at the bifurcation point and both u  and z  are 

complex-valued. Furthermore, it can be shown that (15) belongs to a rich spectrum of 

Andronov-Hopf bifurcation scenarios involving limit cycles [1-3, 27-33].  

We end the section with the following observation: of particular interest is to augment the 

conditions a) to d) of section 1 with the assumption that (9) and (10) exhibit memory 

effects. These effects may be naturally attributed to a non-local dynamic regime that is 

far-from-equilibrium and whose characterization requires fractional calculus instead of 

ordinary calculus on smooth manifolds [43, 44]. It is reasonable to conjecture that (9) 

and (10) evolve in low-fractality conditions defined by arbitrarily small deviations from 

four-dimensionality of ordinary spacetime [  ]. Under these assumptions, the condition 

4 1D     describes the minimal fractal manifold (MFM) geometry of spacetime near 

the IR attractor of (9) and (10), whereby   takes on the role of leading control parameter 

[9].  One then naturally proceeds with the identification , 0c c       in (14) and 

(15), which shows that the four-dimensional spacetime represents the asymptotic limit of 

the MFM at the critical point 4D  .        

In summary, the outcome of this analysis is that the multivariable dynamics (9) and (10) 

reduces in the long-run to a lower dimensional system of universal equations with the 

emerging variable z  playing the role of an effective order parameter. Moreover, if (9) and 

(10) carry low-amplitude non-local effects, the leading control parameter near the IR 

attractor may be assumed to be  4 1D     [53, second reference]. 

4. Universal bifurcations of the normal form equations 

We now proceed with the evaluation of (14) and (15) noting that, while (14) contains a 

true scalar order parameter, (15) embodies the dynamics of a complex order parameter. 
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One is led to suspect that (15) may shed light on the quantum field structure of the SM, 

while (14) may instead provide clues on the dynamic content of Dark Matter. We next 

explore this insight starting with (15) and moving on to (14) afterwards. Given that (14) 

and (15) are particular embodiments of the real and complex Ginzburg-Landau equations, 

with their vast range of possible solutions, we limit the ensuing analysis to few 

representative scenarios which are well documented in the literature [  ].   

4.1 Equation (15)       

It is known that, near a bifurcation point, dynamic variables typically evolve on a fast time 

scale and can be adiabatically eliminated [  ]. Thus, it makes sense to study the behavior 

of (15) when 1   is the leading control parameter and perturbations are slow, that is, 

0 1  . One is immediately led to the so-called Stuart-Landau equation, which 

represents a generic model of nonlinear dynamics near the onset of Andronov-Hopf 

bifurcations [ ]. Substituting the amplitude and phase of the order parameter 

( ) ( ) exp[ ( )]z i      and taking r iu u iu   in (15) yields 

 
2' ( )       (16a) 

 
2 2

0' i iu u         (16b) 

Two cases are of interest here, namely, 

a) If u  is real ( 0iu  ), the dynamics of the phase (16b) is trivial, i.e. ' 0   . The equation 

of motion for the amplitude assumes the normal form of a pitchfork bifurcation. This 

bifurcation is supercritical if 0ru u   and subcritical otherwise. In the former instance, 
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the stable branch 0   of the diagram ( , )   becomes unstable for 0   and splits into 

a symmetrical pair of stable branches at 0   defined by 1, 2 ru    [  ]. 

b) If fast perturbations do not completely vanish and 0 . 0const   , the equation of 

motion for the amplitude stays the same as before but the phase evolves according to 

2

0' iu    . To fix ideas, we look at the case where 0, 1i ru u  . In addition to the 

stable equilibrium at the origin ( 0  ) for 0 ( 4)D   , an extra stable equilibrium 

develops at 0( )    for 0  . This equilibrium is in the form of a limit cycle, that is, 

a closed orbit of radius 0 ( )  . All orbits starting outside or inside this cycle except the 

origin asymptotically approach the cycle as   . The transition induced by 

continuously tuning   denotes a supercritical Andropov-Hopf bifurcation.             

The two cases described by a) and b) are far from exhausting the vast array of solutions 

of the Ginzburg-Landau equation including, for example, coherent structures, topological 

defects and various forms of spatiotemporal chaos. Despite this limitation, both pitchfork 

and Andronov-Hopf bifurcations shed light into the basic mechanisms leading (14) and 

(15) to transition from a laminar regime to turbulence, and from order to chaotic 

behavior. The interested reader is referred to the large database of articles dealing with 

bifurcations of the Ginzburg-Landau equation […, 54, 55]. In [54], for example,   

assumes the role of leading bifurcation parameter and corresponds to the Reynolds 

number associated with the onset of turbulence.  

This analysis supports the viewpoint that   and the MFM geometry of space-time near 

the electroweak scale ( EWM ) play a critical role in the physics of SM. In particular, our 

research shows that [  ],  
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 The SM may be configured as a multifractal set, with all field components acting as 

primary generators of this set. Renormalization flow analysis of the generic Landau-

Ginzburg-Wilson model reveals the connection between the dimensional parameter  , 

low-scale particle masses ( )im O m  and the far ultraviolet scale UV m   via  

                                                                
2

2( )
UV

mO 


                                                                (17) 

Renormalization flow consists of continuous variations in scale starting from UV  down 

to UV   . These changes automatically imply that   is scale-dependent, which means 

that the dimensional flow is a consequence of the renormalization process. 

 The MFM geometry of space-time near or above EWM  explains the repetitive flavor 

structure of SM. Its mass spectrum satisfies a “closure” relationship replicating the 

construction of multifractal sets, namely  

 
16

2

1

( ) 1i

i EW

m

M

   (18) 

The number of SM flavors is constrained by anomaly cancelation [  ] and by the closure 

relationship (18). One can argue that it may also be fixed by demanding marginal stability 

of the perturbative RG flow [  ].   

 MFM naturally mixes widely separated scales of particle physics and cosmology. The 

electroweak scale ( EWM ), the cosmological constant scale (
1
4

cc ) and the far ultraviolet 

scale ( UV ) satisfy the constraint  
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1
4

cc EW

EW UV

M

M





                                                                 (19) 

Both (18) and (19) match experimental observations. It is also worth noting that (19) 

complies with the latest results from gravitational wave astronomy [23].  

 MFM accounts for the emergence of continuous and discrete symmetries in QFT and 

offers unforeseen solutions to the puzzles associated with the Faddeev-Popov ghosts in 

quantum gauge theories and the cosmological constant problem.           

4.2 Equation (14)  

As a continuous dynamical system, equation (14b) displays pitchfork bifurcations of the 

type defined by (16). A similar behavior shows up if (14) is first turned into a set of iterated 

maps following the procedure detailed in (6) to (8). Specifically, (14a) to (14c) represent 

quadratic and cubic maps evolving towards chaos via the period doubling scenario [  ]. In 

the long run, one ends up with an unbounded proliferation of orbits confined to the 

Feigenbaum attractor. It is conceivable that these densely packed orbits undergo chaotic 

mixing and diffusion and may coalesce into some form of topological condensate on scales 

significantly lower than the electroweak scale. To a certain extent, this process is similar 

to Bose-Einstein condensation (BEC) at low temperatures, which suggests a direct 

connection to the superfluid model of Dark Matter put forward in [  ]. Expanding on the 

body of ideas advanced in [  ], this analogy is further developed in section 6. We emphasize 

once again that this analogy must be taken with a “grain of salt”, given the broad range of 

on-going searches and computer simulations related to Dark Matter. As of today, the 

identity of Dark Matter remains far from being settled [  ].     
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5. Flavor replication in the Standard Model 

The paradigm outlined in paragraph 4.1 hints that the family structure of the Standard 

Model unfolds from letting (15) develop sequential bifurcations. One possible scenario is 

that the gluon octet emerges as twofold replica of the electroweak boson quartet as in 

 
  1,2,...,8( )i iW W Z g  


  (20) 

Likewise, color quartets may surface as twofold replicas of lepton doublets, namely,  

   R R

e

G G

u d
e

u d


 
  

 
  (21a) 

   R R

G G

c c

s s
 

 
  

 
  (21b) 

   R G

R G

t t

b b
 

 
  

 
  (21c) 

Two observations are in order [  ] 

a) charge conservation constrains the number of independent flavors generated through 

bifurcations. For example, taking , ,R G B  to denote the triplet of independent color states, 

color conservation prohibits formation of the independent state B  since 1R G B   , by 

definition.  

b) the approach to chaos through successive bifurcations creates a natural mixing of 

orbits.  As a result of this mixing, the transition (1) (2) (3)U SU SU   suggests that 
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leptons and quarks are allowed to couple through electroweak fields but forbids leptons 

to couple to gluon fields. 

Finally, the Higgs scalar arises as topological condensate of gauge bosons having anti-

parallel spins. The simplest combination of weakly-coupled gauge bosons condensing into 

a spin-zero state is given by [  ]  

 
1

[( ) ( )]
4

c W W Z g W W Z g                 (22) 

6. Cantor Dust as underlying content of Dark Matter  

The recent model of Dark Matter as a superfluid phase consisting of axion-like particles 

offers a number of appealing features [Khoury, 50-52]. In this proposal, Dark Matter 

particles undergo BEC and give rise to the superfluid phase inside the galactic cores. The 

superfluid collective excitations behave as phonons and their coherence properties induce 

long-range forces. In turn, these forces are able to mimic the predictions of Modified 

Newtonian Dynamics (MOND) on galactic scales.  

It has been long known that superfluidity can be analyzed via the Ginzburg-Landau 

theory. Specifically, in the weak-coupling approximation, the typical superfluid model 

consists of a self-interacting complex-scalar field endowed with global (1)U symmetry 

[49-51]. In [ ], this model was built from the dimensional parameter 4 1D     and 

led to a superfluid picture of Dark Matter bypassing the axion paradigm and referred to 

as Cantor Dust. Here, we pursue an alternative strategy in which superfluid phonons are 

described by the order parameter z  in (14) and are governed by the effective Lagrangian 

[52] 
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2

( )
(

2
)i

z
L F z

m


    (23) 

To this end, we turn our focus to (14b) and proceed with the following assumptions: 

a) z  represents a complex-valued parameter, whose behavior on cosmological scales ( M

EWM ), can be reasonably well approximated by that of a scalar, that is, r iz z iz   , in 

which i rz z . 

b) to account for the nearly-vanishing contribution of diffusive transport in the dynamics 

of the cosmological fluid, equation (14b) is supplemented with a space-dependent 

diffusion term driven by ( ) 1O    [56-58]. 

c) to streamline the analysis, the model is considered in 1+1 space-time, with   set to be 

independent of space-time coordinates.  

Under these assumptions, (14b) turns into the real Ginzburg-Landau equation [59] 

 

2
2

2
'

z
z z uz z

x
  


  


  (24) 

We next look for the stationary solution of (24) and study its linear stability. Taking the 

stationary solution in the form  

 0 exp( )z z ikx  ,  0z R    (25) 

and substituting it into (24) yields 

 
2 2

0
uz k     (26) 
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It is apparent that the scalar amplitude 
0z  asymptotically decouples from the diffusion 

coefficient  in the far IR region of vanishing wavenumbers 1k  . In this case, (25) 

describes a diffusion-free spatial wave extended over large (mesoscopic) distances on the 

order 1( )O k  . By contrast, 
2

0
1u z   occurs in the limit of large wavenumbers 

2
( ) (1)k O O   , as (9) or (10) approach criticality in the near IR region centered about 

the electroweak scale EW
M . These observations suggest that there may be a limited overlap 

region of Dark Matter structures with SM fields near EW
M  and that these structures tend 

to decouple from the SM as the flow (9) or (10) evolves towards mesoscopic scales 

EW
M M .     

To evaluate the stability of (26), we add to (25) a nearly-vanishing perturbation ( , )y x   , 

 0 exp( ) ( , )z z ikx y x     (27) 

and linearize (24) to obtain [59] 

 

2
2

0 2
' [2 exp(2 )]

y
y y uz y y ikx

x
  


   


  (28) 

in which y  stands for the complex conjugate of y . We assume next that (28) has a 

solution that represents a superposition of harmonic waves 

 1 2( , ) ( )exp( ) ( )exp( )y x a ik x b ik x      (29) 

with 1 22k k k   . Substituting (29) into (28) leads to 
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1 0 0' ( 2 )a a b        (30a) 

 2 0 0' ( 2 )b b a        (30b) 

where 

 
2

0 k      (31a) 

 
2

1 1k      (31b) 

 
2

2 2k      (31c) 

On the basis of (27) to (31), it can be shown that the stability of (26) depends on the 

magnitude of the wavevector k and the proximity of   to its value at the bifurcation point 

cr  . In particular, the farther away   lies from cr  , the larger the instability range of (26) 

is to (29). This result hints that flow (9) or (10) “settles down” in the far IR region of 

mesoscopic scales EWM M . It also provides clues on the clustering behavior of Dark 

Matter structures emerging from (24).  

The derivation of (27) to (31) has been based on the tacit assumption that the order 

parameter z  and the control parameter   are independent entities. Relaxing this 

assumption and, in addition, considering   to be locally defined ( )x  , enables the 

dynamics of (24) to be driven by self-organized criticality (SOC).  To see this, recast (24) 

in the form [  ] 

 
0

2
2

2
' ( )

z
z z uz z

x
   


  


  (32) 
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in which 0    sets the scale of the evolution parameter   relative to a reference value 

0 .  The minimal coupling between z  and ( )x  is described by the “flux” function 

 2[ , ( )] ( )z x x z    ,   0     (33) 

where (33) satisfies a conservation-like constraint 

 0

0

( ( ) )x dx
x




 
  

    (34) 

Here, the term 0  stands for a weak and slowly-varying random source acting 

continuously on the system. Two representative cases are of interest [  ]: 

a) If 1   , the dynamics of z  is much faster than the relaxation induced by (34) and 

a periodic hysteresis cycle of z  takes place. 

b) If (1)O   , the distribution of peaks in z  follow a power law and leads to a scenario 

similar to the formation of inverse cascades in two-dimensional turbulence.  

Both regimes may produce observable Dark Matter signatures in experimental searches 

and numerical simulations [62-64].  

7. Concluding remarks 

… 

Glossary of abbreviations   

UV = ultraviolet 

IR = infrared 
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RG = Renormalization Group 

QFT = Quantum Field Theory 

FP = fixed point 

SM = Standard Model of particle physics 

MFM = minimal fractal manifold 

BEC =Bose-Einstein condensation 

MOND = Modified Newtonian Dynamics 

SOC = self-organized criticality  
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