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Abstract. A piece-wise quadratic spline is introduced as a time series coming with
unequal time steps, and where the second derivative of the spline at the junction points
is impacted by random Brownian motion. A measurement error is also introduced, and
this changes the spline into semi-parametric regression. This makes a total of two
dispersion parameters to be estimated by a proposed REML analysis that unitizes the
K-matrix. The spline itself only has three location effects that are treated as fixed, and
must be estimated. A proposed prediction of a future observation beyond the spline’s
end point is presented, coming with a prediction error variance.

1. Introduction

This paper deals with time series and stochastic spline functions that are applicable
with unequal time steps. The first order time series offers computational ease when
time durations are unequal (e.g., Smith 1995). A second order, or higher order, time
series can be formulated with unequal time steps (Jones and Ackerson 1990). There
are different approaches for treating unequal time steps, including increasing the
number of equally spaced time steps and applying interpolation as an approximation.
The treatment of unequally spaced time steps might be initially conceived as
complicated compared to more conventional approaches that use equal time steps.
Nevertheless, it is necessary to move over to a data analysis that fully accommodates
continuous time; e.g., see Erdogan et al., (2005), or variants of Kalman filtering for
continuous time in Grewal and Andrews (1993). 

The piece-wise continuous quadratic spline (e.g., see Behforooz 1988) is reintroduced
in Section 2, but with the adaptations to include measurement error and a second
derivative that’s impacted by Brownian motion. This leaves the spline as a non-
stationary time series. The associated K-matrix for the stochastic spline, known to be
symmetric and indefinite, is described in Section 3. The estimation of dispersion
parameters by restricted maximum likelihood (REML) is described in Section 4, and a
Bayesian forecast is developed in Section 5. The spline turned into a semi-parametric
regression is presented in Section 6.

2. Piece-wise Quadratic Spline Function

Define the observation equations, given by:
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t 0 1 n(1) x(t)= u(t)+e , t=t , t , ...,t

t 0 1 nWhere e ~IID N(0,F ). This can be viewed as a time series, where t=t , t , ...,t , involving2

k k k-1n+1 observations. There are n unequal durations, each denoted by ) =t -t , where
k=1,2,...,n. A piece-wise quadratic function can also be employed to represent u(t):

(2)

Each of n intervals will have three coefficients to estimate from data. The function u(t) is
further restricted to be continuous and first-derivative continuous, such that:

(3)

kThe second derivatives at the connections, t , k=2,3, ..., n, are still permitted to change,
but those changes will be restricted by a stochastic amount:

(4)  

k k , kwhere the ,  are IID N[0, ) F ], depicting Brownian motion due to a change )  in time.2

1 1 2 1 3 1In this model there are three location parameters to estimate, $ ,  $  and  $ , and

,two dispersion parameters, F , and F , which is very feasible for modest sized data2 2

sets. A Bayesian prior can also be introduced for the three location parameters, and
this will restrict the fit even more. By dropping the error term in (1), i.e., setting F =0, the2

only random variation that is left comes from (4), which is suitable for spline fitting or
situations for detecting hits on a well defined track coming with little measurement error.

To fit a time-dependent curve on a two-dimensional spatial surface, or higher, note that
equations (1), (2), (3) and (4), become vector equations with dimension two, or higher.

kThe distribution of ,  is now multivariate normal, with mean vector null and variance

kmatrix ) Q., where Q is a positive definite matrix.

3. Building the K-matrix

The K-matrix described by Smith (2001) is symmetric and indefinite. Its utility rest in
part on how easy its is to build by plugging in the model specifications directly as simple
primitives. In particular, it is not necessary to form differences, or differences of
differences, to form linear equations that are typically employed in spline calculation.
Then the permuted K-matrix can be directly subjected to matrix factorization, leading  to
REML, estimation and prediction (Section 4), and on to Bayesian forecasting (Section
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5).

The K-matrix for the model specification listed in Section 2, with F =0, is presented2

below.

where: 0 represents null matrices or vectors of appropriate order; and the following
assignments apply.
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k k ,Lastly, W is a diagonal n by n matrix, with k-th diagonal w =) F .2

 
4. REML and Estimation

Because there is the matrix W in K, it is possible to find a permutation matrix P, such
that /=PKP  can be factored as /=LDL , where L is lower triangular and D is diagonalT T

with diagonals 1 and -1. Had W equaled null, this particular factorization (being a
Cholesky decomposition) would unavailable, and an alternative factorization (e.g.,
Ashcraft, Grimes and Lewis 1998; Bunch and Parlett 1971) would be needed (for
estimation only) making L unit lower triangular and admitting to a block diagonal
structure for D consisting of some additional 2 by 2 blocks. The matrix /, as a suitable
permutation of K that leaves the last row and column in the last position, is presented
below.
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where:
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Because is / banded, the Cholesky decomposition only requires linear computing time

kand storage. Moreover, the non-sparse structure in / is the same for each B , 1#k#n,

kthat maps into it, and it’s the same for each A , 1#k<n, that maps into it, resulting in

N×Nfurther savings.  Having computed the Cholesky decomposition L, where / =LDL ,T

Smith (2001b) gives the log-likelihood (Log-L) as:

Derivatives are available (Smith 2001b; Smith, Nikolic and 2012) for the purpose of

,maximizing Log-L, thus deriving the REML estimate F . The function, Log-L, can also be2

maximized using derivative-free methods, and this may be preferable if stability issues
are encountered. 

Alternatives to REML are available for non-parametric regression involving the estimation
of smoothness parameters using cross-validation or a generalization of cross-validation.

Its remarkable that this approach even works, given that a spline provides a perfect fit to

NNthe data. The chi-square statistic, represented by L , will generally tend to zero for2

perfect fits. However, this is not expected in the current example. Note that the current
example is already much different than typical problems given that data points are

0registered twice in the vector y; with the exception of x(t ).

Siegel’s (1965) equations are available for estimating, or predicting, all the coefficients
that define the piece-wise continuous quadratic functions, by solving for b in the following
equations: 

It is noted that the coefficient matrix and right-hand side of (5) are already sub-matrices
of K. Moreover, as the last row and column of K are left un-permuted in /, the right-
hand side is represented in / and gets over-written during the Cholesky factorization:
/ 7L=(D L /) . Therefore, solving (5) is already half-way complete. What remains is to-1 -1 T

extract a lower triangular matrix ² from L by striking the last row, and to extract a column
vector Ë from L by transposing the last row of L and removing the last element

NNrepresenting L . The solution to (5) is found by applying backward substitution to the

1 2upper triangular system,  ² Ñ= Ë, where 8 , 8  and b will all be located in Ñ as determinedT

by P. The mapping of Ñ (and Ë) to effects in the model is given by (6).
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(6)

where the following mapping holds,

5. Bayesian Forecast

By implication, flat non-informative priors were assigned to the three location parameters
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,in the model presented in Section 2. With F  estimated by REML, and plugged back in2

the model providing a prior distribution on second derivatives of u(t), i.e., by equation (4),
what results in an empirical Bayes approach to making forecast predictions of future

n+1 n+1 n+1 nvalues of u(t )=x(t ), where t >t .

n+1 n+1 n n+1Define ) =t -t , and assume that )  is not too large to invalidate the model. Even

0 1though the spine results in a perfect fit for all the data points, i.e., u(t)=x(t) where t=t , t ,

n 1 n..., t , it is not enough to limit consideration to the statistical errors found in estimating $ ,

2 n 3 n$  and $  that comes in the best prediction available with:

n+1 1 n 2 n n+1 3 n n+1 u(t )=$  + $  t  + $ t   2

1Its not enough that the adjacent quadratic functions were made to agree at the points t ,

2 n-1t , ..., t . The statistical errors impacting the best prediction are important, but
consideration must also be given to the forecasting errors that come directly from (4).
That error is given by 

3 n  3 n+1 n+12 $ - 2 $  = , ,

n+1 n+1where x(t ) is the future observation that is being predicted, and  ,  is distributed as

k , 1 n+1N[0, ) F ]. Its necessary to see how this error impacts on the ideal prediction, u(T)=$2

2 n+1  n+1 3 n+1  n+1+ $  t   + $ t , that now involves parameters that were not estimated. That2 

impact is derived from equations (3) and (4), first by building the following equations, and
then solving them.

The solution is:

These are now plugged into the ideal prediction, and when this is done the following is
derived:

1 n+1 2 n+1  n+1 3 n+1  n+1 1 n 2 n  n+1 3 n  n+1 n+1 n$  + $  t  + $ t  =  $  + $  t  + $ t    -   ½ ,  t2 2 2
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1 n 2 nThe statistical error now comes in two parts, a prediction error related to  $ , $ , and 

3n n+1$ , and a forecasting error related to , . The variances are now computed for each
separately, and then added together.

Consider again the lower triangular matrix ² that was extracted from L in Section 4, and
consider the column vector, Ë, that was also extracted from L, and where the mapping
given by (6) applies. But in the new application zero out all the elements of Ë, except for

1 n 2 n 3 nthose corresponding to the effects $ , $ , and $ . For those three elements assign the

 n+1  n+1numbers 1, t  and t , respectively. Now use forward substitution to solve for the2

vector Ñ in the upper triangular system, ² Ñ= Ë. Calculate the negative weighted sum ofT

squares, 

i iwhere s   is the i-th element of Ñ and d  is the i-th diagonal of PDP ; i.e., if the i-th elementT

i iof Ñ belongs to an effect in the model by the mapping (6) then d  =-1, otherwise d  =1.

n+1 1 n 2 n  n+1 3 n  n+1The prediction of the future observation at time t , is:  $  + $  t + $ t . The2

prediction error variance is:

With future observation in hand, a statistical evaluation can now be made to see if the
new data point fits to the end of the spline. If its too far away, the observation may be part
of the background noise, and does not belong with the prior observations. Alternatively, if
the new observation hits on the spline, it can be added to the data set and the prior
analysis can be updated to take the new observation into account. In this sense, the
stochastic spline is a tool to discriminate future observations and it becomes an adaptive
spline as more observations are added to the end. The Cholesky decomposition is easily
updated, particularly if the bordering algorithm is used (Smith 2017).

6. Including Measurement Error

If the time series is too erratic, allowing for a measurement error in (1) will smooth out the
estimate of u(t). This will turn the spline function into a semi-parametric regression, and
the variance term F  can be entered into the K-matrix in various places leading to its2

estimation by REML without any additional modification. If the time series is found too
erratic, permitting the measurement error will make more reliable the forecast of a future
observation.

With F  included, the K-matrix becomes the following.2
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Where

That is, V is block diagonal with one 1×1 block and n 3×3 blocks along the diagonal.
Even with F  entered, V is still very singular because the 3×3 blocks are only rank 1.2

The same row and column permutations presented in Section 4 are preferred because
they permit a well behaved calculation of Log-L even with F  60. There remains small2

k kchanges that are needed for the matrices A  and B , as presented below.
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n+1The prediction of a future observation at time t  requires a separate calculation, but the

1 n 2 n  n+1 3 n  n+1formula remains:  $  + $  t + $ t . However, because the future observation2

comes with its own measurement error, the prediction error variance is now:
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