DIRICHLET PROBLEM FOR HERMITIAN-EINSTEIN
EQUATIONS OVER BI-HERMITIAN MANIFOLDS

PAN ZHANG

ABSTRACT. In this paper, we solve the Dirichlet problem for a-Hermitian-
Einstein equations on I+t-holomorphic bundles over bi-Hermitian manifolds.
As a corollary, we obtain an analogue result about generalized holomorphic
bundles on generalized Kéhler manifolds.

1. INTRODUCTION

A bi-Hermitian structure on a 2n-dimensional manifold M consists of a triple
(g,1+,1_), where g is a Riemannian metric on M and I are integrable complex
structures on M that are both orthogonal with respect to g. Let (M, g, I+,1_) be
a bi-Hermitian manifold. Let E be a holomorphic vector bundle on M endowed
with two holomorphic structures d; and 0_ with respect to the complex structures
I, and I_, respectively. Suppose H ia a Hermitian metric on E. Let F be
the curvatures of the Chern connections V¥ on E associated to the Hermitian
metric H and the holomorphic structures d... Motivated by Hitchin [14], Hu et al.
[16] introduced the following a-Hermitian-Einstein equation, where « € (0,1) and
AeR:

(1.1) V-1(aFf Awl™ + (1 —a)Ff Aw™™) = (n — 1)\ Idp - volg,

where wy (+,+) = g(I+-,-) are the fundamental 2-forms of g. Once I = I_, (1.1)
reduces to the Hermitian-Einstein equation. A Hermitian metric H on E is called
a-Hermitian-Einstein if it satisfies (1.1).

Recently, the existence of Hermitian-Einstein metrics on holomorphic vector bun-
dles has attracted a lot of attention. The celebrated Donaldson-Uhlernbeck-Yau
theorem states that holomorphic vector bundles over compact Kéhler manifolds ad-
mit Hermitian-Einstein metrics if they are polystable. It was proved by Narasimhan
and Seshadri [26] for compact Riemann surface, by Donaldson [8] for algebraic man-
ifolds and by Uhlenbeck and Yau [34] for general compact Kahler manifolds. There
are many interesting generalized Donaldson-Uhlernbeck-Yau theorem (see the Ref-
erences [1, 2, 3, 4, 13, 15, 16, 17, 18, 19, 20, 21, 25, 27, 36|, etc.). It is natural
to hope that geometric results dealing with closed manifolds will extend to yield
interesting information for manifolds with boundary. In [9], Donaldson solved the
Dirichlet problem for Hermitian-Einstein equations over compact Kéhler manifolds
with non-empty boundary. Zhang [37] generalized Donaldson’s result to the gen-
eral Hermitian manifolds. Later, Li and Zhang [23] solved the Dirichlet problem
for a class of vortex equations, which generalize the well-known Hermitian-Einstein
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equations. At the same time, Zhang [38] also solved the the Dirichlet problem for
Hermitian Yang-Mills-Higgs equations for holomorphic vector bundles on compact
Kéhler manifolds.

Just very recently, Hu et al. [16] proved that the I1-holomorphic vector bundles
admit a-Hermitian-Einstein metrics iff they are a-polystable, for any « € (0,1).
In this paper, we want to consider the Dirichlet boundary value problem for a-
Hermitian-Einstein equations. We obtain the following theorem.

Theorem 1.1. Let (M,g,1,,I_) be a compact bi-Hermitian manifold with non-
empty boundary OM such that voly = ‘%, Suppose (E,0y,0-_) is an I -holomorphic
bundle on M. Then for any Hermitian metric @ on the restriction of E to OM,
there is a unique a-Hermitian-Einstein metric H on E such that H = ¢ on OM.

Remark 1.2. In Theorem 1.1, we assume the bi-Hermitian manifold (M, g, I, 1)

satisfying vol, = % The existence of such manifold can be found in Remark 6.14
in [10]. In this case, one can rewrite (1.1) as

aV—IALF + (1 - a)V=1A_F? — \.1dg =0,
where A4 are the contraction operators associated to w4, respectively.

Our motivation for studying such bundles also comes from generalized complex
geometry. In [11], Gualtieri introduced generalized holomorphic bundles, which
are analogues of holomorphic vector bundles on complex manifolds. For instance,
on a complex manifold M, generalized holomorphic bundles correspond to co-Higgs
bundles, which is a holomorphic vector bundle E on M together with a holomorphic
map ¢ : E — E ® Ty for which ¢ A ¢ = 0. Some of the general properties of
co-Higgs bundles were studied by Hitchin in [14] and moduli spaces of stable co-
Higgs bundles were studied in [28, 29, 30, 35], etc. Given the relationship between
the generalized complex geometry and the bi-Hermitian geometry, one can study
generalized holomorphic bundles in terms of Ii-holomorphic bundles. Recall that
any J-holomorphic bundle over generalized Kéahler manifold (M,J,J’) induces an
It-holomorphic bundle on (M, g,I,I_) (see [16, Proposition 2.11]). We will not
list the definitions on generalized complex geometry (see [11, 16] for more details).
Therefore, combining Theorem 1.1, we have the following result.

Corollary 1.3. Let (M, J,J) be a compact generalized Kéhler manifold with non-
empty boundary OM whose associated bi-Hermitian structure (g, Iy, I_) is such

that vol, = % Moreover, suppose (E, Oy, 5,) is a J-holomorphic bundle on M.
Then for any Hermitian metric ¢ on the restriction of E to OM, there is a unique
a-Hermitian-Einstein metric H on E such that H = ¢ on 0M.

This paper is organized as follows. In Section 2, we will introduce the a-
Hermitian-Einstein flow on bi-Hermitian manifolds. And some elementary calcu-
lations will be presented. In Section 3, we prove the long-time existence of the
a-Hermitian-Finstein flow over a compact bi-Hermitian manifold. At last, we deal
with convergence of the a-Hermitian-Einstein flow over a compact bi-Hermitian
manifold with boundary, that is we complete the proof of Theorem 1.1.
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2. PRELIMINARY RESULTS

Suppose (E,dy,04) is an Ii-holomorphic bundle on ‘a bi-Hermitian manifold
(M,g,14,1). Let us fix the Ii-holomorphic structures d+ and a Hermitian met-
ric Hy on (E,04,04). For any positive-definite Hermitian endomorphism h €
Herm™ (E, Hy), let H := Hyh be the Hermitian metric defined by

(s,t) = (hs,t) Hy»
for s,t € C°(E). Let VE = 04 + 0 be the corresponding Chern connections.
The relation between 9 and 9 is given by

(2.1) o = oo + h19ton,
Then the curvatures with respect to VY and VI satisfy
(2.2) FI = o 4 9. (h=10%n).

We turn to a family of Hermitian metrics H(t) on E with an initial metric
H(0) = Hy. We will follow the classical heat flow method to deduce the existence
of a-Hermitian-Einstein metric. Actually, we introduce the following a-Hermitian-
Einstein flow

0
(2.3) H*&H = (aV=IAFf + (1 —a)V—IA_F¥ — X\ 1dg).

If I, =1_, (2.3) is the Hermitian-Einstein flow considered in [8, 9]. By taking a
local holomorphic basis e, (1 < « <) on bundle F and local complex coordinates
{z}m | on M, the a-Hermitian-Einstein flow (2.3) can be written as following:

OH = =
W = — Qv —1A+8+8+H + a/ —1A+8+HH_18+H
(2.4) ~(1—a)V=1A_0_0_H+ (1 —a)V/—1A_0_HH *0_H
+ A\ H,
where H denote the Hermitian matrix (H,3)1<a,p<r and 0+ denote the (1,0)-parts
of the exterior differential d with respect to the complex structures I, respectively.
From the above equation, we see that the a-Hermite-Einstein evolution equation is

a non-linear strictly parabolic equation.
We define

Agi = —\/—71A:|:5:|:3:t
and
Aé,a = aA5+ + (1 — a)Ag_.
We will see later the following proposition plays an important role in our discus-
sion.

Proposition 2.1. Let H(t) be a solution of the flow (2.3), then
0
(Ago — a)|m/_1A+Ff + (1 —a)V—=1A_F" — X . 1dg|% > 0.
Proof. For simplicity, set
n=avV—1A,FF + (1 —a)V—IA_F7 - X\ 1dp.
Then from (2.1) and (2.2), we have
Ag, [l = —V/=TAs0:05te{nH ' H}
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= —/ —lAigitI‘{ﬁi?]HilﬁTH - 'r)HilaiHHilﬁTH
15 T 1T 1
+nH 0ym H+nH )" HH " 0+H}

= 2Re(—v/—1A10.0%n, 0y + |0 0|3 + 003,
and

0 0 .
5 (V-IALFL) = 2 (V=TA202 (71010 )

= \/—1Ai5i%(h‘18ih +h Y Hy 0L Hoh)

= VIAL0: (8i(h‘1%) - h_l%H_laiH + H‘laiHh_lg—}Z)
. oh

= V=1AL0L (05 (™ 50))

= —V —lAiéiafn.

Hence

B
2 _9pe( L
Uiy, Re((atn,n)H

0
(Aé,a - a)h}‘%{ = Aé,a
= a(|0 3 + |04 f3) + (1 = a) (|02 0[5 + 10-nlF)
> 0.
[l

Now we recall the Donaldson’s distance on the space of Hermitian metrics as
follows.

Definition 2.2. For any two Hermitian metrics H and K on the bundle E, we
define
o(H,K) =tr(H'K) + tr(K'H) — 2r,
where r = rank(E).
If we choose a local frame to diagonalize H 'K to be diag(\q,..., ), then

o(H,K)=>Y N+ "' -2),
i=1
from which we can see that o > 0, with equality holds if and only if H = K. Let d
be the Riemannian distance function on the metric space, then

fi(d) <o < fa(d)

holds for some monotone functions f; and f;. So we can conclude from this in-
equality that a sequence of metrics H; converge to some H in the usual C°-topology
if and only if sup,, o(H;, H) — 0.

Proposition 2.3. Let H,K be two a-Hermitian-Einstein metrics, then
Ap o0 (H, K) > 0.
Proof. Let h = K~1H, from (2.2) we have
tr{vV—1h(ALFY — AL FL)} = —Ag, trh + tr(—V/—1A L 04 hh ™05 h),
and
tr{V=1h " (AL Ff — AL F{)} = —Ag trh™! + tr(—V=1AL9:h ' hof b7,
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On the other hand, by doing calculation locally([8]), it is easy to check that
tr(—v—1AL0Lhh~'0%Xn) >0
and
tr(—v/—1AL0:h 'ho =) > 0.
Hence we complete the proof. (Il
Next, instead of considering H and K to be a-Hermitian-Einstein metrics, we
assume H = H(t), K = K(t) to be two solutions of the a-Hermitian-Einstein flow

(2.3) with the same initial value Hy. Similar to Proposition 2.3, we can prove the
following.
Proposition 2.4.
0
(Bp0 = 5 )0 (H(D), K (1) 2 0.

Proof. Set h(t) = K(t)"'H(t). Notice that

o 0 )

“trh=tr(K 'HH '—H-K ' KK 'H

o =t ot ot )
9 1 = tr(—H‘lgHH_lK + H‘lKK_ng)
ot ot ot

These two identities together with Proposition 2.3 show that

(Ao — %) (trh + trh™') >0.

3. a-HERMITIAN-EINSTEIN FLOW ON COMPACT BI-HERMITIAN MANIFOLD

In this section our primary purpose is to prove the long-time existence of the
a-Hermitian-Einstein flow over a compact bi-Hermitian manifold. When the base
manifold M is closed, we consider the following problem:

(3.1) H71%H =— (avV-1IAL P + (1 —a)V—1A_F" — X - 1dg),

H(0) = Hy.
And when M is a compact manifold with a non-empty smooth boundary M, for
any given initial metric ¢ over OM we instead consider the following boundary
value problem:

H*lgﬂ = — (aV/=IALF + (1 — a)V—IA_FT — X 1dg),

(3.2) H(0) = Ho,
Hlom = .

Since (2.3) is non-linear strictly parabolic. So we get the short-time existence from
the standed parabolic PDE theory [12].

Theorem 3.1. For sufficiently small € > 0, the problem (3.1) and (3.2) have a
smooth solution defined for 0 <t < e.

Next, following a standard argument, we can show the long-time existence of
(3.1) and (3.2).
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Lemma 3.2. Suppose that a smooth solution Hy to (3.1) or (3.2) is defined for
0<t<T. Then H; converges in C° topology to some continuous non-degenerate
metric Hr ast —T.

Proof. In order to prove the convergence, it suffices to show that, given any € > 0
we can find § > 0 such that

supo(Hy, Hy) < e, for all t,t' > T — 6.
M
And this can be easily seen from the continuity at £ = 0 combining with Proposition

2.4 and the maximum principle.
So, it remains to show Hr is non-degenerate. By Proposition 2.1 we know that

sup |avV—1ALF + (1 — a)V/—-1A_F¥ — X -1dg|3} < C,
M x[0,T)

where C' = C(Hy) is a uniform constant. By a direct calculation we have

‘gt(lntrh) =|tr{h (avV-1IALFf + (1 — a)V—1IA_F" — X -1dg)} # .
<|avV=IALFf 4+ (1 - a)V=IA_F" — X\ 1dg|,, .
And similarly
, %(lntrh_l) < |avV=1ALF{ + (1 — a)V=1A_F" — X-1dg|, .
Then we can conclude that o(H, Hy) are uniformly bounded on M x [0,T"), which
implies that Hr is non-degenerate. [

For further consideration, we prove the following lemma in the same way as [8,
Lemma 19] and [31, Lemma 6.4] (also see [37, Lemma 3.3]).

Lemma 3.3. Suppose (M,g,1,1_) is a closed bi-Hermitian manifold without
boundary (compact with non-empty boundary). Let H(t), for 0 < t < T, be a
one-parameter family of Hermitian metrics on (E,0,,0_) over M (satisfying the
Dirichlet boundary condition), such that

(i) H(t) converges in C° topology to some continuous metric Hr ast — T,

(ii) suppslo/=IAL FH 4+ (1—a)v/—1A_FH |y, is uniformly bounded fort < T.
Then H (t) is bounded in C*, and also bounded in L} (for any 1 < p < 0o) uniformly
m t.

Proof. Let us first follow Donaldson’s arguments [8, Lemma 19]. Let h(t) =
Hy'H(t). We claim that h(t) are bounded uniformly in C'. If this not true,
then for some subsequence t; there are points x; € M with sup |dh;| = I; achieved
at z;, and l; — oo, here we denoted by h; = h(t;).

(a) When M is a closed manifold. We can suppose that the x; converges to a
point z in M after taking a subsequence. Once choosing local coordinates {zy}2_;
around z; and translating the coordinates slightly, we can suppose that

sup |dh,;| =1;

is attained at z = 0. Rescale {z,} to new coordinates {w,} by ws = l;24; that is,
via the maps {|ws| < 1} — {|wa| < lj_l}, pull back the matrices h; to matrices h;
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defined for |w,| < 1. With respect to the rescaled coordinates,

sup |dﬁj| =1
Jwa <1

is attained at the origin point. For convenience, we set 09 := 85", Ni = ﬁf(tj).

Under the assumption of the lemma, we have
laV/=1AL FI 4 (1 — a)V—IA_F? — a/=1A, FO — (1 — a)V—1A_F°|
(33)  =lah; ' (Ay040%h; — ALD hih; 9% h;)
+ (1= a)h; H(A_0_0% hj — A_D_h;h; 8% hy)|

is bounded in {|w,| < 1}. Since Ej and dl~1j are bounded, |Ai5i8iﬁj| are bounded
independent of j, then ‘Aé,oﬁﬂ is also bounded independent of j. By the properties
of the elliptic operator As , on LP spaces, %j are uniformly bounded in L on a
small ball. After taking p > 2n, LY — C' is compact, then we deduce that some
subsequence of the %j converge strongly in C* to 7100. But on the other hand the
variation of iNLOO is zero, since the original metrics approached a C° limit, which
contradicts the fact

|dPoo |0 = lim |dhy].—0 = 1.
J—>o0

(b) When M is a compact manifold with non-empty boundary dM. We will
adapt Simpson’s arguments [31, Lemma 6.4] to our settings. Let d; denote the
distance from z; to the boundary 0M, then there are two cases.

(bl) If limsupd;l; > 0, then we can choose balls of radius < d; around z; and
rescale by a factor of % to a ball of radius 1 (where € < limsupd,l;), and pull back
the matrixes h; to matrixes Ej defined on {|w,| < 1}. With respect to the rescaled
coordinates,

sup |dﬁj| =€
is attained at the origin. By condition of the lemma, and discussing like that in
(a), we will deduce contradiction.

(b2) On the other hand, if limsupd;l; = 0, we can assume that x; approach
a point y on the boundary. Then let &; € M so that dist(&;,z;) = d;, also &,
approach y. Choose half-balls of radius % around #; and rescale by /; to the unit
half-balls. In the rescaled picture, x; approach z = 0. In the rescaled coordi-
nates, |Ai(§i3iﬁj\ are still bounded, Ej are uniformly bounded, and sup |dﬁj| =1
Since Ej satisfy boundary condition along the face of the half-ball, then using el-
liptic estimates with boundary, and discussing like that in (a), we can also deduce
contradiction.

From the above discussion, h(t) are uniformly bounded in C*. Using (3.3) to-
gether with the bounds on h(t), |av/=1AL Ff + (1 — a)y/—1A_F¥|, and dh imply
that A0+0%h are uniformly bounded. The by the elliptic estimates with boundary

conditions, h(t) are uniformly bounded in L} for any 1 < p < oo.
O

Theorem 3.4. (3.1) and (3.2) have a unique solution H(t) which exists for 0 <
t < oco.
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Proof. By Theorem 3.1, we suppose that there is a solution H(t) existing for
0 <t<T. By Lemma 3.2, H(t) converges in C° topology to a continuous non-
degenerate metric Hy. This together with the fact that supM\anlA+Ff +(1-
a)yv/—1A_FH|y, is bounded uniformly in ¢ implies that H(t) are bounded in C?,
and also bounded in LY (for any 1 < p < o0o) uniformly in ¢. Since (3.1) and
(3.2) are quadratic in the first derivative of H, we can apply Hamilton’s method
[12] to deduce that H(t) — Hp in C'*°, and the solution can be extended past T.
Hence we have showed the long-time existence of problem (3.1) and (3.2). As for
the uniqueness, one can easily achieve it from Proposition 2.4 and the maximum
principle. (Il

4. PROOF OF THEOREM 1.1

Since we have proved the long-time existence of (3.2), it remains for us to show
that the solution H(t) converges to a metric Hy, as the time ¢ approaches to the
infinity, and that the limit H, is a-Hermitian-Einstein.

Suppose H (t) is a solution to (3.2) for 0 < ¢ < co. As in the previous section we
still set

n=avV-1A;FF + (1 -a)V=1IA_F¥ — X . 1dp.
From Proposition 2.1 and the fact that |d |9\Hﬁ{ < |d9|§{ holds for any section 6 of
End(FE), we have

0
. 50— = > 0.
(4.1) (Bga = 5;) Inly =0

Next, according to the Proposition 1.8 of Chapter 5 in [33], the following Dirichlet
problem is solvable:
Agov=— )a\/—lAJrFfO 4 (1—a)V/—IA_FHo _ ). 1dp| |
(42) ’ Ho
’U|3M =0.
Then set w(z,t) = fot [0 (x,s)ds — v(z), where v(x) is a solution to the problem
above. From (4.1), (4.2) and the boundary condition satisfied by H we can see that

for t > 0, || vanishes over the boundary dM. Then one can easily check that
w(x,t) satisfies

0
S >
(Aa,a 87f)w(;zc,t) >0,

(4.3) w(z,0) = —v(x),
w(z, t)|om = 0.
Therefore the maximum principle implies that
t
(4.4 [ il a5 < sup o)
0 yeM
for any y € M and 0 <t < oo.

Let 0 <t; <t <oo, h=H"(x,t;)H(z,t). Obviously h satisfies

i_fl%l_z =—(avV-IAF + (1 — a)V=1A_F" — X .1dg) = —n.

Then we have 5
alntrh <20y -
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Integrating it over [t1,t] gives

t
trh = tr (Hil(x,tl)H(x,t)) < rexp <2 i ds) :

ty

Treating h~' in the same way one can get a similar estimate for it. Combining
them together we can conclude that

(4.5) o (H(x,t), H(z,t,)) < 2r (exp(2 /tt Il ds) — 1> )

From (4.4) and (4.5), we have that H(t) converges in the C° topology to some
continuous metric Hy, as t — +00. Hence using Lemma 3.3 again we know that
H(t) has uniform C' and L% bounds. This together with the fact that [H~1$ H|
is uniformly bounded and the standard elliptic regularity arguments shows that,
by passing to a subsequence if necessary, H(t) — Hy in C* topology. And from
(4.4) we have

aV=IAL F® + (1 — a)V/—IA_F>® — X -Idg = 0,

i.e. Hy, is the desired a-Hermitian-Einstein metric satisfying the Dirichlet bound-
ary condition. The uniqueness of the solution comes from Proposition 2.3 and the
maximum principle. Hence we complete the proof of Theorem 1.1.
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