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Abstract:  Why the twelve elementary fermions have the masses they have (and what the neutrino 
masses actually are) is one of the deepest unsolved mysteries of modern physics.  We crack this 
puzzle using a theory of fermion masses which succeeds in reparameterizing all twelve fermion 
masses in terms of other known parameters to which their theoretical interconnections have not 
heretofore been understood.  The first step is to “repair” long-recognized perplexities of Kaluza-
Klein theory using Dirac’s quantum theory of the electron to enforce general covariance across 
all five dimensions.  One consequence of this is the emergence of a modified Dirac equation for 
fermions which naturally contains the Kaluza-Klein scalar. After establishing a connection 
between this Kaluza-Klein scalar and the standard model Higgs scalar, we use the latter to 
theoretically connect the known masses of all the quarks and charged leptons to the CKM and 
PMNS mixing angles and matrix components and several other parameters which have not 
previously been connected to these masses. Then, after using the Newton gravitational constant 
and the Fermi vacuum to establish a sum of neutrino masses in the exact range expected from 
experiments, it also becomes possible to predict the rest masses of the three flavors of neutrino.  
Also predicted are the existence and rest mass of a second leptonic Higgs boson, and tighter values 
for several other known parameters including the mass of the established Higgs boson. Uncovered 
as well, is a deep role for the cosmological neutrino background (CvB) and Higgs fields in 
triggering and facilitating weak interaction beta decay events. 
  



Jay R. Yablon, January 9, 2019 

 
 

Contents 
Preface, and Guide for Efficient Reading and Study ...................................................................... 1 

1.  Introduction – The Incompatibility of Kaluza-Klein and Dirac Theories ................................. 6 

PART I:  THE MARRIAGE BETWEEN FIVE DIMENSIONAL KALUZA-KLEIN THEORY 
AND DIRAC’S QUANTUM THEORY OF THE ELECTRON ................................................. 10 

2.  The Kaluza-Klein Tetrad and Dirac Operators in Four Dimensional Spacetime, and the 
Covariant Fixing of Gauge Fields to the Photon .......................................................................... 10 

3.  Derivation of the “Dirac-Kaluza-Klein” (DKK) Five-Dimensional Metric Tensor ................ 16 

4.  Calculation of the Inverse Dirac-Kaluza-Klein Metric Tensor ................................................ 19 

5.  The Dirac Equation with Five-Dimensional General Covariance ........................................... 25 

6.  The Dirac-Kaluza-Klein Metric Tensor Determinant and Inverse Determinant ..................... 28 

7.  The Dirac-Kaluza-Klein Lorentz Force Motion ...................................................................... 30 

8.  Luminosity and Internal Second-Rank Dirac Symmetry of the Dirac-Kaluza-Klein Scalar ... 40 

9.  How the Dirac-Kaluza-Klein Metric Tensor Resolves the Challenges faced by Kaluza-Klein 
Theory without Diminishing the Kaluza “Miracle,” and Grounds the Now-Timelike Fifth 
Dimension in Manifestly-Observed Physical Reality ................................................................... 46 

10.  Pathways for Continued Exploration: The Einstein Equation, the “Matter Dimension,” 
Quantum Field Path Integration, Epistemology of a Second Time Dimension, and All-Interaction 
Unification .................................................................................................................................... 51 

PART II: THE DIRAC-KALUZA-KLEIN SCALAR, THE HIGGS FIELD, AND A THEORY 

OF FERMION MASSES, MIXING AND WEAK BETA DECAYS WHICH RUBUSTLY FITS 
THE EXPERIMENTAL DATA ................................................................................................... 59 

11.  Spontaneous Symmetry Breaking of the Massless Luminous Dirac-Kaluza-Klein Scalar, and 

Integration to Deduce its Spacetime Behavior .............................................................................. 59 

12.  The Fifth-Dimensional Component of the Dirac-Kaluza-Klein Energy Momentum Vector 69 

13.  Connection between the Dirac-Kaluza-Klein Scalar and the Higgs Field, and the Extraction 
of Energy from the Higgs Field by the Top Quark ....................................................................... 74 

PART IIA: QUARKS ................................................................................................................... 82 

14.  Theory of Fermion Masses and Mixing: Up, Charm and Top Quarks .................................. 82 

15.  Theory of Fermion Masses and Mixing: Down, Strange and Bottom Quarks ...................... 90 

16.  Theoretical Relation amongst the Higgs Mass and the Isospin-Up and Isospin-Down Quark 
vevs; and the Two-Minimum, Two Maximum Lagrangian Potential for Quarks ...................... 101 

17.  The Role of the Higgs Boson and its Mass and Potential in Weak Beta-Decays Between 
Quarks ......................................................................................................................................... 122 



Jay R. Yablon, January 9, 2019 

 
 

18.  The CKM Quark Mixing Matrix Mass Parameterization, and the Fine-Tuning of Quark 
Masses, Mixing Angles and CKM Matrix Components by a Global Fitting using CKM Unitarity
..................................................................................................................................................... 128 

PART IIB: LEPTONS ................................................................................................................ 143 

19.  Theory of Fermion Masses and Mixing: Electron, Mu and Tau Charged Leptons ............. 143 

20.  Theory of Fermion Masses and Mixing: Prediction of the Neutrino Mass Sum and of the 

Individual Neutrino Masses ........................................................................................................ 154 

21.  Prediction of a Second Leptonic Higgs Boson, and its Mass .............................................. 164 

22.  The Two-Minimum, Two Maximum Lagrangian Potential for Leptons ............................. 168 

23.  The PMNS Neutrino Oscillation Matrix Mass Parameterization ........................................ 175 

24.  The Theoretical Roots of Neutrino Oscillations, and an Experimental Approach to Tighten 
the Empirical Data for the Leptonic Phase ................................................................................. 183 

PART IIC: COMPLETE THEORY OF WEAK BETA DECAY .............................................. 191 

25.  How Weak Beta Decays are Triggered by Cosmological Neutrinos and Antineutrinos 
Interacting with Electrons, Neutrons and Protons via the Z Boson-Mediated Weak Neutral 
Current, with “Chiral Polarization” of Electrons ........................................................................ 191 

Conclusion .................................................................................................................................. 218 

References ................................................................................................................................... 219 



Jay R. Yablon, January 9, 2019 

1 
 

Preface, and Guide for Efficient Reading and Study 
 
Preface 
  

This manuscript is two papers in one.  One is about Kaluza-Klein Theory.  The other is 
about particles physics and the rest masses and weak beta decays of the elementary fermions.    This 
began as an effort to “repair” five-dimensional Kaluza-Klein theory in advance of its 2019 
centenary, by using Dirac’s Quantum Theory of the Electron as the basis for requiring Kaluza-
Klein theory to be generally-covariant across all five of its dimensions.  Unexpectedly, this turned 

into a theory through which it became possible to explain all twelve of the observed elementary 
fermion masses in relation to other heretofore independent parameters including the CKM and 
PMNS mixing angles.  Of course, Kaluza-Klein theory started in 1919 as a classical theory to unify 
Maxwell’s electrodynamics with general relativistic gravitation, before we even had modern gauge 
theory or Dirac theory or much of modern quantum theory.  Because one would not normally 
expect to be talking about Kaluza-Klein theory and the elementary fermion masses of modern 
particle physics in the same breath – much less claim that a detailed study of Kaluza-Klein theory 
can lead to a deep understanding of these fermion masses – it is important to overview the trail 
that led from one to the other, and why it is that this is all best-presented in one complete paper.  
But, given the very substantial length of this paper, it is also important to provide reader with a 
guide for efficient reading and study, which is contained a few pages hence in this preface. 

 
 As this manuscript will demonstrate, if we start with the Kaluza-Klein metric tensor 

denoted GΜΝ  and then follow Dirac by finding set of gamma matrices ΜΓ , 0,1,2,3,5Μ =  defined 

such that the anticommutator { }1
2 , GΜ Ν ΜΝΓ Γ ≡ , then not only are the most perplexing century-old 

problems of Kaluza-Klein theory repaired, but the ΜΓ  matrices so-defined can be used to 

formulate a modified Dirac equation ( )2 0i c mcΜ
ΜΓ ∂ − Ψ =ℏ  in five dimensions, see (5.2), (5.4) 

and (5.6) infra.  Of course, at its most fundamental level, Dirac’s equation governs the behavior of 
fermions, including the six quarks and six leptons which we presently understand to be the 
fundamental constituents of matter.  So, it is natural to inquire whether this modified Dirac 
equation can go so far as to help explain the observed pattern of fermion masses. 
 

 In the modern era, it is well-understood that Higgs field and the scalar Higgs bosons are at 
the heart of how all massive particles acquire their observed rest masses without a violation of 
gauge symmetry.  This mechanism is explicitly understood and has been empirically confirmed 
for the massive spin-1 W and Z bosons of electroweak theory, and been gained additional support 
by the empirical observation of the Higgs scalar and its mass in the vicinity of 125 GeV.  For spin-
½ fermions, it is generally assumed that Higgs bosons are also the mainspring of gauge-invariant 
mass acquisition, but the specifics of how this occurs are not yet well-understood. 
 
 In this regard, where Kaluza-Klein theory is perhaps most prescient despite its genesis 
several years before gauge theory and Dirac theory and several decades before modern particle 
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physics and the standard model, is that its metric tensor denoted GΜΝ  contain scalar field φ  for a 

spin-0 scalar boson, see (3.13) infra.  This is in addition to GΜΝ  containing the purely-gravitational 

metric tensor gµν  for what in the quantum world are spin-2 gravitons and the gauge potential four-

vector Aµ  for what in quantum theory are spin-1 photons.  That is, Kaluza-Klein anticipated by 

decades, the modern view of interactions being mediated by bosons with even spins 0, 1 and 2.  

So, when we use the five-covariant ΜΓ  in a five-dimensional Dirac equation 

( )2 0i c mcΜ
ΜΓ ∂ − Ψ =ℏ , a scalar field courtesy of Kaluza and Klein is implicitly contained in this 

Dirac equation.  Consequently, it becomes natural to seek out a possible connection between the 
Kaluza-Klein scalar, and the modern-era scalar that is well-known as the Higgs boson. 
 
 Following this approach, it turns out that the Kaluza-Klein scalar can be connected to the 

modern Higgs scalar, and that once this is done, the fermion masses naturally follow.  The easiest 
masses to deduce are those of the top, charm and up quarks with isospin-up, because of the 
uniquely-large mass of the top quark.  These three quarks reveal the basic pattern for understanding 
fermion masses generally. This pattern is confirmed by being successfully extended to masses of 
the bottom, strange and down quarks with isospin-down.  The lepton masses do not, however, 
follow as simply as do the quark masses.  To fit the charge leptons to this pattern, a specific amount 
of “extra” energy must be added to the sum of the electron, muon and tauon masses at (19.11) 
supra.  Initially merely a new parameter, this extra energy turns out to be directly related to the 
sum of the three neutrino masses, with the ratio of Newton’s gravitational constant G to the Fermi 

constant FG  cementing the relation.  Once this connection is understood, not only does the quark 

mass pattern become extended to the known tau lepton masses and mixing angles, but so too, it 
becomes possible for the first time to predict the sum of the neutrino masses which turns out to be 

20.13348 eV /em m cmν νµ ντ+ =+  at (20.2b).  And from this it becomes possible to predict the 

individual neutrino masses at (20.4).  Also predicted at (21.1) is a second Higgs boson for leptons, 
with a rest mass that turns out to be only a few MeV above the free proton and neutron rest masses, 
even though this second Higgs mass is derived independently. 
 
 When all of this is completed, at (21.5) the twelve quark and lepton masses come to be 
understood entirely in terms of eleven heretofore-independent parameters, specifically: the three 
real CKM mixing angles, the three real PMNS mixing angles, the Newton and Fermi constants, 
the mass of the established Higgs boson, the mass of the new leptonic Higgs boson, and the value 

( )2
WMα  of the electromagnetic running coupling at a probe energy equal to the W boson mass.  

In the process of reparameterizing the fermion masses in the foregoing fashion, we acquire a much 
deeper understanding of the role that Higgs bosons and Higgs fields play in weak beta-decays, and 
discover that leptonic beta decays are accompanied not only by W boson masses of about 80 GeV, 
but also by heretofore unknown, huge energy exchanges in the zone of 100 TeV.  Additionally, 
the underlying Lagrangian potentials for the Higgs fields lead us to uncover a fundamental role for 
the cosmological neutrino background (CvB) as the trigger mechanism of weak beta decays. 
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 The opening to be able to uncover these findings, however, as summarized, originates in 
using Dirac theory to render Kaluza-Klein theory generally-covariant in five dimensions, then 
tracking down how the Kaluza-Klein scalar in the five-dimensional Dirac equation becomes 
connected to the Higgs boson.  Once that connection is established, the path is cleared to 
understand the theoretical basis for why the elementary fermions have the particular pattern of 
masses they are observed to have, and to thereby crack one of the deepest puzzles that modern 
physics has to offer. 

Efficient Reading and Study Guide 
 
 In its original formulation to “repair” Kaluza-Klein theory, this manuscript was just under 
fifty pages long.  With the addition of the Theory of Fermion Masses, the length has more than 
tripled.  Accordingly, consideration was given to separating Part I and Part II of the present 
manuscript into two companion papers, and also, to separating the finding about how the CvB 
triggers weak beta decays into a third paper.  While the purely-numeric connections used to 
reparametrize the fermion masses could have been separated from its physical origins and 
presented in this way, such a separation would have largely obscured the physical grounding of 
these connections in the Higgs bosons and fields.  Especially, the premier role of Higgs theory not 

only as to how particle masses are acquired but also as to the underlying mechanism of weak beta 
decay, and how this all implicates the CvB in weak beta decays, would have been obscured with 
such a separation.  So, it was decided to keep both parts along with the CvB findings in one 
manuscript, and to instead present below, a brief “guide” for efficient reading and study. 
 
 Most readers of scientific papers – especially lengthy papers such as this one – are not only 
looking for an efficient way to study a paper, but also, want to be able to decide fairly quickly how 
much time, if any, to devote to studying a paper.  And this decision is based on the reader’s sense 
about whether the paper contains sound, new science.  For a theoretical physics paper, having the 
theory presented make convincing points of contact with empirical data – especially previously-
unexplained data such as the elementary fermion masses – is very important, and is likely a primary 

screening criterion for most serious readers.  Therefore, while the reader can certainly study this 
manuscript from start to finish in a linear way, it is suggested that the reader might instead wish to 
dive directly into the connections between fermion masses and other parameters such as the CKM 
and PMNS mixing angles, convince him or herself that these connections are properly-established 
and not previously-known, and then work outward to assimilate the surrounding theory which both 
leads to and further supports these connections. 
 
 In the event the reader decides to adopt this suggestion, the place to start is in section 14, 

for the up, charm and top quark masses.  Recognizing that the Fermi vev 246. eV22 Gv ≅  and that 

the energy 1

2
174.10 GeVv ≅  cut by a 2  factor appears widely in Higgs field theory, the reader 

should first be convinced that the coupling and mass sums (14.3) and (14.4) are indeed a true 

empirical relations within experimental error bars, and that (14.5) is therefore a warranted 
refinement for the precision for the top quark mass.  The reader should next review the bi-unitary 
mass matrix transformations (14.8) to (14.10) and become convinced that the connections in 
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(14.13) between two of the mass mixing angles and two of the three real CKM angles are also true 
within experimental errors.  And the reader should review how this all this data fits and is properly 

encapsulated in the couplings fG  for isospin-up quarks in (14.15). 

 
 If the reader clears section 14, he or she should next review section 15 for the down, strange 
and bottom masses. The reader should first become convinced that the same type of bi-unitary 

transformation when used with a mass sum 2 2 21

2 d s bv m c m c m c


≡ + +  of (15.2) defining a second 

(local) vev minimum v


 for isospin-down quarks, now produces the first of the four relations in 

(15.6) whereby the third real CKM angle can also be related to a third mass mixing angle within 

experimental errors.  Note that v


 in (15.2) is a different vacuum energy than the Fermi vev 

246. eV22 Gv ≅  which we subsequently denote for distinction by v v


≡ .  This becomes essential 

in developing the Lagrangian potential in section 16 with both a global vev v


 and a local vev v


 

based on the mass sums of the isospin-up quarks and isospin-down quarks, respectively.  
 
 At this point, section 16 should be skimmed enough for the reader to become convinced 

that the theoretical relation ( )11
2

2

2hm c v v
 

+≡  precisely specifying the observed Higgs boson 

mass hm  in relation to these two quark mass-sum-based vev is also true within experimental errors.   

This means that v


 in (15.2) is not a new parameter, but rather, is a function ( ), hv v m


 of the 

Fermi vev and the Higgs mass.  The reader should also be convinced that this now gives the 

parameter λ  from the Lagrangian density the theoretical valuation of (16.8) in terms of the two 

vacuum minima.  Like the Higgs mass, for decades λ  been a theoretically-postulated parameter 

disconnected from other known data, and only discernable by experiment.  The reader should also 
be convinced that as a result of all this, as reviewed prior to (16.6), the six quark masses become 
effectively reparametrized in terms of five heretofore-disconnected parameters, namely, the three 

CKM mixing angles 21Cθ , 23Cθ , 31Cθ , the Fermi vev, and the Higgs mass.  Moreover, if the reader 

is willing to credit, at least on a preliminary basis, that the relation ( ) ( )1.5
3 / 2πd u em m m− =  

discussed at (15.7) between the mass of the electron and the mass difference between the down 
and up quarks is true within known error bars and may in fact be true, period, then the electron rest 
mass itself becomes a sixth parameter.  In this event, all six quark masses become fully 
reparameterized into other previously-disconnected parameters as summarized in (17.1) by  

( )31 23 21, , , , , , , , , ,u c t d s b C C C h em m m m m m F v m mθ θ θ= . 

 
 Next, the reader should review section 18, in which all of the foregoing results are globally 
fitted using the unitarity of the CKM quark mixing matrix.  Specifically, using earlier-developed 
connections between the quark mases and the real CKM mixing angles restated at (18.1), it 
becomes possible to develop a “mass parameterization” of the CKM mixing matrix at (18.3).  This 

is then used to obtain (18.10) which re-centers and tightens the data for five of the six quark masses 
and the CP-violating phase, (18.11) with refined values and error bars for the CKM mixing angles 
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in the standard parameterization, and (18.13) which refines the magnitudes and error bars of the 
elements of the CKM quark mixing matrix itself.  
 

At this point we move to the lepton masses.  For these the reader should next turn to section 
19 to see how the charged lepton masses may be similarly reparameterized using bi-unitary mass 

matrix transformations in terms of two of the three real PMNS angles, namely 12Pθ  and 13Pθ .  But, 

this can only be done only by postulating an extra energy δ


 defined at (19.11), which is added to 

the rest energy sum 2 2 2
em c m c m cτ µ+ + .  This means that we start with the masses , , em m mτ µ , 

supplemented with a new unknown parameter δ


.  But we wash this out when we find at (19.17) 

that this sum with the extra energy can be related within experimental errors to the Fermi vev via  

( )2 2 2 2
e Wm c m c m c M vτ µ δ α

 
+ + + = , using the strength ( )2 ~ 1 /128WMα  of the electromagnetic 

running coupling at a probe energy equivalent to the mass of the W boson.  This boson, which 
interacts electromagnetically and weakly, must, of course, always be present at the vertex of any 

beta decay event.  The Fermi vev is already a parameter used for quark masses.  So effectively, as 

seen in (19.21), ( )( )2
12 13, , , , , ,e P P Wm m m F Mτ µ δ θ θ α δ

 
=  is the reparameterization, for charged 

leptons.  The new parameter δ


 remains independent for now, and its study takes place when we 

turn to neutrino masses. 
 
 At this point the reader should review section 20 for the neutrino masses, where we seek 

to reparameterize the remaining set of mass/energy numbers { }, , ,em m mν νµ ντ δ


.  The reader 

should first confirm that (20.1) is a correct numeric calculation, and then become convinced that 
the physical connection (20.2b) between the extra energy δ


 and the sum of the neutrino rest 

masses is warranted within experimental errors and widely-accepted estimates for the upper limit 

of the neutrino mass sum.  Because the ratio 2/ PM cν  of the Fermi vev to the Planck energy is at 

the center of (20.2b), and because the Planck energy is merely a restatement of the Newton 
gravitational constant G, this means that in a single stroke, we eliminate δ


 as an unknown 

parameter and trade it for the known parameter G.  As a result, introduce gravitation into particle 
physics by way of the very tiny neutrino masses.  As seen in directly in (20.2c), the extra energy 

δ


 is equal to the sum ( ) 2
em m m cν νµ ντ+ +  of the neutrino rest energies, times an amplification 

factor 22 /PM c v  which is at bottom based on the ratio of the Fermi constant 

5 21.1663787(6) 10 GeVFG − −= ×  to the Newton constant ( ) 39 2 6.708 61 31 10  GeVG − −= × , in 

natural units.  This sum of neutrino masses deduced via what is effectively the / FG G  ratio, is then 

used together with the known empirical square mass difference data (20.3) to predict the three 
neutrino masses at (20.4).  The reader should also be convinced that these predictions are well 
within the ranges of what the neutrino masses are expected to be.  Finally, the reader should 
become convinced that the connection between the neutrino masses and the final PMNS angle 23Pθ  

in (20.7), using the same type of bi-unitary transformations previously employed for the quark and 
charged lepton masses, correctly accords with the empirical data within experimental errors. 
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 If the reader is convinced that the foregoing does represent a true reparameterization of the 
fermion rest masses, then it should be clear that the net result of all this, is that all twelve fermion 
rest masses will have been reparameterized according to (21.5), and that all told, twenty-two 
physics parameters which have heretofore been regarded as independent, will have been reduced 
down to eleven parameters, removing eleven independent unknowns from our understanding of 
the natural world.  This alone should then provide motivation for the reader to study the balance 

of the paper to see how it was possible to obtain these results by first connecting the Higgs fields 
of particle physics to scalar fields of a Kaluza-Klein theory with five-dimensional general 
covariance provided by Dirac’s quantum theory of the electron.  As regards this connection, the 
upper equation (13.7) as well as Figure 1 for the example of the top quark, encapsulate the bridge 
between Kaluza-Klein theory and the theory of fermion masses, and explicitly show how energy 
is drawn out of the vacuum by the Higgs fields in accord with energy conservation principles to 
give rest mass to the fermions. 

 With the foregoing complete, the reader may next wish to review sections 16 and 22 in 
further depth to see how the Lagrangian potentials for quarks and leptons contain both a global 
and a local vev minimum and associated energy wells, and how weak beta decays for all but the 
third-generation fermions require the decaying fermion to make a “jump” between one well and 
the other over an energy barrier.  For quarks, the x-axis position of this barrier is established by 
the usual Higgs boson mass, and for leptons it is established by the leptonic Higgs boson mass 
predicted at (21.1).  Were this new leptonic Higgs boson with a mass just above that of the proton 

and neutron to be experimentally confirmed, this would provide direct support for separate quark 
and lepton Lagrangian potentials each having both these global and local vev minima. 

Finally, readers for whom empirical data connections are paramount should review section 

23, which could also be presented as a separate paper, but which is best presented together with 
all the other development here so that the context of its genesis is clear.  This section reviews a 
wealth of empirical data which supports the proposition advanced as part of the overall study of 

beta decay, that β −  and β +  decays are respectively triggered by cosmological neutrinos and 

antineutrinos (CvB neutrinos) interacting with electrons in atomic shells and with protons and 
neutrons in atomic nuclei, via the Z boson-mediated weak neutral current.  Not only does this lead 
to a possible solution of the so-called neutron lifetime puzzle and a very deep understanding of 
how neutrinos behave in the physical universe, but it shows how neutron beams, and protons and 
neutrons and atomic isotopes generally, can be used as detectors to empirically study the 
cosmological neutrino background. 
 

1.  Introduction – The Incompatibility of Kaluza-Klein and Dirac Theories 
 

About a century ago with the 1920s approaching, much of the physics community was 
trying to understand the quantum reality that Planck had first uncovered almost two decades prior 
[1].  But with the General Theory of Relativity [2] having recently placed gravitation and the 
dynamical behavior of gravitating objects onto an entirely geometric and geodesic foundation 
(which several decades later Wheeler would dub “geometrodynamics” [3]), a few scientists were 
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trying to scale the next logical hill, which – with weak and strong interactions not yet known – 
was to obtain a geometrodynamic theory of electromagnetism.  Besides Einstein’s own work on 
this which continued for the rest of his life [4], the two most notable efforts were those of Hermann 
Weyl [5], [6]  who was just starting to develop his U(1) gauge theory in four dimensions (which 
turned out to be a theory of “phase” invariance [7] that still retains the original moniker “gauge”), 
and Kaluza [8] then Klein [9], [10] who quite successfully used a fifth dimension to geometrize 
the Lorentz Force motion and the Maxwell Stress-Energy tensor (see, e.g., [11] and [12]).  This is 
a very attractive aspect of Kaluza-Klein theory, and it remains so because even today, despite 
almost a century of efforts to do so, U(1) gauge theory has not yet successfully been able to place 
the Lorentz Force dynamics and the Maxwell Stress Energy on an entirely-geometrodynamic 
foundation.  And as will be appreciated by anyone who has studied this problem seriously, it is the 
inequivalence of electrical mass (a.k.a. charge) and inertial mass which has been the prime 
hindrance to being able to do so. 

 
Notwithstanding these Kaluza “miracles” of geometrizing the Lorentz Force motion and 

the Maxwell Stress-Energy, this fifth dimension and an associated scalar field known as the 
graviscalar or radion or dilaton raised its own new challenges, many of which will be reviewed 
here.  These have been a legitimate hurdle to the widespread acceptance of Kaluza-Klein theory 
as a theory of what is observed in the natural world.  It is important to keep this historical 
sequencing in mind, because Kaluza’s work in particular predated what we now know to be 
modern gauge theory and so was the “first” geometrodynamic theory of electrodynamics.  And it 
of course predated any substantial knowledge about the weak and strong interactions.  Of special 
interest in this paper, Kaluza-Klein also preceded Dirac’s seminal Quantum Theory of the Electron 
[13] which today is the foundation of how we understand fermion behavior. 
 

Now in Kaluza-Klein theory, the metric tensor which we denote by GΜΝ  and its inverse 

GΜΝ  obtained by G G δΜΑ
ΑΝ

Μ
Ν=  are specified in five dimensions with an index 0,1,2,3,5Μ = , 

and may be represented in the 2x2 matrix format: 
 

2 2

22 2

2

;
1/

g Ag A A A
G G

A g A AA

k k

k

µν µ
µν µ ν µ

ν α β
αβν

φ φ
φφ φ

ΜΝ
ΜΝ

 − +
= =     − +   

. (1.1) 

 

In the above 2 2kg A Aµν µ νφ+  transforms as a 4x4 tensor symmetric in spacetime.  This is because 

g gµν νµ=  is a symmetric tensor, and because electrodynamics is an abelian gauge theory with a 

commutator , 0A Aµ ν  =   for the vector potential gauge field Aµ .  The components 2
5 AkGµ µφ=  

and 2
5 AkG ν νφ=  transform as covariant (lower-indexed) vectors in spacetime, while the 

component 2
55G φ=  transforms as a scalar in spacetime.  Because the metric tensor is 

dimensionless, 2
55G φ=  must be dimensionless, thus so too is φ .  And with φ  being a 

dimensionless scalar, the constant k must have dimensions of charge/energy because the metric 
tensor is dimensionless and because the gauge field Aµ  has dimensions of energy/charge. 
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It is very important to understand that when we set 0Aµ =  and 0φ = , GΜΝ  in (1.1) 

becomes singular.  This is indicated by the fact that ( ) ( )00 11 22 33diag , , , ,0G g g g gΜΝ =  with a 

determinant 0GΜΝ =  in this situation, and is seen directly from 55 2 01/G g A Aα β
αβ φ+ == + ∞ .  

Therefore, (1.1) relies upon φ  being non-zero to avoid the degeneracy of a metric inverse 

singularity when 0φ = . 

  
We also note that following identifying the Maxwell tensor in the Kaluza-Klein fields via 

a five-dimensional Einstein field equation, again with φ  taken to be dimensionless, the constant k 

is customarily found to be: 
 

2

04 4 2

2 2 2
4   i.e.,  

2 e e

k G G G
k

c c k c k
π≡ = =ε , (1.2) 

 

where 0
2

01/ 4 / 4ek cµπε π= = is Coulomb’s constant and G is Newton’s gravitational constant. 

 
 Now, as noted above, Kaluza-Klein theory predated Dirac’s Quantum Theory of the 
Electron [13].  Dirac’s later theory begins with taking an operator square root of the Minkowski 

metric tensor ( ) ( )diag 1, 1, 1, 1µνη = + − − −  by defining (“ ≡ ”) a set of four operator matrices µγ  via 

the anticommutator relation { } { }1 1
2 2,µ ν µ ν ν µ µνγ γ γ γ γ γ η= + ≡ .  The lower-indexed gamma 

operators are likewise defined such that { }1
2 ,µ ν µνγ γ η≡ .  To generalize to curved spacetime thus 

to gravitation which employs the metric tensor gµν  and its inverse g µν  defined such that 

g gµα µ
αν νδ≡ , we define a set of µΓ  with parallel definition { }1

2 , gµ ν µνΓ Γ ≡ .  We simultaneously 

define a vierbein a.k.a. tetrad aeµ  with both a superscripted Greek “spacetime / world” index and a 

subscripted Latin “local / Lorentz / Minkowski” index using the relation a
aeµ µγ ≡ Γ .  Thus, we 

deduce that { } { }1 1
2 2, a b b a ab

a b a bg e e e eµν µ ν µ ν µ νγ γ γ γ η= Γ Γ = + = .  So just as the metric tensor g µν  

transforms in four-dimensional spacetime as a contravariant (upper-indexed) tensor, these µΓ  
operators likewise transform in spacetime as a contravariant four-vector. 
 

One might presume in view of Dirac theory that the five-dimensional GΜΝ  and GΜΝ  in the 

Kaluza-Klein metric tensor (1.1) can be likewise deconstructed into square root operators defined 
using the anticommutator relations: 
 

{ } { } { } { }1 1 1 1
2 2 2 2, ; ,G GΜ Ν Μ Ν Ν Μ ΜΝ

Μ Ν Μ Ν Ν Μ ΜΝΓ Γ = Γ Γ + Γ Γ ≡ Γ Γ = Γ Γ + Γ Γ ≡ , (1.3) 

 

where ΜΓ  and ΜΓ  transform as five-dimensional vectors in five-dimensional spacetime.  This 

would presumably include a five-dimensional definition A
Aε γΜ Μ≡ Γ  for a tetrad Aε Μ , where 

0,1,2,3,5Μ =  is a world index and 0,1,2,3,5A =  is a local index, and where 5Γ  is a fifth operator 



Jay R. Yablon, January 9, 2019 

9 
 

matrix which may or may not be associated with Dirac’s 5 0 1 2 3iγ γ γ γ γ≡  depending upon the 

detailed mathematical calculations which determine this 5Γ .  But this is a wrong presumption. 
 

Specifically, as we shall now demonstrate, the Kaluza-Klein metric tensors in (1.1) cannot 

be deconstructed into ΜΓ  and ΜΓ  in the manner of (1.3) without modification to their 505 0G G=  

and 55G  components, and without imposing certain constraints on the gauge fields Aµ .  This means 

that in fact, in view of Dirac theory which was developed afterwards, the Kaluza-Klein metric 
tensors (1.1) are really not generally-covariant in five dimensions.  Rather, they only have a four-

dimensional spacetime covariance represented in the components of 2 2G g Ak Aµν µν µ νφ= + , 

G gµν µν= , 2
5 AkGµ µφ=  and 5G Aµ µ= − , and these are all patched together with fifth-dimensional 

components with which they are not generally-covariant.  Moreover, even the spacetime 

components 2 2G g Ak Aµν µν µ νφ= +  of (1.1) alone are not generally covariant even in the four 

spacetime dimensions alone, unless the gauge symmetry of the gauge field Aµ  is broken to remove 

two degrees of freedom and fixed to that of a photon.  We represent this latter constraint by 

A Aµ µ
γ= , with a subscripted γ  which denotes a photon and which is not a spacetime index.   

 
In today’s era when the General Theory of Relativity [2] is now a few years past its 

centenary, and when at least in classical field theory general covariance is firmly-established as a 
required principle for the laws of nature, it would seem essential that any theory of nature which 
purports to operate in five dimensions that include the four dimensions of spacetime, ought to 
manifest general covariance across all five dimensions, and ought to be wholly consistent at the 
“operator square root” level with Dirac theory.  Accordingly, it is necessary to “repair” Kaluza-
Klein theory to make certain that it adheres to such five-dimensional covariance.  In so doing, 
many of the most-nagging, century-old difficulties of Kaluza-Klein theory are immediately 

resolved, including those related to the scalar field in 
2

55G φ=  and the degeneracy of the metric 

tensor when this field is zeroed out, as well as the large-magnitude terms which arise when the 
scalar field has a non-zero gradient.  Moreover, the fourth spacelike dimension of Kaluza-Klein is 
instead revealed to be a second timelike dimension.  And of extreme importance, this Kaluza-Klein 
fifth dimension which has spent a century looking for direct observational grounding, may be tied 

directly to the clear observational physics built around the Dirac 
5γ , and the multitude of observed 

chiral and pseudoscalar and axial vector particle states that are centered about this 
5γ .  Finally, 

importantly, all of this happens without sacrificing the Kaluza “miracle” of placing 
electrodynamics onto a geometrodynamic footing.  This is the focus of Part I of this paper. 

 

Then, once we have a set of five ΜΓ  Dirac operators which possess five-dimensional 
covariance and via (1.3) reproduce a Kaluza-Klein metric tensor, we expect that these operators 

can be utilized in a new five-dimensional Dirac-type equation ( )2 0i c mcΜ
ΜΓ ∂ − Ψ =ℏ  which will 

be found in (5.6) infra.  Not only should this new Dirac equation govern fermion behavior, but the 

genesis of these ΜΓ  in (1.3) means that this Dirac equation will have the Kaluza-Klein scalar φ  

built into it from the outset.   Given that Dirac’s equation governs fermion behaviors and that 
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fermions are expected to obtain their rest masses from a Higgs scalar, this naturally poses the 
question whether the Kaluza-Klein scalar can be connected to the Higgs scalar of the standard 
model, and whether the fermion masses known only from experimental observation can thereafter 
be given a theoretical foundation.  As will also be seen, the fermions do acquire their masses from 
the Higgs field in the manner expected by the standard model, but with the Higgs field having 
additional properties rooted in its nexus with the Kaluza-Klein scalar.  This will further reveal the 
role of the Higgs boson in weak interaction beta decays, and will in turn lead to an understanding 
of how the cosmological neutrino background (CvB) acts as a heretofore unknown triggering 
mechanism in these beta decays.  This is the focus of Part II of this paper. 

 

PART I:  THE MARRIAGE BETWEEN FIVE DIMENSIONAL KALUZA-

KLEIN THEORY AND DIRAC’S QUANTUM THEORY OF THE 

ELECTRON 
 

2.  The Kaluza-Klein Tetrad and Dirac Operators in Four Dimensional 

Spacetime, and the Covariant Fixing of Gauge Fields to the Photon 
 
 The first step to ensure that Kaluza-Klein theory is covariant in five dimensions using the 
operator deconstruction (1.3), is to obtain the four-dimensional spacetime deconstruction: 
 

{ } { } { }1
2

2 21 1
2 2, a b b a ab

a b a b G kg A Aµν µµ ν µ ν ν µ µ ν µ ν µν νε ε γ γ γ γ η ε ε φΓ Γ = Γ Γ + Γ Γ = + += ≡ = . (2.1) 

 

The above uses using a four-dimensional tetrad aµε  defined by a
aµ µε γ ≡ Γ , where 0,1, 2, 3µ =  

is a spacetime world index raised and lowered with G µν  and Gµν , and 0,1, 2, 3a =  is a local 

Lorentz / Minkowski tangent spacetime index raised and lowered with abη  and abη .  To simplify 

calculation, we now set gµν µνη=  thus 2 2 A AG kµν µµ νν η φ+= .  Later on, we will use the minimal-

coupling principle to generalize back from gµν µνη ֏ .  With this, the spacetime becomes “flat” 

except for the curvature in Gµν  brought about by the electrodynamic terms 22 Ak Aµ νφ .  We can 

further simplify calculation by defining an aµε ′  such that a a aµ µ µδ ε ε′+ ≡ , which represents the degree 

to which aµε  differs from the unit matrix aµδ .  We may then write the salient portion of (2.1) as: 

 

( )( )
2 2

ab ab ab ab ab ab
a b a a b b a b b a a b a b

a b a b
a b ab k A A

µ ν µ µ ν ν µ ν ν µ µ ν µ ν

µν ν µ µ ν µ ν µν µ ν

η ε ε η δ ε δ ε η δ δ δ η ε δ η ε η ε ε

η η ε ε ηη ε ε φη

′ ′ ′ ′ ′ ′= + + = + + +

′ ′ ′ +′= + + + =
. (2.2) 

 

Note, when we set either 0Aµ =  and / or 0φ = , this reduces to ab
a b νµ µνη ε ε η=  which is solved by 

the tetrad being a unit matrix, a aµ µε δ= .  Subtracting µνη  from each side of (2.2) we now solve: 

 
22a b a b

a b ab A Akν µ µ ν µ ν µ νη ε η ε η ε ε φ′ ′ ′ ′+ + = . (2.3) 
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  The above contains sixteen (16) equations for each of 0,1,2,3µ =  and 0,1,2,3ν = .  But, 

this is symmetric in µ  and ν  so in fact there are only ten (10) independent equations.  Given that 

( ) ( )diag 1, 1, 1, 1abη = − − − , the four µ ν=  “diagonal” equations in (2.3) produce the relations: 

 
0 0 0 1 1 2 2 3 3 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 2 2 3 3 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0
2 2 2 2 2 2 2 2

2
0

1

2

0

2
1

2

2

2

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

k

k

A A

A A

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε

φ
φ

ε ε

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + − − − =
′ ′ ′ ′ ′ ′ ′+ + = − + 1 1 2 2 3 3 2

2 2 2 2 2 2

3 0 0 1 1 2 2 3 3 2
3 3 3 3 3

2
2 2

2
33 3 3 3 3 3 3 3 3 3 32a b a b

a b ab

k

k

A A

A A

φε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε φ

′ ′ ′ ′ ′ ′− − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + − − − =

. (2.4a) 

 
Likewise, the three 0µ = , 1,2,3v =  mixed time and space relations in (2.3) are: 

 
1 0 0 0 1 1 2 2 3 3 2

1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2 0 0 0 1 1 2 2 3 3 2
2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2

3
3 0 0 3

2
0 1

0 2

0

2

0 3

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

A A

A A

k

k

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε

φ
φ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + + − − − =
′ ′ ′ ′ ′+ + = − + 0 0 0 1 1 2 2 3 3 2

3 0 3 0 3 0 3
2

0 30 3 A Akε ε ε ε ε ε ε φε ε′ ′ ′ ′ ′ ′ ′ ′ ′+ − − − =

. (2.4b) 

 
Finally, the pure-space relations in (2.3) are: 
 

2 1 0 0 1 1 2 2 3 3 2
2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3 2 0 0 1 1 2 2 3 3 2
3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3

1
1 3 3 1

2
1 2

2 3

3

2

3 1

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

A A

A

k

k A

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε ε ε

φ
η ε

φ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − − + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − − + − − − =
′ ′ ′ ′ ′ ′+ + = − − 3 0 0 1 1 2 2 3 3 2

1 3 1 3 1 3
2

33 1 11 A Akε ε ε ε ε ε ε ε φε′ ′ ′ ′ ′ ′ ′ ′+ − − − =

. (2.4c) 

 
Now, we notice that the right-hand side of all ten of (2.4) have nonlinear second-order products 

22 Ak Aµ νφ  of field terms, while on the left of each there is a mix of linear first-order and nonlinear 

second-order expressions containing the a
µε ′ .  Our goal at the moment, therefore, is to eliminate 

all the first order expressions from the left-hand sides of (2.4) to create a structural match whereby 
a sum of second order terms on the left is equal to a second order term on the right. 
 

In (2.4a) the linear appearances are of 0
0ε′ , 1

1ε′ , 2
2ε′  and 3

3ε′  respectively.  Noting again that 

the complete tetrad a a a
µ µ µε δ ε ′= +  and that a a

µ µε δ=  when 0Aµ =  or 0φ = , we first require that 
a a

µ µε δ=  for the four aµ =  diagonal components, and therefore, that 0 1 2 3
0 1 2 3 0ε ε ε ε′ ′ ′ ′= = = = .  As 

a result, the fields in 22 Ak Aµ νφ  will all appear in off-diagonal components of the tetrad.  With this, 

(2.4a) reduce to: 
 

2
0 0

2
1 1

1 1 2 2 3 3 2
0 0 0 0 0 0

0 0 2 2 3 3 2
1 1 1 1 1 1

0 0 1 1 3 3 2
2

2
22 2 2 2 2

0 0 1 1 2 2 2
3 3 3 3 3 3

2

2
3 3

A A

A A

k

k

k

A A

A A

k

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε

φ

φ
ε

φ

φε

′ ′ ′ ′ ′ ′− − − =
′ ′ ′ ′ ′ ′− − =
′ ′ ′ ′ ′ ′− − =
′ ′ ′ ′ ′ ′− − =

. (2.5a) 
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In (2.4b) we achieve structural match using 1 2 3
1 2 3 0ε ε ε′ ′ ′= = =  from above, and also by setting 

1 0
0 1ε ε′ ′= , 2 0

0 2ε ε′ ′= , 3 0
0 3ε ε′ ′= , which is symmetric under 0 1, 2, 3a↔ =  interchange.  Therefore: 

  
2 2 3 3 2

0 1 0 1

1 1 3 3 2
0 2 0 2

1 1 2 2 2
0 3

2

0

0 1

2

2
3

0 2

0 3

A A

A

Ak

A

k

A

k

φ
φ

ε ε ε ε
ε ε ε ε
ε ε φε ε

′ ′ ′ ′− − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =

. (2.5b) 

 

In (2.4c) we use 1 2 3
1 2 3 0ε ε ε′ ′ ′= = =  from above and also set 2 1

1 2ε ε′ ′= − , 3 2
2 3ε ε′ ′= − , 1 3

3 1ε ε′ ′= −  which are 

antisymmetric under interchange of different space indexes.  Therefore, we now have: 
  

2
1 2

2
2 3

2
3 1

0 0 3 3 2
1 2 1 2

0 0 1 1 2
2 3 2 3

0 0 2 2 2
3 1 3 1

k A

A A

k

A

A A

k

φ
φ
φ

ε ε ε ε
ε ε ε ε
ε ε ε ε

′ ′ ′ ′− =
′ ′ ′ ′− =
′ ′ ′ ′− =

. (2.5c) 

 
In all of (2.5), we now only have matching-structure second-order terms on both sides. 
 
 For the next step, closely studying the space indexes in all of (2.5) above, we now make an 

educated guess at an assignment for the fields in 22
i jk A Aφ .  Specifically, also using the symmetric-

interchange 1 0
0 1ε ε′ ′= , 2 0

0 2ε ε′ ′= , 3 0
0 3ε ε′ ′=  from earlier, we now guess an assignment: 

 
1 0 2 0 3 0

0 1 0 2 2 301 3; ;A Ak k kAε ε ε ε ε εφ φ φ′ ′ ′ ′ ′ ′= = = = = = . (2.6) 

 
Note, because all space-indexed expressions in (2.5) contain second-order products of the above, 

it is possible to have also tried using a minus sign in all of (2.5) whereby 1 0
0 1 1Akε ε φ′ ′= = − , 

2 0
0 2 2Akε ε φ′ ′= = −  and 3 0

0 3 3Akε ε φ′ ′= = − .  But absent motivation to the contrary, we employ a plus 

sign which is implicit in the above.  Substituting (2.6) into all of (2.5) and reducing next yields: 
 

2 2 3 3
1 1 1 1

1 1 3 3
2 2 2 2

1 1 2 2
3

1

3

1 2 2 3 3 0 0

3 3

0

0

0

A A A A A A A A

ε ε ε ε
ε ε ε ε
ε ε ε ε

− − − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =

, (2.7a) 

 
2

2 3 0 1

2
1 3

2 3 2
1 1

1 3 2
2 2

1

0 2

2
1

2
2 3

2
3 03

k k k

k k k

A A A A

A A A A

A A A Ak k k

ε ε
ε ε
ε

φ φ φ
φ φ φ
φ φ ε φ

′ ′− − =
′ ′− − =
′ ′− − =

, (2.7b) 

 
3 3 1 1 2 2

1 2 2 3 3 1 0ε ε ε ε ε ε′ ′ ′ ′ ′ ′− = − = − = . (2.7c) 
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 Now, the way to satisfy the earlier relations 2 1

1 2ε ε′ ′= − , 3 2
2 3ε ε′ ′= − , 1 3

3 1ε ε′ ′= −  used in (2.5c) 

while simultaneously satisfying (2.7c), is to set all of the pure-space components: 
 

2 1 3 2 1 3
1 2 2 3 3 1 0ε ε ε ε ε ε′ ′ ′ ′ ′ ′= = = = = = . (2.8) 

 
This disposes of (2.7c) and last three relations in (2.7a), leaving only the two constraints: 
 

1 1 2 2 3 3 0 0A A A A A A A A− − − = , (2.9a) 

 
2 22 2 2

0 1 0 2 3
2

00 A A Ak k kA A Aφ φ φ= = = . (2.9b) 

 
These above relations (2.9) are extremely important.  In (2.9b), if any one of 1A , 2A  or 3A  

is not equal to zero, then we must have 0 0A = .  So, we take as a given that at least one of 1A , 2A  

or 3A  is non-zero, whereby (2.9a) and (2.9b) together become: 

 

0 1 1 2 2 3 30; 0A A A A A A A= + + = , (2.10) 

 
These two constraints have removed two redundant degrees of freedom from the gauge field Aµ , 

in a generally-covariant manner.  Moreover, for the latter constraint in 1 1 2 2 3 3 0A A A A A A+ + =  to 

be satisfied, it is necessary that at least one of the space components of jA  be imaginary.  For 

example, if 3 0A = , then one way to solve the entirety of (2.10) is to have: 

 

( )exp /A A iq xσ
µ µ σε= − ℏ , (2.11a) 

  
with a polarization vector  
 

( ) ( ), ˆ 0 1 0 / 2R L z iµε ≡ ± + , (2.11b) 

 
and where A in (2.11a) has dimensions of charge / energy to provide dimensional balance given 
the dimensionless ,R L µε .  But the foregoing is instantly-recognizable as the gauge potential 

A Aµ γ µ=  for an individual photon (denoted with γ ) with two helicity states propagating along the 

z axis, and having an energy-momentum vector: 
 

( ) ( ) ( )ˆ 0 0 0 0zcq z E cq h hµ ν ν= = . (2.11c) 

  

This also satisfies 2 2 0q q m cµ
µ γ= = , which makes this a massless, luminous field quantum.  

Additionally, we see from all of (2.11) that 0A qµ
µ =  and 0j

jA q =   as is also true for a photon.  
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The latter 0j
jA q =  is the so-called Coulomb gauge which is ordinarily imposed as a non-covariant 

gauge condition.  But here, it has emerged in an entirely covariant fashion. 
 
 In short, what we have ascertained in (2.10) and (2.11) is that if the spacetime components 

22G Akg Aµν µ νµν φ+=  of the Kaluza-Klein metric tensor with gµν µνη=  are to produce a set of 

µΓ  to satisfy the Dirac anticommutator relation { }1
2 , Gµ ν µνΓ Γ ≡  which is the spacetime subset 

of (2.1), the gauge symmetry of Aµ  must be broken to correspond with that of the photon.  We 

designate required result simply by writing A Aµ γ µ= .  (Note: the subscript γ  as used here denotes 

“photon,” and should not be confused as a spacetime index.)  The very act of deconstructing Gµν  

into square root Dirac operators covariantly removes two degrees of freedom from the gauge field 
and forces it to become a photon field quantum.  Moreover, (2.11a) implies that i A q Aα µ α µ∂ =ℏ  

while (2.11c) contains the energy E hν=  of a single photon.   So, starting with an entirely-

classical 2 2 A AG kµν µµ νν η φ+=  and merely requiring the formation of a set of µΓ  transforming 

covariantly in spacetime with the anticommutator { }1
2 , Gµ ν µνΓ Γ ≡ , we covariantly end up with 

some of the core relations of quantum mechanics. 
 
 Even outside of the context of Kaluza-Klein theory, entirely in four-dimensional spacetime, 
the foregoing calculation solves the longstanding challenge of how to covariantly eliminate the 
redundancy inherent in using a four-component Lorentz vector Aµ  to describe a classical 

electromagnetic wave or a quantum photon field with only two transverse degrees of physical 

freedom:  If we posit a metric tensor given by 22G Akg Aµν µ νµν φ+= , and if we require the 

existence of a set of Dirac operators µΓ  transforming as a covariant vector in spacetime and 

connected to the metric tensor such that { }1
2 , Gµ ν µνΓ Γ ≡ , then we are given no choice but to have 

A Aµ γ µ=  be the quantum field of a photon with two degrees of freedom covariantly-removed and 

only two degrees of freedom remaining.  
 

 With this, we have now also deduced all the components of the tetrad a a a
µ µ µε δ ε ′= + .  

Pulling together all of 0 1 2 3
0 1 2 3 0ε ε ε ε′ ′ ′ ′= = = =  and (2.6) and (2.8), and setting A Aµ γ µ=  to 

incorporate the pivotal finding in (2.10), (2.11) that the gauge-field must be covariantly fixed to 
the gauge field of a photon, this tetrad is deduced to have the components: 
 

1 2 3

1

2

3

1

1 0 0

0 1 0

0 0 1

a a a

k k k

k

k

A A

Ak

A

A

Aµ µ

γ γ γ

γ

γ

γ

µ

φ φ φ
φ
φ
φ

ε δ ε

 
 
 ′= + =
 
  
 

. (2.12) 

  

 Finally, because a
a

α
µ µ α µε γ ε γ= ≡ Γ , we may use (2.12) to deduce the Dirac operators: 
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0 1 2 3
0 0 0 0 0 1 0 2 0 3 0

0 1
1 1 1 0 1 1 1 0

0 2
2 2 2 0

1

2 2 2 0

0

2

3
3 3 3 0 3 33 3 0

jjk

k

A

A

A

A

k

k

α
α

α
α

α
α

α
α

γ

γ

γ

γ

ε γ ε γ ε γ ε γ ε γ γ γ

ε γ ε γ ε γ γ γ

ε γ ε γ ε γ γ γ

ε γ ε γ ε γ

φ

γ

φ

γ

φ

φ

Γ = = + + + = +

Γ = = + = +

Γ = = + = +

Γ = = + = +

. (2.13) 

 
We in turn consolidate these into a set of µΓ  transforming as a four-vector in spacetime, namely: 

 

( )0 0j jj jkA Akγ γµ γ γ γφγφΓ = + + . (2.14) 

 
It is a useful exercise to confirm that (2.14) above, inserted into (2.1), will reproduce 

2 2G k A Aµν µν γ µ γνη φ= + , which may then be generalized from gµν µνη ֏  in the usual way by 

applying the minimal coupling principle.  As a result, we return to the Kaluza-Klein metric tensors 
in (1.1), but apply the foregoing to now rewrite these as: 
 

2 2

2 2 2

2

;
1/

k kg A A A g A
G G

A A g A Ak

µν µ
µν γ µ γν γ µ γ

ν α β
γν γ αβ γ γ

φ φ
φ φ φ

ΜΝ
ΜΝ

   + −
= =      − +   

. (2.15) 

 
The only change we have made in (1.1) is to replace A Aµ γ µ֏ , which captures the remarkable 

result that even in four spacetime dimensions alone, it is not possible to deconstruct 
2 2G k A Aµν µν γ µ γνη φ= +  into a set of Dirac µΓ  defined in (2.1) without fixing the gauge field Aµ  

to that of a photon Aγ µ . 

 
 To avoid any possible confusion, it should be clearly stated that the photon gauge vector 
Aγ µ  obtained here does not differ in any way from the photon gauge vector of the standard model.  

Phenomenologically, the physical photons being represented are exactly the same.  The difference 
is in how the phenomenological photon properties are formally derived from theoretical principles:  
It has long been known that although the vector gauge potential of classical electromagnetism has 
four degrees of freedom to accord with its four spacetime components, the observed photon field 
quanta have two degrees of freedom which accords with their being massless and having two 
transverse polarization states.  In the standard model these redundant, unobservable two extra 
degrees of freedom in Aµ  are ordinarily removed by imposing the Lorentz and Coulomb gauge 

fixing conditions to arrive at Aγ µ .  Above, via (2.10) the exact same result is achieved merely by 

requiring the general covariance of Kaluza-Klein theory in five dimensions, implemented by 
deconstructing the Kaluza-Klein metric tensor into a set of five Dirac gamma matrix operators 
similarly to what is done via Dirac’s Quantum Theory of the Electron.  And as we have seen above, 
the gauge potential turns into a photon entirely via the subset requirement of Dirac-covariance in 
the four dimensions of spacetime.  Now, we extend this general covariance to the fifth dimension. 
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3.  Derivation of the “Dirac-Kaluza-Klein” (DKK) Five-Dimensional Metric 

Tensor 
 
 To ensure general covariance at the Dirac level in five-dimensions, it is necessary to first 
extend (2.1) into all five dimensions.  For this we use the lower-indexed (1.3), namely: 
 

{ } { }1 1
2 2, GΜ Ν Μ Ν Ν Μ ΜΝΓ Γ = Γ Γ + Γ Γ ≡ . (3.1) 

 
As just shown, using (2.14) in the spacetime components of (3.1) with gµν µνη=  will already 

reproduce 2 2G k A Aµν µν γ µ γνη φ= +  in (2.15).  Now we turn to the fifth-dimensional components. 

 
 It is helpful to separate the time and space components of GΜΝ  in (2.15) and write this as: 

 
2 2 2

00 0 05 00 0 0 0 0 0

2 2 2
0 5 0 0

2 2 2
50 5 5

2 2

2 2

5 0

k k k

j jk j j j jk j k j

k k

G G G g A A g A A A

G G G G g A A

k k k

k k k

k k

g A A A

G G G A A

γ γ γ γ γ

γ γ γ γ γ

γ γ

φ φ φ
φ φ φ
φ φ φ

ΜΝ

  + +
 = + + 
 



 =  
 
 

. (3.2) 

 
We know of course that 0 0Aγ = , which is the constraint that first arose from (2.10).  So, if we 

again work with gµν µνη=  and set 0 0Aγ = , the above simplifies to: 

 

00 0 05

2 2
0 5

2 2
50 5 55

2

1 0 0

0

0

k

j jk j jk j k j

k k

G G G

G G G G A A Ak

G A

k

G G k
γ γ γ

γ

η φ φ
φ φ

ΜΝ

 
 

 
 = + 
 


=

  

 


. (3.3) 

 
 Next, let us define a 5Γ  to go along with the remaining µΓ  in (2.14) in such a way as to 

require that the symmetric components 2
5 5j j jG G Ak γφ= =  in (3.3) remain fully intact without any 

change.  This is important, because these components in particular are largely responsible for the 
Kaluza “miracles” which reproduce Maxwell’s equations together with the Lorentz Force motion 
and the Maxwell Stress-Energy Tensor.  At the same time, because 0 0Aγ =  as uncovered at (2.10), 

we can always maintain covariance between the space components 2
5 5j j jG G Ak γφ= =  and the time 

components 05 50G G=  in the manner of (1.1) by adding 2
0 0kAγφ =  to anything else we deduce for 

05 50G G= .  This lays the foundation for the Kaluza miracles to remain intact.  We impose this 

requirement though (3.1) by writing the 5Γ  definition as: 

 

{ } { } 21 1
52 55 5 52,j j j jj jG AG k γφΓ Γ = Γ Γ + Γ Γ ≡ = = . (3.4) 

 

Using 0j j jkAγφγ γΓ = +  from (2.14) and adding in a zero, the above now becomes: 
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{ } { } { }1 1 1
5 5

2
5 0 52 2 20 , ,j j jj jA Ak kγ γ γφ φγ≡ Γ Γ + Γ Γ = Γ + Γ+ , (3.5) 

 
which reduces down to a pair of anticommutation constraints on 5Γ , namely: 

 

{ }
{ }

1
52

1
0 52

,

,

0 j

φ

γ

γ

= Γ

= Γ
. (3.6) 

 
Now let’s examine possible options for 5Γ . 

   

Given that 0 0 jjkAγφγ γΓ = +  and 0j j jkAγφγ γΓ = +  in (2.14), we anticipate the general 

form for 5Γ  to be 5 X YγΓ ≡ +  in which we define two unknowns to be determined using (3.6).  

First, X is one of the indexes 0, 1, 2, 3 or 5 of a Dirac matrix.  Second, Y is a complete unknown 
which we anticipate will also contain a Dirac matrix as do the operators in (2.14).  So, using 

5 X YγΓ ≡ +  in (3.6) we first deduce: 

 

{ } { } { } { }
{ } { } { } { }

1 1 1 1
5 52 2 2 2

1 1 1 1
0 5 5 0 0 0 0 0 0 02 2 2 2

, ,

, ,

0

0

j j j X j X j j j X j

X X X

Y Y Y

Y Y Y

γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γφ γ+

= Γ + Γ = + + + = +

= Γ + Γ = + + + = +
. (3.7) 

 
From the top line, so long as X Yγ ≠ −  which means so long as 5 0Γ ≠ , we must have both the 

anticommutators { }, 0j Xγ γ =  and { }, 0j Yγ = .  The former { }, 0j Xγ γ =  excludes X being a space 

index 1, 2 or 3 leaving only 0Xγ γ=  or 5Xγ γ= .  The latter { }, 0j Yγ =  makes clear that whatever 

Dirac operator is part of Y must likewise be either 0γ  or 5γ .  From the bottom line, however, we 

must also have the anticommutators { }0 , 0Xγ γ =  and { }1
02 ,Yγ φ= .  The former means that the 

only remaining choice is 5Xγ γ= , while given 0 0 1γ γ =  and { }0 5, 0γ γ =  the latter means that 

0Y φγ= .  Therefore, we conclude that 5 5 0γ γφΓ = + .  Including this in (2.14) now gives: 

 

( )0 0 5 0k jk jk kA Aγ γγ γ γ γ γφ φγφΜΓ = + + + . (3.8) 

 
With this final operator 5 5 0γ γφΓ ≡ + , we can use all of (3.8) above in (3.1) to precisely reproduce 

2
5j jG Ak γφ=  and 2

5k kG Ak γφ=  in (3.3), as well as 2 2G k A Aµν µν γ µ γνη φ= +  given 0 0Aγ = .  This 

leaves the remaining components 05 50G G=  and 55G to which we now turn. 

 
 If we use 0 0 jjkAγφγ γΓ = +  and 5 5 0γ γφΓ = +  from (3.8) in (3.1) to ensure that these 

remaining components are also fully covariant over all five dimensions, then we determine that: 
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{ } ( )( ) ( ) ( ){ }
{ } { } { }

1 1
05 50 0 5 5 0 0 5 0 5 0 02 2

1 1 1
0 0 0 5 5 02 2

2

2, , ,

j j

j j

j j

j j

G G k k

k k

A A

A A

γ γ

γ γ

φ φ φ φ

φ φ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ φ φγ γ

= = Γ Γ + Γ Γ = + + + + +

= + + + =
, (3.9) 

 

( ) ( ) { }2 2
55 5 5 5 0 5 0 5 5 0 0 5 0 0 5 1G γ γ γ γ γ γ φ γ γ φ γ γ γ γφ φφ= Γ Γ = + + = + + + = + . (3.10) 

 
These two components are now different from those in (3.3).  However, in view of this Dirac 
operator deconstruction, these are required to be different to ensure that the metric tensor is 
completely generally-covariant across all five dimensions, just as we were required at (2.15) to set 

j jA Aγ=  at (2.12) to ensure even basic covariance in four spacetime dimensions.   

 
Consequently, changing (3.3) to incorporate (3.9) and (3.10), we now have: 
 

00 0 05

2 2
0 5

2 2
50 5 55

2

1 0

0

1

k

j jk j jk j k j

k k

G

k k

G G

G G G G A A

k

A

G G G A
γ γ γ

γ

φ
η φ φ

φ φ φ
ΜΝ

 
 = 

 
 = + 
 +






 

. (3.11) 

 
This metric tensor is fully covariant across all five dimensions, and because it is rooted in the Dirac 
operators (3.8), we expect that this can be made fully compatible with Dirac’s theory of the 
multitude of fermions observed in the natural world, as we shall examine further in section 5.  
Moreover, in the context of Kaluza-Klein theory, Dirac’s Quantum Theory of the Electron [13] 
has also forced us to set j jA Aγ=  in the metric tensor, and thereby also served up a quantum theory 

of the photon.  Because of its origins in requiring Kaluza-Klein theory to be compatible with Dirac 
theory, we shall refer to the above as the “Dirac-Kaluza-Klein” (DKK) metric tensor, and shall 
give the same name to the overall theory based on this. 
 

Importantly, when we set 0jAγ =  and 0φ =  in (3.11), the metric signature becomes 

( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − +  with a determinant 1GΜΝ = − , versus 0GΜΝ =  in (1.1) as 

reviewed earlier.  This means that the inverse obtained via G G δΜΑ
ΑΝ

Μ
Ν=  will be non-singular as 

opposed to that in (1.1), and that there is no reliance whatsoever on having 0φ ≠  in order to avoid 

singularity.  This in turn frees 55G  from the energy requirements of φ  which cause the fifth 

dimension in (1.1) to have a spacelike signature.  And in fact, very importantly, we see that as a 
result of this signature, the fifth dimension in (3.11) is a second timelike, not fourth spacelike, 

dimension.  In turn, because (3.10) shows that 2
55

2
5 51G φ γ γ φ= + = +  obtains its signature when 

0φ =  from 5 5 1γ γ = , it now becomes possible to fully associate the Kaluza-Klein fifth dimension 

with the 5γ  of Dirac theory.  This is not possible when a theory based on (1.1) causes 55G  to be 

spacelike even though 5 5 1γ γ =  is timelike, because of this conflict between timelike and spacelike 

signatures.  Moreover, having only 2
55G φ=  as in the usual (1.1) causes 55G  to shrink or expand 

or even zero out entirely, based on the magnitude of φ .  In (3.11), there is no such problem.  We 

review the physics consequences of all this more deeply in section 9 following other development.   
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To conclude this section, we wish to now consolidate (3.11) into a 2x2 matrix format akin 

to (1.1), by consolidating all spacetime components into a single expression with manifest four-
dimensional covariance.  In general, as already hinted, it will sometimes simplify calculation to 
set 0 0Aγ =  simply because this puts some zeros in the equations we are working with; while at 

other times it will be better to explicitly include 0Aγ  knowing this is zero in order to take advantage 

of the consolidations enabled by general covariance.   To consolidate (3.11) to 2x2 format, we do 
the latter, by restoring the zeroed 0 0Aγ =  to the spacetime components of (3.11) and consolidating 

them to 2 2G k A Aµν µν γ µ γνη φ= + .  This is exactly what is in the Kaluza-Klein metric tensor (1.1) 

when gµν µνη= , but for the fact that the gauge symmetry has been broken to force A Aµ γ µ=  as 

derived in section 2.  But we also know that 505 0G G=  and 5 5j jG G=  have been constructed at 

(3.9) and (3.4) to form a four-vector in spacetime.  Therefore, referring to these components in 
(3.11) and taking advantage of 0 0Aγ = , we define a new covariant (lower-indexed) four-vector: 

 

( ) ( )2 2 2
0j jA A Ak k kµ γ γ γφ φ φ φ φΦ +≡ = . (3.12) 

 
Moreover, 2

55 5 5 0 0G γ γ φ γ γ= +  in (3.10) teaches that the underlying timelike signature (and 

the metric non-singularity) is rooted in 5 5 1γ γ = , and via 2 2
0 0φ γ γ φ=  that the square of the scalar 

field is rooted in 0 0 1γ γ =  which has two time indexes.  So, we may now formally assign 55 1η =  

to the fifth component of the Minkowski metric signature, and we may assign 2
0 0φ = Φ Φ  to the 

fields in Gµν  and 55G .  With all of this, and using minimal coupling to generalize gηΜΝ ΜΝ֏  

which also means accounting for the possibility of non-zero 5gµ , 5g ν , (3.11) may now be 

compacted via (3.12) to the 2x2 form: 
 

2
5 0 0 5

5 55 5 0 055

G G g A A g
G

G G g g

kµν µ µν γ µ γν µ

ν ν

µ

ν
ΜΝ

 + Φ 
= =    + Φ Φ Φ  

Φ Φ
+ 

+
. (3.13) 

 
This is the Dirac-Kaluza-Klein metric tensor which will form the basis for all continued 
development from here, and using (3.12) it should be closely contrasted with (1.1).  The next step 

is to calculate the inverse GΜΝ  of (3.13) above, in the next section. 
 

4.  Calculation of the Inverse Dirac-Kaluza-Klein Metric Tensor 
 

As already mentioned, the modified Kaluza-Klein metric tensor (3.13) has a non-singular 

inverse GΜΝ  specified in the usual way by G G δΜΑ
ΑΝ

Μ
Ν= .  We already know this because when 

0jAγ =  and 0φ =  with g ηΜΝ ΜΝ= , we have a determinant 1GΜΝ = − , and more generally 

G gΜΝ ΜΝ= , which is one of the litmus tests that can be used to demonstrate non-singularity.  

But because this inverse is essential to being able to calculate connections, equations of motion, 
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and the Einstein field equation and related energy tensors, the next important step – which is 
entirely mathematical – is to explicitly calculate the inverse of (3.13).  We shall now do so. 
 

Calculating the inverse of a 5x5 matrix is a very cumbersome task if one employs a brute 
force approach.  But we can take great advantage of the fact that the tangent space Minkowski 

tensor ( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  has two timelike and three spacelike dimensions when we 

set 0jAγ =  and 0φ = , by using the analytic blockwise inversion method detailed, e.g., in [14].  

Specifically, we split the 5x5 matrix into 2x2 and 3x3 matrices along the “diagonal”, and into 2x3 
and 3x2 matrices off the “diagonal.”  It is best to work from (3.11) which does not show the time 
component 0 0Aγ =  because this is equal to zero for a photon, and which employs gµν µνη= .  We 

expand (3.11) to show the entire 5x5 matrix, and we move the rows and columns so the ordering 
of the indexes is not 0,1,2,3,5Μ = , but rather is 0,5,1,2,3Μ = .  With all this, (3.11) is: 

 

1 2 3

2 2 2
1 1 1 1 2

00 05 01 02 03

2 2 2 2

50 55 51 52 53

2 2 2 2

10 15 11 12 13 1 3

2 2 2
2 2 1 2

2 2 2 2

20 25 21 22 23

30 35 31 32 33

2

1 0 0 0

1

0 1

0 1

G G G G G

A A AG G G G G

A A A A A A AG G G G G G

A A A A A AG G G G G

G G G G G

k k k

k k k k

k k k k

γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ

φ φ φ φ
φ φ φ φ
φ φ φ φ

φ
φ

ΜΝ

 
  + 
  − +
  − + 


=



=




2 3

2 2 2
3 3 1 3 2

2 2 2 2
3 30 1

A

A A A A A A Ak k k k
γ

γ γ γ γ γ γ γφ φ φ φ

 
 
 
 
 
 
 − + 

. (4.1) 

 
Then, we find the inverse using the blockwise inversion relation: 
 

( ) ( )
( ) ( )

1 11 1 1 1 1 11

1 11 1 1

− −− − − − − −−

− −− − −

 + − − −   =      − − − 

A A B D CA B CA A B D CA BA B

C D D CA B CA D CA B

 (4.2) 

 
with the matrix block assignments: 
 

1 2 3

2 2 2
1 1 1 1 2 1 3

2 2 2
2 2 1 2 2 2 3

2 2 2
3 3 1 3

2 2 22

2 2

2

2 2

2 2 2 2

2 2
3

2
3

2

0 0 01
; ;

1

0 1

0 ; 1

0 1

A A A

A A A A A A A

A A A A A A A

A A A A A

k k k

k k k k

k k

A

k k

k k k Ak

γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ φ φφ

φ φ φ φ
φ φ φ φ
φ φ φ φ

φ
φ

  
= =   +   

   − +
   = = − +   
   − +   

A B

C D

. (4.3) 

 

 The two inverses we must calculate are 1−A  and ( ) 11 −−−D CA B .  The former is a 2x2 

matrix easily inverted, see, e.g. [15].  Its determinant 2 21 1φ φ−= + =A , so its inverse is: 

 
2

1 1

1

φ
φ
φ−  +

=  


−
− 

A . (4.4) 
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Next, we need to calculate 1−−D CA B , then invert this.  We first calculate: 
 

2

2
1 2

2 2 2

2

2 4 4 4

3 3 3

2 4

2 2

1

2
1 2 3

3

2 2 2
1 1 1 1 2 1 3

1 2 3 2
2 2

1 2
2

2 3

3

0
0 0 01

0
1

0

0

0

0

k

k
k k k

k

k k k k
k k k

k k
k k k

k

A

A
A A A

A

A A A A A A A
A A A

A A
A A A

A

γ

γ
γ γ γ

γ

γ γ γ γ γ γ γ
γ γ γ

γ γ
γ γ γ

γ

φ
φφ

φ φ φ
φ

φ φ φ φ
φ

φ
φ

φ φ
φ φ

φ φ φ
φ

−

 
  + − = −    

   
 

 
 − − − = − = −   
  

 

−
−

CA B

2 2
1 2 2 2 3

2 2 2
3 1 3

4

4
3

4
3

4

4
2

A A A A A

A A A A A

k

A

k

k k k
γ γ γ γ γ

γ γ γ γ γ γ

φ φ
φ φ φ

 
 
 
 
 

. (4.5) 

  
Therefore: 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

2 2 2
1 1 1 2 1

2 4 2 4 2 4

1 2 4 2 4 2 4

2 4 2

3

2 2 2
2 1 2 2 2 3

2 2 2
3 1 3 2 3 3

2

4 2 4

2 4

1

1

1

jk j k

A A A A A A

A A A A

k k k

k k k

k

A A

A A A A A Ak k

k A A

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

η φ φ

−

 − +
 
 − = − +
 
 − + 

− − −

− − −

−

= +

− −

−

D CA B
. (4.6) 

 

 We can easily invert this using the skeletal mathematical relation ( )( ) 21 1 1x x x+ − = − .  

Specifically, using the result in (4.6) we may write: 
 

( )( ) ( )( )
( ) ( ) ( )

2 4 2 4

22 4

2 2

2 42 4

jk kl

jk kl k

j k k l

j kl jk k l j k k l jl

A A A A

A A A A A A A A

k k

k k

γ γ γ γ

γ γ γ γ γ γ γ γ

η φ φ η φ φ

η η φ φ η η φ δφ

+ −

+ −

− −

= − − − =
. (4.7) 

 
The j k k lA A A Aγ γ γ γ  term zeros out because 0k kA Aγ γ =  for the photon field, see (2.10).   Sampling 

the diagonal 1j l= =  term,  1 1 1 1 11 1 1 0k kk kA A A A A A A Aγ γ γ γ γ γ γ γη η− = + =− .  Sampling the off-

diagonal 1j = , 2l =  term, 2 1 2 2 11 2 1 0k kk kA A A A A A A Aγ γ γ γ γ γ γ γη η− = + =− .  By rotational symmetry, 

all other terms zero as well.  And of course, jk kl jlη η δ= .  So (4.7) taken with (4.6) informs us that: 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 2

2 2 2
1 1 1 2 1 3

2 2

1 2 4

2

2
2

4

1 2 2 2 3

2 2 2
3

2 4 2 4

2 4 2 4 2 4

2 4 2
1 3 2 3 3

4 2 4

1

1

1

jk j kA A

A A A A A A

A A A A A

k

k

A

A A A A A

k k

k k k

k k k A

γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

η φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

− −
− = −

 − − − −
 
 = − −

−

− − −

− −
 
 − − − −

− − −

− − − 

D CA B

. (4.8) 

 
We now have all the inverses we need; the balance of the calculation is matrix multiplication. 
 
 From the lower-left block in (4.2) we use C from (4.3), with (4.4) and (4.8), to calculate: 
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( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2 2
1 1 1 2 1

11 1

2 4 2 4
3

1

2 2 2
2 1 2 2 2 3

2 4
2

2
2 4 2 4 2 4 2

2
2 4 2 4 2 4

3

2

2 2 2 3
3 1 3 2 3 3

1 0
1

1 0
1

01

A A A A A A A

A A A A A A A

AA A A A

k k k k

k k k k

kk k A Ak

γ γ γ γ γ γ
γ

γ γ γ γ γ γ γ

γ
γ γ γ γ γ γ

φ φ φ φ φ φ φ
φφ φ φ φ φ φ φ

φφ φ φ φ φ φ

φ

φ
φ

−− −

− − −
−

=

− −

 +     +  +        

− − −
−

+ 

−

=

− − −

D CA B CA

( ) ( )
( ) ( )
( ) ( )

2 4 3 2 2 43 3
1 1 1 1

1 1

3 3
2 2 2 2 2 2

3 3 3
3 3

2
3 2

3 2 4 3 2 2 4 2 3

3 3

2

3 2
3 2 4 3 2 2 4 2

k k k k

k k k k

k k k k

A A A A A A A A A A

A A A A A

k

A A A A A

A AA A A A A A A A

k k k k k

k k k k k k

k kk k k k

γ γ γ γ γ γ γ γ
γ γ

γ γ γ γ γ γ γ γ γ γ

γ
γ γ γ γ γ γ γ γ

φ φ φ φ φ φ φ φ φ
φ φ φ φ φ φ φ φ φ φ

φ φφ φ φ φ φ φ φ φ

 − + − 
 − − + = −
 

− −

− −

− − − − − + 
3γ

 
 
 
 
 

, (4.9) 

 

again using 0k kA Aγ γ = .  We can likewise calculate ( ) 11 1 −− −− −A B D CA B  in the upper-right block 

in (4.2), but it is easier and entirely equivalent to simply use the transposition symmetry 
G GΜΝ ΝΜ=  of the metric tensor and the result in (4.9) to deduce: 

 

( )
3 3 3

11 1 1 2 3

2 2
2

2
1 3

k k k

k k

A A A

A A Ak
γ γ γ

γ γ γ

φ φ φ
φ φ φ

−− − − − −
− −

 
=   
 

A B D CA B , (4.10) 

 
 For the upper-left block in (4.2) we use B from (4.3), with (4.4) and (4.9), to calculate: 
 

( )
1 1

2 2
1

11 1 1 1

3 2

2 2
3 2

2
2 3

3 3

2

2 2

3 2

2 2 2

5 4 2

0 0 01 1

1 1

0 01 1 1

1 1 1k k k k

A A

A A
A

k k

k k
k k k

k k

k k

A A
A A

A A A A

γ γ

γ γ
γ γ γ

γ γ

γ γ γ γ

φ φ
φ φ φ φφ φ
φ φ

φ φ φ
φ φ φ

φ φ φ
φ φ

φ φ φ
φ φ

−− − − −+ −

 −
    + +  + −      

     − 

    + +

− −
=

− −

− − −+
+ =     −   − −

=
−

A A B D CA B CA

 
 
 

, (4.11) 

 
again using 0k kA Aγ γ = .  And, (4.8) already contains the complete lower-right block of (4.2). 

 
 So, we now reassemble (4.8) through (4.11) into (4.2) to obtain the complete inverse: 
 

( ) ( ) ( )
( ) ( ) ( )
( )

1 2 3

1 2 3

2 2 2
1 1 1 1 1

2 3 3 3

2 2 2

1
3 2 2 4 2 4 2 4

3 2 2 4 2 4 2 4

3 2 2 4

2 1 3

2 2 2
2 2 2 1 2 2 2 3

2
3 3 3

1

1

1

1

A A A

A A A

A A A A A A A A

A A A A A A A A

A A A

k k k

k k k

k k k k k

k k k k k

k k k A

γ γ γ

γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ

φ φ φ φ
φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ

φ
φ

−

−
−

− − −

− − −

+ − − −

  − − − − −= 
  − − − − −

− − −

A B

C D

( ) ( )2 22 4 2
1

4
3 2 3 31A A Ak k Aγ γ γ γ γφ φ φ φ

 
 
 
 
 
 
 
 − − − − −

 (4.12) 
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Then we reorder rows and columns back to the 0,1,2,3,5Μ =  sequence and connect this to the 

contravariant (inverse) metric tensor GΜΝ
 to write: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 3 3 3

3 2 4 2 4 2 4 2

3 2 4

1 2 3

2 2 2
1 1 1 1 2 1 3 1

2 2 2
2 2 1 2 2 2 3 2

2 2 2
3

2 4 2 4 2

3 2 4 2 4 2 4
3 1 3 2 3 3

2

1

1

1

1

A A A

A A A A A A A A

A A A A A A A AG

A A A

k k k

k k k k k

k k

A A

k k k

Ak k kAk Ak

γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ

φ

φ φ φ φ φ

φ φ φ φ φ φ φ φ

ΜΝ

+ −

− − − − − − −

− − − − − − −

− − − − − − −

− − −

−

−=

− 3

1 2 3
2 2 2 1A A kAk k

γ

γ γ γφ φ φφ

 

−

 
 
 
 
 
 
  
 

. (4.13) 

 

In a vitally-important contrast to the usual Kaluza-Klein GΜΝ  in (1.1), this is manifestly not 

singular.  This reverts to ( ) ( ) ( )diag diag 1, 1, 1, 1, 1G ηΜΝ ΜΝ= = + − − − +  when 0Aγ µ =  and 0φ =  

which is exactly the same signature under the same circumstances as GΜΝ  in (3.11).  Then we 

consolidate to the 3x3 form: 
 

( )
2 300 0 05

0 5 3 2 4 2

50 5 55

2

2

1

1

k

j j k j

k

k

j jk j jk

k

AG G G

G G G G A A A A

G G G A

k

k k k

k

γ

γ γ γ γ

γ

φ

φ

φ φ
φ η φ φ φ

φ

ΜΝ

− 
  = − − 
  −

 + −
 

= −





 

. (4.14) 

 
 Now, the photon gauge vectors jAγ  in (4.14) still have lower indexes, and with good 

reason:  We cannot simply raise these indexes of components inside the metric tensor at will as 
we might for any other tensor.  Rather, we must use the metric tensor (4.14) itself to raise and 

lower indexes, by calculating A G Aγ γ
Μ ΜΝ

Ν= .  Nonetheless, it would be desirable to rewrite the 

components of (4.14) with all upper indexes, which will simplify downstream calculations.  Given 

that 0 0Aγ =  for the photon and taking 5 0Aγ = , and raising indexes for 0Aγ  and 5Aγ  while sampling 
1Aγ  and once again employing 0kkA Aγ γ = , we may calculate: 

 

( )
0 0 01 02 03 3

1 2 3

1 1 11 12 13 2 4
1 2 3 1 1

5 5 51 52 53 2
1 2

2
1

3

0

0k

k

k

k

k

k

A G A G A G A G A A A

A G A G A G A G A A A A A A

A G A G A G A G A A A

k

k

k

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ

φ φ

φ

Ν
Ν

Ν
Ν

Ν
Ν

= = + + = − =

= = − −+ ++ = =

= = + + = − =

− , (4.15) 

 
The middle result applies by rotational symmetry to other space indexes, so that:  
 

A G A A A g Aµ µν µν µ µν
γ γν γν γ γνη= = =֏ , (4.16) 
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which is the usual way of raising indexes in flat spacetime, then generalized to g µν  with minimal 

coupling.  This means in view of (2.10), that 0j
jA Aγ γ =  and 0A A σ

γ σ γ =  as well.  As a result, with 

g µν µνη=  we may raise the index in (3.12) to obtain:  

 

( ) ( )2 2j
jAk kAµ

γ γφ φφ φΦ = = − . (4.17) 

 
We then use (4.17) to write (4.14) as: 
 

( )
2 3 000 0 05

0 5 3 2 4

50 5 5

2

5 0

1

1

k

j j

k

j jk j jk j

k

k

k

AG G G

G G G G A A A

G

k

k k

G G

γ

γ γ γ

φ φ
φ η φ φΜΝ

− 
  = − − 
  −

 + − Φ
 

= − −Φ 
  Φ −Φ 

. (4.18) 

 

 Now we focus on the middle term, expanded to 2 42 2
j

j
k

k
k jA A Ak Ak γ γ γ γη φ φ+− .  Working 

from (4.17) we now calculate: 
 

0 0 2 0 3 0 4 23; ; ;k j j k
k j j kA A A Ak k kγ γ γ γφ φ φ φΦ Φ = Φ Φ = − Φ Φ = − Φ Φ = . (4.19) 

 

So, we use (4.19) in (4.18), raise the indexes using (4.16) to obtain k
j

j
kA A A Aγ γ γ γ= , and write: 

 
00 0 05 0 0 0 0

0 5 0 2

50 5 55 0

2

1

1

k k

j jk j j jk j k j k j

k k

G G G

G G G G A

G G

k A

G
γ γη φΜΝ

 + Φ Φ Φ Φ Φ  −
  = + 
  −

 = Φ Φ − Φ Φ −Φ




 Φ −Φ 

. (4.20) 

 
Then, again taking advantage of the fact that 0 0Aγ = , while using 00

001 η η= =  and 55
551 η η= =  

we may consolidate this into the 2x2 format: 
    

0 0 2

5

5

5 55 5

G G A A
G

G G

kµν µ µν µ µ ν µ
γ γ

ν ν

νη
η

ΜΝ    − Φ Φ Φ Φ −Φ
= =   −Φ   

+
. (4.21) 

 
This is the inverse of (3.13) with gµν µνη= , and it is a good exercise to check and confirm that in 

fact, G G δΜΑ Μ
ΑΝ Ν=  . 

 

 The final step is to apply minimal coupling to generalize gη ΜΝ ΜΝ
֏ , while allowing for 

possible non-zero 5gµ , 5g ν , 5g µ  and 5g ν .  With this last step, (4.21) now becomes: 

 
0 0 2 5

5

5

5 55 55

k g

g g

G G g A A
G

G G

µν µ µν µ µ ν µ
γ

ν
γ

ν ν ν

µ
ΜΝ    − Φ Φ Φ Φ − Φ

= =   − Φ   

+
. (4.22) 
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The above along with (3.13) are the direct counterparts to the Kaluza-Klein metric tensors (1.1).  
This inverse, in contrast to that of (1.1), is manifestly non-singular.  All objects inside of (4.22) 

now have contravariant upper indexes, to match those of GΜΝ .  
 

Finally, we commented after (2.6) that it would have been possible to choose minus rather 
than plus signs in the tetrad / field assignments.  We make a note that had we done so, this would 
have carried through to a sign flip in all the 0

kε  and 0
kε  tetrad components in (2.12), it would have 

changed (2.14) to ( )0 0j jj jkA Akγ γµ γ γ γφγφΓ = − − , and it would have changed (3.8) to include 

5 5 0γ γφΓ = − .  Finally, for the metric tensors (4.22), all would be exactly the same, except that we 

would have had 5 5 5G G gµ µ µµ= = − Φ  and 5 5 5G G gµ µ µµ= = + Φ , with the vectors in (3.12) and 

(4.17) instead given by ( )2
jAkµ γφφΦ = −  and ( )2 jAkµ

γφφΦ = − .  We note this because in a 

related preprint by the author at [16], this latter sign choice was required at [14.5] in a similar 
circumstance to ensure limiting-case solutions identical to those of Dirac’s equation, as reviewed 
following [19.13] therein.  Whether a similar choice may be required here cannot be known for 
certain without calculating detailed correspondences with Dirac theory based on the ΜΓ  in (3.8).  

In the next section, we will lay out the fundamental equations of Dirac theory based on the Kaluza-
Klein metric tensors having now been made generally-covariant in five dimensions. 
 

5.  The Dirac Equation with Five-Dimensional General Covariance 
 
 Now that we have obtained a Dirac-Kaluza-Klein metric tensor GΜΝ  in (3.13) and its non-

singular inverse GΜΝ
 in (4.22) which are fully covariant across all five dimensions and which are 

connected to a set of Dirac operators ΜΓ  deduced in (3.8) via their anticommutator definitions 

(3.1), there are several additional calculations we shall perform which lay the foundation for deeper 
development.  The first calculation, which vastly simplifies downstream calculation and provides 
the basis for a Dirac-type quantum theory of the electron and the photon based on Kaluza-Klein, 
is to obtain the contravariant (upper-indexed) operators GΜ ΜΝ

ΝΓ = Γ  in two component form 

which consolidates the four spacetime operators µΓ  into a single four-covariant expression, then 
to do the same for the original ΜΓ  in (3.8). 

 
 As just noted, we may raise the indexes in the ΜΓ  of (3.8) by calculating GΜ ΜΝ

ΝΓ = Γ .  It 

is easiest to work from (3.8) together with the 3x3 form (4.20), then afterward consolidate to 2x2 

form.  So, we first calculate each of 0Γ , jΓ  and 5Γ  as such: 
 

( )( ) ( ) ( )

0 0 00 0 05
0 5

0
0 0 0 0

0 0

0 5 0

0 0 500

1

k
k

j
k

k

k k

k

jA A

A A

G G G G

k k

k k

γ γ

γ γ

γ γ γ γ γ γ

γ γ γ

φ φ φ

γ

Ν
Ν

+ Φ Φ Φ Φ

Γ = Γ = Γ + Γ + Γ

= + + + − Φ

+ Φ + Φ −

+

= Φ

, (5.1a) 
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( ) ( ) ( ) ( )0

0 5
0 5

2
0 0 0

2
5

0 50

j jk j k j k j
k k

j k j

j j j jk j
k

k k

j jk

A A A

G G G G

k k k

k

A

kA A

γ γ γ γ

γ γ

γ γ γ γ γφ γ

γ

η

γ γ

φ φ

γ

φ

Ν
ΝΓ = Γ = Γ

Φ Φ − Φ Φ − Φ

+ Φ + Φ

+ Γ + Γ

= + + + + +

− Φ=

, (5.1b) 

 

( ) ( ) ( )

5 5 50 5 55
0 5

5
0

0
0 5 0

k
j

k
k

j k k

G

kA

G G G

kAγ γγ γ γ γ γ γφ φ γφ

Ν
Ν

Φ −

Γ = Γ = Γ + Γ + Γ

= − + + + + =Φ
. (5.1c) 

 

To reduce the above, we have employed ( )2 jAkµ
γφ φΦ =  from (4.17) which implies that 

0k
kAγΦ =  via 0k kA A =  from (2.10).  We have also used j k

jk
jA A Aγ γ γη= = −  from (4.16), and the 

basic Dirac identities 0
0γ γ= , kk

k k
jγ γη γ= −=  and 5

5γ γ= .  We also include a term 
00 0 0kAγ γΦ =  in (5.1a) to highlight its four-dimensional spacetime covariance with (5.1b), 

notwithstanding that this term is a zero because the gauge symmetry has been broken to that of a 

photon with 0 0Aγ = .  Making use of this, we consolidate all of (5.1) above into the two-part: 

 

( )0 0 5 5k k kkA Aµ µ µ
γ

µ
γγ γ γ γ γΜ + Φ + Φ − ΦΓ = . (5.2) 

 
 As a final step to consolidate the Dirac matrices, we use the 2x2 consolidation of the metric 
tensor GΜΝ  in (3.13), with gµν µνη= , to lower the indexes in (5.2) and obtain a two-part 

G Ν
Μ ΜΝΓ = Γ .   Doing so we calculate: 

 

( )( )2 0

0 0

5
5

2 0 5 5

00
2

k

k

k

k kk

A A

G G G

kA A

kA

k k

Ak A kA

ν
µ µ µν µ

ν ν ν
µν γ µ γν γ γ

γ

ν
µ

µ µ γ µ γ µγ

γ γ γ γ γ

γ γ γ γ

η φ

Ν
ΝΓ = Γ = Γ + Γ

= + Φ

= −

+ + Φ + Φ − Φ

+ Φ Φ Φ + Φ

, (5.3a) 

 

( ) ( )

5
5 5 5 55

0 5 5
0 0

5 0 0

0 1kkkA A

G G G

k

ν
ν

ν ν ν ν
γ γν γ γ γ γ γ

γ γ

Ν
Ν

+ Φ + Φ − Φ +

Γ = Γ = Γ + Γ

= Φ + Φ Φ

= + Φ

. (5.3b) 

 

Above, we use the same reductions employed in (5.1), as well as 0A Aγν γ
ν = , 0Aγν

νΦ =  and 
2ν

ν φΦ Φ = .  We then consolidate this into the two-part: 

 

( )( )0 0 5 0 00 0kkA A Ak k kγ µ γµ µ µγγ γ γ γ γΜ + Φ Φ Φ + ΦΓ = − + Φ . (5.4) 

 

Making use of ( )2
jAkµ γφ φΦ ≡  in (3.12), again mindful that 0Aγ µ = , and noting that 

0 00 Ak γ µµ φ− =Φ Φ Φ =Φ  for the 0µ =  time component and 2
0 0 0k kA Ak kγ µ γµ φ− = −Φ Φ Φ =Φ  
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for the kµ =  space components, it is a good exercise to confirm that (5.4) does reduce precisely 

to ( )0 0 5 0k jk jk kA Aγ γγ γ γ γ γφ φγφΜΓ = + + +  obtained in (3.8).   Using (5.2) and (5.4) and 

reducing with ( )2 jAkµ
γφ φΦ = , 0 0

k kγ γ γ γ= − , 0kk
j jA Aγ γγ γ = , 0Aµ γ

µΦ =  and 0A Aγ µ γ
µ = , 

it is also a good exercise to confirm that:  
 

5γ γΜ Μ
Μ ΜΓ Γ = = . (5.5) 

 
And, it is a good exercise to confirm that (5.4) and (5.2) used in (1.3), see also (3.1), respectively 
reproduce the covariant and contravariant metric tensors (3.13) and (4.22). 
 
 Finally, having the upper-indexed (5.2) enables us to extend the Dirac equation governing 
fermion behavior into all five of the Kaluza-Klein dimensions, in the form of: 
 

( )2 0i c mcΜ
ΜΓ ∂ − Ψ =ℏ . (5.6) 

 

If we then define a five-dimensional energy-momentum vector ( )5cp cp cpµΜ =  containing the 

usual four-dimensional ( )cp E cµ = p , and given that (3.13) and (4.22) now provide the means 

to lower and raise indexes at will, we may further define a wavefunction 

( ) ( )0 exp /U p ip xΣ Σ
ΣΨ ≡ − ℏ  to include a Fourier kernel ( )exp /ip xΣ

Σ− ℏ  over all five 

dimensions ( )0 5x ct ctΣ = x .  These coordinates now include a timelike 
5 5x ct=  which is 

distinguished from the ordinary time dimension 
0 0x ct=  because as earlier reviewed, (3.13) has 

the tangent-space signature ( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − + .  And ( )0U pΣ  is a Dirac spinor which 

is now a function of all five components of pΣ  but independent of the coordinates xΣ
.  In other 

words,  ( )0 0U pΜ
Σ∂ = , which is why we include the 0 subscript.  With all of this, we can convert 

(5.6) from configuration space to momentum space in the usual way, merely in five dimensions 

employing the ΜΓ  in (5.2), to obtain: 

 

( ) ( )2
0 0mccp U pΜ Σ

ΜΓ − = . (5.7) 

 
 It is important to note that it is not possible to obtain the Dirac-type equations (5.6) and 
(5.7) from the usual Kaluza-Klein metric tensor and inverse (1.1), precisely because the tensors in 
(1.1) are not generally-covariant across all five dimensions.  And in fact, as we first deduced at 
(2.10), the Kaluza-Klein (1.1) are not even truly-covariant in the four spacetime dimensions alone 
unless we set the gauge field A Aµ γ µ֏  to that of a massless photon with only two transverse 

degrees of freedom.  Of course, it will be necessary as we progress from here to closely study the 

fifth component 5cp  of the energy momentum and the second time dimension 
5 5x ct= .  It is to be 

anticipated that the detailed development and study of the Dirac-Kaluza-Klein (DKK) equations 

(5.6) and (5.7) may provide one set of avenues for understanding precisely how the energy 5cp  
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and the time 
5t  are manifest in the natural world.  And as we shall see in Part II of this paper, the 

detailed study of the momentum space (5.7) will enable us to develop of complete theory of 
fermion masses, mixing angles and weak beta decays, fitting the experimental data of the standard 
model, and in a number of cases refining this data to substantially-greater accuracy. 
 

6.  The Dirac-Kaluza-Klein Metric Tensor Determinant and Inverse 

Determinant 
 

It is also helpful to calculate the metric tensor determinants.  These are needed in a variety 
of settings, for example, to calculate the five-dimensional Einstein-Hilbert action, see e.g. [17], 

which expressly contains the determinant as part of the volume element 4dg x−  in four 

dimensions and which we anticipate will appear as 5dG x−  in five dimensions given the timelike 

signature of the fifth dimension.  As we shall later elaborate in section 10, the Einstein-Hilbert 
action provides what is perhaps the most direct path for understanding the fifth dimension as a 
“matter” dimension along the lines long-advocated by the 5D Space-Time-Matter Consortium 
[18].  Moreover, the Einstein-Hilbert action, from which the Einstein equation is also derived as 
reviewed in [17], is also essential for calculating quantum mechanical path integrals which would 
effectively provide a quantum field theory of gravitation in five-dimensions.  For these reasons 
and perhaps others, it is helpful to have obtained this determinant. 
 

To calculate the determinant, we employ the block calculation method reviewed, e.g., at 

[19].  Specifically, for an invertible matrix which we have shown GΜΝ  to be via GΜΝ
 in (4.22), 

the determinant is calculated with: 
 

1G −
ΜΝ = −=

A B
A D CA B

C D
, (6.1) 

 
using the exact same blocks specified in (4.3) to calculate (4.2).  Keep in mind that the blocks in 
(4.3) are based on having used what we now understand to be the tangent Minkowski-space metric 

tensor g ηΜΝ ΜΝ= .  As we found following (4.3), 2 21 1φ φ−= + =A , so (6.1) simplifies to 

1G −
ΜΝ = −D CA B .  Moreover, we already found 

1−−D CA B  in (4.6).  So, all that we need do is 

calculate the determinant of this 3x3 matrix, and we will have obtained GΜΝ . 

 

From (4.6) which we denote as the matrix 1
ijm −−≡ D CA B , we write out the full 

determinant, substitute (4.6), then reduce to obtain: 
 

( ) ( )
11 22 33 12 23 31 13 21 32 13 22 31 12 21 33 11 23 32

2 2
1 1 2 2 3 3

41 1

ijm m m m m m m m m m m m m m m m m m m

A A A Ak A Aγ γ γ γ γ γφ φ

= + + − − −

= − + ++− = −
. (6.2) 
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Most of the terms cancel identically because of the equal number of + and – signs in the top line 
of (6.2).  The only remaining term besides –1 itself, contains 0j jA Aγ γ = , which is zero because 

of (2.10) which removed two degrees of freedom from the gauge field and turned it into A Aµ γ µ=  

for a massless, luminous photon.  So, we conclude, neatly, that 1 1−− = −D CA B .  Then, because 

1=A , that 1G ηΜΝ ΜΝ= − = .  Moreover, because 
11M M

−− =  for any square matrix, we 

likewise conclude that 1G ηΜΝ ΜΝ= − = .  Then, because the blocks in (4.3) are based on having 

used g ηΜΝ ΜΝ= , starting with the flat Minkowski space results just reviewed, then employing 

minimal coupling to generalize from gηΜΝ ΜΝ֏ , the complete five-dimensional determinant and 

its inverse are: 
 

1 1 1

1

1

G G G G g g

G G G G g g

η

η
ΜΝ ΜΝ ΜΝ ΜΝ

− ΜΝ ΜΝ − ΜΝ ΜΝ −

≡ ≡ ≡

≡

= = − =

= =≡= ≡−

֏

֏
. (6.3) 

 
In the above, the massless, luminous A Aµ γ µ=  and the scalar field φ  wash entirely out of the 

determinant, leaving the determinants entirely-dependent upon gΜΝ  which accounts for all 

curvatures other than those produced by Aγ µ  and φ .  In other words, even when 0Aγ µ ≠  and 

0φ ≠ , these do not figure into the determinants which depend only on gΜΝ . 

 
 For the determinant of the four-dimensional spacetime components Gµν  alone, we employ 

the exact same calculation used in (6.1), but now we split Gµν  into a 1x1 time “block” with 

1= =A A , a 3x3 space block with the same 2 2k A Aµν γ γµ νη φ= +D , and the 1x3 and 3x1 blocks 

0=B  and 0=C .   So (6.1) becomes Gµν = =A D D .  We next note that 
1−−D CA B  in (4.6) 

differs from D  in (4.3) merely by the term 4 2 Ak Aγνγ µφ− , which tells us that the calculation of D  

will produce the exact same result as (6.2) leading to 1Gµν µνη= − = , with the inverse following 

suit.   Consequently, after generalizing gµν µνη ֏  via minimal coupling, we find that in the four 

dimensions of spacetime alone: 
 

;G g G gµν µν
µν µν= = . (6.4) 

 
Here too, the massless, luminous A Aµ γ µ=  with two degrees of freedom and the scalar φ  are 

washed out entirely.  Note, comparing (6.3) and (6.4), that we have reserved the notational 

definitions G GΜΝ≡  and g gΜΝ=  for the five-dimensional determinants.  In four dimensions, 

we simply use the spacetime indexes to designate that (6.4) represents the four-dimensional 
spacetime subset of the five-dimensional metric tensor determinant and inverse. 
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7.  The Dirac-Kaluza-Klein Lorentz Force Motion 
 
 Kaluza-Klein theory which celebrates its centennial in 2019, has commanded attention for 
the past century for the very simple reason that despite its difficulties – all of which directly or 
indirectly stem from the degeneracy of the metric tensor (1.1) and its lack of five-dimensional 
covariance at the Dirac level, as will be reviewed in section 9 – it successfully explains Maxwell’s 
equations, the Lorentz Force motion and the Maxwell stress-energy tensor on an entirely 
geometrodynamic foundation.  This successful geometrodynamic representation of Maxwell’s 
electrodynamics – popularly known as the “Kaluza miracle” – arises particularly from the 

components 2
5 5 kG G Aµ µ µφ= =  of the metric tensor (1.1).  This is because the electromagnetic 

field strength F A Aµν µ ν ν µ= ∂ − ∂  is among the objects which appear in the five-dimensional 

Christoffel connections Μ
ΑΒΓɶ  (particularly in 5

µ
αΓɶ  as we shall now detail), and because these F µν  

then make their way into the geodesic equation of motion in a form that can be readily connected 
to the Lorentz Force motion, and because they also enter the Einstein field equation in a form that 
can be likewise connected to the Maxwell stress-energy tensor.  Therefore, it is important to be 
assured that in the process of remediating the various difficulties of the Kaluza-Klein metric tensor 
(1.1), the 5-covariant metric tensor (3.13) does not sacrifice any aspects of the Kaluza miracle. 
 

 As just noted, in (1.1) it is the 2
5 5 kG G Aµ µ µφ= =  metric tensor components which are 

responsible for the Kaluza miracle.  In (3.13), these components are replaced by 

5 5 5G G gµ µ µµ= = + Φ .  Using (3.12), this reduces to ( )2 2
5 5 0 jG G A Ak kµ µ µ γ γφ φ φΦ += = =  in the 

flat Minkowski tangent spacetime with g ηΜΝ ΜΝ= .  As such, the four-dimensional covariance of 

(1.1) in relation to the gauge fields is not changed.  But, besides there being an φ  in  the 05 50G G=  

terms, the other difference is that the gauge field A Aµ γ µ֏  is now that of a photon for which 
2

0 0kAγφ =  as a result of (2.10).  Because Aγ µ  still sits on the 5 5G Gµ µ=  metric tensor components, 

now as a photon and merely with an extra φ  in 05 50G G= , we anticipate that the Kaluza “miracle” 

should remain intact.  Our goal in this section is to show that this is so, as regards the Lorentz 
Force equation of classical motion for a charge in an electromagnetic field. 
 

For a five-dimensional metric defined by: 
 

2 2c d G dx dxΜ Ν
ΜΝΤ ≡  (7.1) 

 
the equation of motion obtained by minimizing the geodesic variation is: 
 

2 5 5

5 552

5

2
2

d dx dx dx dx dx dx dx dx

c d cd cd cd cd cd d cd

x

c cd

α β

αβ α

αΜ Β
Μ Μ Μ Μ
ΑΒ

Α

= −Γ −Γ − Γ − Γ
Τ Τ Τ Τ Τ Τ Τ Τ Τ

=ɶ ɶ ɶ ɶ  (7.2) 

 
just as in Kaluza-Klein theory, with connections of the “first” and “second” kinds specified by: 
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( )
( )

1
2

1
2

;G G G

G G G G G

Σ ΑΒ Β ΣΑ Α ΒΣ Σ ΑΒ

Μ ΜΣ ΜΣ
ΑΒ Β ΣΑ Α ΒΣ Σ ΑΒ Σ ΑΒ

Γ = ∂ + ∂ − ∂

Γ = ∂ + ∂ − ∂ = Γ

ɶ

ɶ ɶ
, (7.3) 

 

likewise, just as in Kaluza-Klein theory.  One may multiply (7.2) through by 
2 2/d dτΤ  to obtain: 

 
2 5 5

5 552

5

2
2

d dx dx dx dx dx dx dx dx

c d cd cd cd cd cd cd c

x

d cd

β

α

α α

β ατ τ τ τ τ τ τ τ τ

Μ Β
Μ Μ Μ

Β

Α
Μ

Α= −Γ −Γ − Γ − Γ=ɶ ɶ ɶ ɶ . (7.4) 

  
This is the equation of motion with regard to the ordinary invariant spacetime metric line element 
dτ , with this four-dimensional proper time defined, using (3.13) and (3.12), by: 
 

2 2 2 2c d G dx d Ax g dx dx k dx dxAµ ν µ
γ µ γν

ν µ ν
µν µντ φ≡ = + . (7.5) 

 

The space acceleration with regard to proper time τ  is then given by 2 2/jd x dτ  for the 

1,2,3jΜ = =  components of (7.4).  If we then multiply (7.4) through by 0 22 /d dtτ  (mindful again 

that we now need to distinguish ordinary time 0t  from time 5t  in the second time dimension), we 

obtain the space acceleration 02 2/jd x dt  with regard to the ordinary time coordinate. 

 
Aside from minor notational changes intended to distinguish four- from five-dimensional 

objects, the above (7.1) through (7.5) are exactly the same as their counterparts in Kaluza-Klein 
theory, and they are exactly the same as what is used in the General Theory of Relativity in four 
spacetime dimensions alone.  The only difference is that Kaluza-Klein theory uses the metric 
tensor (1.1) which has a spacelike fifth dimension, while the present DKK theory uses the metric 
tensor (3.13) which as a timelike fifth dimension.  But the main reasons we are reviewing the 
equation of five-dimensional motion (7.4) is to be assured that the Kaluza miracle is not 
compromised by using the different metric tensor (3.13) rather than the usual (1.1). 
 

As noted above, the connections 5α
ΜΓɶ  are the particular ones responsible for the Kaluza-

Klein representation of electrodynamics, whereby 5
µ
αΓɶ  governs accelerations in the four spacetime 

dimensions and 5
5αΓɶ  governs the fifth-dimensional acceleration.  So, let’s examine 5

µ
αΓɶ  more 

closely.  Using (3.13) and (4.22) in (7.3) along with the symmetric G GΜΝ ΝΜ=  we obtain: 

 

( ) ( )
( ) ( ) ( ) ( )( )
( ) ( )

0 0 2

51 1 1
5 5 5 5 5 5 5 552 2 2

1
5 0 0 5 5

2

5
0

1
0

2

552

G G G G G G G G G G

k kg A A g A A g

gg

gσ

µ µ µσ µ
α α α α σα α σ σ α α

µσ µ µ σ
γ γ σα γ σ γ α α σ σ α

µ
α

σ α

µ

Σ
Σ Σ ΣΓ = ∂ + ∂ − ∂ = ∂ + ∂ − ∂ + ∂

= − Φ Φ Φ Φ ∂ + Φ Φ + ∂ − ∂

+ − Φ ∂ +

+ + Φ + Φ

Φ Φ

ɶ

. (7.6) 

 

For a flat tangent space G ηΜΝ ΜΝ=  with ( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  thus 0Gα ΜΝ∂ =  this 

simplifies to: 
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( ) ( )( ) ( )1 1
5 5 0 02 2

0 0 2 2
0 0k kA A A Aµ µσ µ µ σ µ

α γ γ γ σ γ α σ α
σ

σ ααηΓ = − Φ Φ Φ Φ ∂ Φ Φ + ∂ − ∂+ Φ Φ − ∂ ΦΦ Φɶ . (7.7) 

 
 What is of special interest in (7.7) is the antisymmetric tensor term α σσ α∂ − ∂Φ Φ , because 

this is responsible for an electromagnetic field strength F A Aγ µν µ γν ν γ µ= ∂ − ∂ .    To see this, we 

start with (3.12) in the form of ( )2 2
0 jA kAkµ γ γφ φ φ=Φ + , taking advantage of 0 0Aγ =  to display 

the spacetime covariance of Aγ µ .  We then calculate the antisymmetric tensor in (7.7) in two 

separate bivector parts, as follows: 
 

( ) ( )
( ) ( )

( )

2 2
0 0 0

2
0 0 0 0

2
0 0

0

0

2

2

k k k

k k k k k

k k k

k

k

k k

k k

k k

A A

A A A A

F A A

γ γ

γ γ γ γ

γ γ γ

φ φ φ

φ φ φ φ

φ φ φ φ

Φ Φ =

=

∂ − ∂ ∂ − ∂ +

∂ − ∂ ∂ −+

= −

∂ − ∂

∂ − ∂ − ∂

, (7.8a) 

 

( ) ( )
( ) ( )

( )

2 2

2

2

2

2

j k j k j

j k j

k j k

k k j

jk k

j k

j k j

A A

A A A A

k k

k k

kF k A Aγ

γ γ

γ γ γ γ

γ γ

φ φ

φ φ φ

φφ φ

∂ − ∂ ∂ − ∂

∂ ∂ ∂ −

Φ Φ =

= − + ∂

∂ − ∂= −

. (7.8b) 

 
We see the emergence of the field strength tensor F A Aγ µν µ γν ν γ µ= ∂ − ∂  in its usual Kaluza-

Klein form 2kFγ µνφ , modified with a γ  subscript to indicate that this arises from taking F µν
γ  for 

a photon A ν
γ , which is a point to which we shall return momentarily.  The only term which bars 

immediately merging both of (7.8) in a generally-covariant manner is the gradient kφ−∂  in (7.8a).  

For this, noting that with reversed indexes 00j j∂ − ∂Φ Φ  (7.8a) will produce a gradient jφ+∂  for 

the corresponding term, we define a four-component ( )1Iµ ≡ 0  and use this to form: 

 

( ) ( ) ( )00 1
1 0

k

k
j j

I I I Iµ ν µ ν µ ν ν µ

φ
φ φ φ φφ φ

−∂     
= − ∂ = ∂ − ∂ = − ∂ − ∂     ∂ ∂     

0
0 0

. (7.9) 

 
We then use this to covariantly combine both of (7.8) into: 
 

( ) ( )
( ) ( )( )

2

2

2

2 2

v

v

kF A A Ik

k

I

kF I A I kA

ν ν νµ µ γ µ γ µ γ µ µ ν ν µν

γ µ µ γ µ ν ν γ µν

φ φ φ

φ φ

φ

φ φ

∂ − ∂ ∂ − ∂ − ∂ − ∂

− + ∂ −= +

= −

∂

Φ Φ
 (7.10) 

 

The newly-appearing vector ( )2 1 2 jkA AkIµ γ µ γφ φ+ =  which we represent by now removing 

0 0Aγ = , is itself of interest, because the breaking of the gauge symmetry in section 2 caused 

0 0Aγ =  to come out of the photon gauge vector which only has two transverse degrees of freedom.  

But in this new vector ( )1 2 jkAγφ , the removed 0 0Aγ =  is naturally replaced by the number 1, 
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which is then included along with the remaining photon components jAγ  multiplied by 2 kφ .  

Again, the very small constant k which Kaluza-Klein theory fixes to (1.2) has dimensions of 
charge/energy, φ  is taken to be dimensionless, and so 2 jkAγφ  is dimensionless as well.  Compare 

also ( )2
jAkµ γφ φΦ = , then observe that ( )2 2 AkIkAµ γ µ µ γ µφ φ φΦ ++ = . 

 
 Most importantly, we now see in (7.10) that the field strength vFγ µ  which is needed for the 

Lorentz Force motion and the Maxwell tensor, does indeed emerge inside of 5
µ
αΓɶ  as seen in (7.7) 

just as it does from the usual Kaluza-Klein metric tensor (1.1), with the identical coefficients.  But 

there is one wrinkle:  F µν
γ  is the field strength of a single photon, not a general classical F µν  

sourced by a material current density ( )Jν ρ= J  with a gauge potential ( )Aµ φ= A  which can 

always be Lorentz-transformed into a rest frame with ( )0Aµ φ= 0  with  0φ being the proper 

potential (note: this is a different φ  from the Kaluza-Klein φ ).  In contrast, the photon A µ
γ  in 

(2.11) can never be placed at rest because the photon is a luminous, massless field quantum. 
 
 However, this can be surmounted using gauge symmetry, while making note of Heaviside’s 
intuitions half a century before gauge theory which led him to formulate Maxwell’s original theory 
without what would later be understood as a gauge potential.  Specifically, even though the gauge 

symmetry is broken for A µ
γ  and it is therefore impossible to Lorentz transform the luminous A µ

γ  

into a classical potential ( )Aµ φ= A  which can be placed at rest, or even to gauge transform 

A Aµ µ
γ →  from a luminous to a material potential because its gauge has already been fixed, the 

same impossibility does not apply to gauge transformations of F A Aµν µ ν ν µ
γ γ γ= ∂ − ∂  obtained 

from this A µ
γ .  This is because F A Aγ µν µ γν ν γ µ= ∂ − ∂  is an antisymmetric tensor which, as is well-

known, is invariant under gauge transformations qA qA qA cµ µ µ µ′→ ≡ + ∂ Λℏ , where q is an 

electric charge and ( ),tΛ x  is an unobservable scalar gauge parameter.  To review, if we gauge 

transform some 
] ;;[ ] ;[ ; ,qF q A q q cF A qFµν µ ν µν µ ν νµ µν′  = ∂ = ∂ ∂ → + ∂ Λ =ℏ , the gauge 

transformation washes out because the commutator 
;; 0, νµ ∂ ∂ Λ =  even in curved spacetime.  

This is because the covariant derivative of a scalar is the same as its ordinary derivative, so that 

the covariant derivative ; ; ;
σ

µ ν µ ν µ ν µν σ∂ ∂ Λ = ∂ ∂ Λ = ∂ ∂ Λ − Γ ∂ Λ , with a similar expression under 

µ ν↔  interchange, and because σ σ
µν νµΓ = Γ  is symmetric under such interchange. 

 

So even though we cannot Lorentz transform A µ
γ  into Aµ , and even though the gauge of 

A µ
γ  is fixed so we cannot even gauge transform A µ

γ  into Aµ , we may perform a gauge 

transformation F Fγ µν µν→  precisely because the field strength (which was central to Heaviside’s 

formulation of Maxwell in terms of its bivectors E and B) is invariant with respect to the gauge 
that was fixed to the photon in (2.11) as a result of (2.10).  Another way of saying this is that 
F A Aγ µν µ γν ν γ µ= ∂ − ∂  for a photon has the exact same form as F A Aµν µ ν ν µ= ∂ − ∂  for a materially-
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sourced potential which can be placed at rest, and that Fγ µν  enters into Maxwell’s equations in 

exactly the same form as Fµν .  The difference is that Fγ µν  emerges in source-free electrodynamics 

where the source current 0Jν =  while Fµν  emerges when there is a non-zero 0Jν ≠ . 

 

So irrespective of this A Aµ µ
γ=  symmetry breaking which arose from (2.10) to ensure 

Dirac-level covariance of the Kaluza-Klein metric tensor, the luminous photon fields Fγ µν  

emerging in (7.7) via (7.10) can always be gauge-transformed using F Fµν µν
γ →  into the classical 

field strength of a classical materially-sourced potential ( )Aµ φ= A .  Moreover, once we gauge 

transform F Fµν µν
γ → , the classical field strength F µν  will contain innumerably-large numbers 

of photons mediating electromagnetic interactions, and so will entirely swamp out the individual 

A µ
γ  which represent individual photons.  This transformation of F Fµν µν

γ →  by taking advantage 

of gauge symmetry, following by drowning out the impacts of individual photons as against 
classical fields, is exactly what the author did in Sections 21 and 23 of [16] to obtain the 
empirically-observed lepton magnetic moments at [23.5] and [23.6] of that same paper.   

 
So, we now substitute (7.10) with a gauge-transformed v vF Fγ µ µ→  into (7.7), to find that: 

 

( )
( ) ( )
( ) ( ) ( )( )

( )

0 0 2

0 0 2 2

21
5 2

1

0 0 2

0 0

5 0 02

1
2

1
2

2 2

A A F

A A A A

A

k k

k

A I A

k

I Ak k k

µ µσ µ µ σ
α γ γ ασ

µσ µ µ σ
γ γ γ σ γ α

µσ µ µ σ
γ γ α γ α σ σ γ σ α

µ

σ

σ

σ

α

η φ

η

η φ φ φ

Γ = − Φ Φ Φ Φ

+ − Φ Φ Φ Φ ∂ Φ Φ

− − Φ Φ Φ Φ + ∂ − + ∂

− Φ ∂

+

+

+

Φ Φ

ɶ

. (7.11) 

 
From here, further mathematical reductions are possible.  First, we noted earlier that 
i A q Aα γ µ α γ µ∂ =ℏ  for the photon field in (2.11), which we extend to five dimensions as 

i A q Aγ µ γ µΑ Α∂ =ℏ  by appending a fifth dimension in the Fourier kernel in (2.11a) just as we did for 

the fermion wavefunction following (5.6).  Thus, we find 5 5 0Ai A q AAσ σ
γ σ γ γ σγ ∂ = =ℏ  and so may 

set 5 0AAγ
σ

γ σ∂ = .  For similar reasons, see (4.17) and recall that 0 0Aγ = , we set 5 0Aσ
γ σΦ ∂ = .  

We also clear any remaining 0A Aγ
σ

γ σ =  and 0Aσ
γ σΦ = , and use 0A Iγ

σ
σ =  because 0 0Aγ = .  

Next, because 0 0Aγ = , wherever there is a remaining Aγ σ  summed with an object with an upper 

σ  index, we set 1,2,3kσ = =  to the space indexes only.  We also use 00
0 1I Iµσ

ση η= = .  And we 

substitute 0
0 φΦ = Φ =  throughout.  Again mindful that i A q Aγ µ γ µΑ Α∂ =ℏ , we also use 

j jk
kA Aγ γη=  from (4.16) to raise some indexes.  Finally, we apply all remaining derivatives, 

separate out time and space components for any summed indexes still left except for in Fασ , and 

reconsolidate.  The result is that strictly mathematically, (7.11) reduces to: 
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( )
( )
( )( )
( )( )

2 21
5 2

01
2

01
02

2 21
2

2 21 1
5

2

2

2 2 2
5 52 2

2

2

2

k
k

k k
k

k

k k

k

k

k

A A F

A

I A

A A Ak k

k k

I A

A A kA A A A

µ µσ µ µ σ
α γ γ ασ

µ µ µ
γ α

µ µ
α γ α

µ µ µ
γ γ γ α γ α

µ µ µ
γ γ α γ

σ

γ α γ γ α

η φ φ

η η φ

η φ

η φ φ φ

φ φ φ

φ φ

φ φ

φ

φ

Γ = − Φ Φ

+ + − Φ ∂

− + Φ + ∂

− − + Φ + ∂

+ ∂ ∂ ∂

+

+ +

ɶ

. (7.12) 

 
 Now, it is the upper µ  index in 5

µ
αΓɶ  which, when used in the equation of motion (7.4), 

will determine the coordinate against which the acceleration is specified in relation to the proper 
time interval dτ .  So, we now separate (7.12) into its time and space components, as such: 
 

( )
( ) ( ) ( ) ( )

0 0 21
5 2

31 1 1
02 2 2

2 21 1 2 2k
k

F

I A A

k

Ak k kI

σ σ
α ασ

α α γ α γ α γ α

η φ φ

φ φ φφ φ φ φ φ

Γ = Φ

+ − ∂ − + + ∂ − + ∂

+ɶ

, (7.13a) 
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( )( )( )
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j

j
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k

j j j
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k
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A

A I A

A A I A

A A A

k k
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k k kA A A

σ σ
α γ γ γ ασ

γ α

γ α γ α

γ γ α γ α

γ γ α γ α γ γ γ

σ

α

η φ φ φ

φ

φ φ

η φ φ φ

φ φ φ φ

φ φ

φ φ

φ

Γ = − Φ

+ − ∂

− + ∂

− − + ∂

+ ∂ ∂ ∂

+

−

+ +

ɶ

. (7.13b) 

 
It is noteworthy that all terms in (7.12) containing the fifth dimensional derivative 

5 5
5 / /x c t∂ = ∂ ∂ = ∂ ∂  also contain A µ

γ  and so drop out entirely from (7.13a) because 0 0Aγ = . 

 
 Now, as previewed prior to (7.11), Aγ α  is the field for a single photon, which is 

inconsequential in physical effect compared to Fασ  which has now been gauge-transformed to a 

classical electric and magnetic field bivector consisting of innumerable photons.  This is to say, if 
there is some interaction occurring in a classical electromagnetic field Fασ , a single photon more, 

or a single photon less, will be entirely undetectable for that interaction, akin to a single drop of 
water in an ocean.  Moreover, the constant k is very small, so that the dimensionless kAγ α  will be 

very small in relation to the numbers 1±  contained in µνη .  With this in mind, we may set 0Aγ α ≅  

as an extraordinarily-close approximation to zero in all terms which contain Aγ α  in (7.13).  This 

includes for (7.13a), only retaining 0 φΦ =  in 2 0 2
0k kF Fσ

ασ αφ φ φ φΦ = Φ .  And in (7.13b) we further 

use jk
k jη ∂ = −∂ .  So now, both of (7.13) reduce to the much-simpler: 

 

( ) ( ) ( )0 2 21 1 1
5 0 02 2

2 2
21 11 F Ikα α α αφφ φ φ φ φΓ = + − ∂ − + ∂+ɶ , (7.14a) 
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21 1
5 2 2

j j
jFk Iα α α φφΓ = + ∂ɶ . (7.14b) 

 
 Contrasting, we see that the former contains 0Fα  while the latter contains jFα  with a raised 

index.  To properly compare these, we need to carefully raise the time index in (7.14a).  To do this, 

we again recall from after (2.11) that i A q Aα µ α µ∂ =ℏ , 0A qγ
α

α = , and 0j
jA q = , which also means 

that 0Aγ
α

α∂ =  and 0j
jAγ ∂ = , thus 0j

jΦ ∂ =  when α∂  operates on Aγ µ .  Recall as well that 

0A Aσ
γ γ σ =  and 0Aσ

γ σΦ = .  So, working from F A Aγ σν σ γ ν ν γ σ= ∂ − ∂  for an individual photon and 

using (4.22) with g µν µνη= , we first obtain, without yet fully reducing: 

 

( ) ( )F G F G A G A A Aµ µσ µσ µσ
γ ν γ σν σ γν ν γ σ σ γ ν

µσ µ σ µσ µ σ
ν γ ση η= = ∂ − ∂ = + ∂ − Φ ∂Φ+Φ Φ . (7.15) 

 
Then, extracting the electric field bivector we obtain the field strength with a raised time index: 
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( ) ( )
( )( ) ( )
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21 1
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γν γν ν γ ν γ
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φ φ

Φ Φ Φ Φ
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= ∂ + ∂ − ∂ + ∂

= ∂ + ∂ − ∂ + ∂

= + ∂ +

Φ

−

Φ

=

Φ

∂

. (7.16) 

 
Using the gauge transformation v vF Fγ µ µ→  discussed prior to (7.11) to write this as 

( ) 0
20 1F Fα αφ= + , then using this in (7.14a), now reduces the equation pair (7.14) to: 

 

( ) ( )0 21 1 1
5 02

0 2
2 2

21 1 IkFα α αα φ φ φ φφΓ = + − ∂ − + ∂ɶ , (7.17a) 

 
21 1

5 2 2

j j
jFk Iα α α φφΓ = + ∂ɶ . (7.17b) 

 

These clearly manifest general spacetime covariance between the 1
2

02kFαφ  and 21
2

jkFαφ  terms.   

 
At this point we are ready to use the above in the equation of motion (7.4).  Focusing on 

the motion contribution from the 5α
ΜΓɶ  term, we first write (7.4) as: 

 
2 5

52 2
2 ...

d dx dx

c d cd c

x

d

α

ατ τ τ

Μ
ΜΓ= +− ɶ  (7.18) 

 
with a reminder that we are focusing on this particular term out of the three terms in (7.4).  We 
then separate this into time and space components and use (7.17) with F Fµ µ

α α= −  and 

( )1Iα = 0 .  Importantly, we also use the differential chain rule on the φ  terms.  We thus obtain: 
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 (7.19a) 
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 (7.19b) 

 
In both of the above, for the scalar we find a derivative along the curve, /d cdφ τ .  Note further 

that in (7.19b) this is multiplied by the inverse of 0/ /j jdx v cdx =  where 0/j jv dx dt=  is an 

ordinary space velocity with reference to the ordinary time 0t  (versus the fifth-dimensional 5t ).  
In contrast, in (7.19a) the objects covariant with this velocity term simply turned into the number 

1 via the chain rule.  Given its context, we understand jv  to be the space velocity of the scalar φ .  

 
 This raises an important question and gives us our first piece of solid information about the 
physical nature of the Kaluza-Klein scalar φ :  Without their /d cdφ τ  terms, (7.19) both easily 

consolidate into ( )2 2 2 2 5 // /d c d dx cd dxx k cdF µ α
α

µ τ φ τ τ=  following which we can make the 

usual “Kaluza miracle” association with the Lorentz Force law.  However, with this term, if φ  is 

a material field or particle which can be Lorentz transformed to a rest frame with 0jv = =v , then 
we have a problem, because the /d cdφ τ  term in (7.19b) will become infinite because 

0 1// jdx dx = =v ∞ , causing the space acceleration to likewise become infinite.  The only way to 
avoid this problem, is to understand the scalar φ  as a luminous entity which travels at the speed of 

light and which can never be Lorentz transformed to a rest frame, just like the photon.  More to 
the point in terms of scientific method: we know from observation that the Lorentz force does not 
become infinite nor does it exhibit any observable deviations from the form 

( )2 2 2 2 5 // /d c d dx cd dxx k cdF µ α
α

µ τ φ τ τ= .  Therefore, we use this observational evidence in 

view of (7.19b) to deduce that the Kaluza-Klein scalar φ  must be luminous.  This also provides 

some additional fundamental perspective on Kaluza-Klein theory: 
 
 Referring back to the Kaluza-Klein metric tensors (1.1) and the DKK metric tensors 
derived here in (3.13) and (4.22), and to the discussion in the preface, we note again that the 
ingredients of the usual metric tensor (1.1) are the three fields gµν , Aµ  and φ , which, respectively 

are a rank-2 symmetric tensor, a vector, and a scalar, all in ordinary four-dimensional spacetime.  
In quantum field theory, gµν  is associated with the spin-2 graviton, which is massless and 

luminous.  But there is no a priori requirement that Aµ  or φ  be massless and luminous.  This 

changed for Aµ  at (2.10), however, when the requirement for Dirac-level covariance merely in 

ordinary spacetime required us to set A Aµ γ µ֏  for a massless, luminous, spin-1 photon.  Now, to 
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bar (7.19b) from producing an infinite space acceleration when the scalar φ  is at rest, we are also 

required to have φ  become a massless, luminous spin-0 scalar boson which can never be at rest.  

The upshot, is that all three of the fields gµν , Aµ  and φ  in the DKK metric tensors (3.13) and 

(4.22) must now be massless and luminous, with respective boson spins 2, 1 and 0.  Consequently, 
the DKK metric tensors are constructed entirely from massless, luminous, bosonic fields. 
 
 To implement this luminosity for φ , we first write the four-dimensional spacetime metric 

for a luminous particle such as the photon, and now also the scalar φ , using mixed indexes, as 
2 0

00 j
jd dx dx dx dxτ= = + .  This easily is rewritten as 0

0
j

jdx dx dx dx= −  and then again as: 

 
0

0

j

j

dxdx

dx dx
= − . (7.20) 

 
This is the term of interest in (7.19b).  Now, we want to raise indexes on the right side of (7.20) 

but must do so with (3.13).  Using 0 φΦ =  and gµν µνη=  as well as 0 0Aγ =  and A Aµ µν
γ γνη=  

from (4.16), we find that: 
 

( )
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. (7.21) 

 
Using the above in (7.20) then yields the luminous particle relation: 
 

0
2 2 2

0

2

0
ˆ ˆ

j k
j k

j

j k j kdx dx dx
k u k u

dx x
A A

x
A

d
A

d
γ γ γ γφφ= − = − , (7.22) 

 

were we introduce a unit vector 0ˆ /j ju dx dx=  with ˆ ˆ 1j ju u =  pointing in the direction of the 
luminous propagation of φ . 

 
 Inserting (7.22) for a luminous scalar into (7.19b) which first highlighted why the scalar 
must be luminous, then produces: 
 

2 5 5 5
2

2

2 2

2
ˆ ˆ

j
j j kj kd dx dx dx d dx d

F A A
c d cd cd cd

x
k u k u

cd cd cd

α

α γ γφ
τ τ τ τ τ τ τ

φ φφ−= +  (7.23) 

 
As we did starting at (7.14) we then set 0Aγ α ≅  because the gauge vector for a single photon will 

be swamped by the innumerable photons contained in the classical field strength jF α .  As a result, 

using (7.23) with 0Aγ α ≅ , we find that (7.19) together now become: 

 
2 0 5 5

2

2 2

0 22
d dx dx dx d

c d cd cd

x
k F

cd cd

α

αφ
τ τ

φ
τ τ

φ
τ

= +  (7.24a) 
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2 5 5

2

2 2
ˆ

j
j jd dx dx dx d

F
c d c

x
k

cd cd cd
u

d
α

α

φ
τ τ τ τ

φ
τ

−=  (7.24b) 

 
In (7.24b), φ  is now made luminous, and there can no longer be an infinite space acceleration. 

 
 Finally, we are ready to connect this to the Lorentz Force motion, which we write as: 
 

2

2 2 2

d x q dx
F

c d mc cdt

µ α
µ

ατ
= . (7.25) 

 
We start with the space components in (7.24b) combined with jµ =  in (7.25) and use these to 

define the association: 
 

2 5 5
2

2 2 2
ˆ j

j
j jd x dx dx dx d q dx

F F
c d cd cd cd cd mc d

k u
c t

α

α

α

αφ
τ τ τ τ

φ
τ

− ≡= . (7.26) 

 
For the moment, let us ignore the term /d dφ τ  to which we shall shortly return, and focus on the 

term with jF α .  If this is to represent Lorentz motion insofar as the jF α  terms, then factoring out 

common terms from both sides, we obtain the following relation and its inverse: 
 

5 5 5 5
2 2

2 2 2
;

dx dt q dx dt q

cd d mc c
k k

d ckd m
φ φ

τ τ τ τ φ
= = = = . (7.27) 

 

This is why electric charge – and to be precise, the charge-to-rest energy ratio 2/q mc  – is 

interpreted as “motion” through the fifth dimension.  However, because of the timelike fifth 
dimension in the metric tensor (3.13), the charge-to-energy ratio of a charged material body is no 
longer interpreted as spatial motion through an unseen, tiny curled-up fourth space dimension.  

Rather, it is understood as being related to rate of time flow 5 /dt dτ  in a second time dimension, 

with a factor 2kφ  originating in the 5 5G Gµ µ=  components of the usual Kaluza-Klein metric tensor 

(1.1) setting the proportionality.  
 

 Next, we substitute the above for 5 /dx cdτ  in each of (7.24) and reduce to obtain: 
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This does indeed reproduce the Lorentz motion, except for the /d dφ τ  term in each.  Now, because 

there is no observed deviation for the Lorentz motion, one might suppose that the luminous φ  is 

an extremely small field 0φ ≅  with / 0d dφ τ ≅ , in order to minimize the physical impact of these 

final terms to the point that it is not observable.  But this is problematic for two reasons:  First, if 

k turns out to be the extremely small ratio ( )22 / / ek c G k=  given by (1.2) as it is in Kaluza-

Klein theory – and there is no reason to believe that k will turn out otherwise here – then the 1/k in 
both of (7.28) is an extremely large coefficient, which means that /d dφ τ  would have to be even 

more extraordinarily-small.  Second, even if / 0d dφ τ ≅  in part because we make φ  extremely 

small, the presence of 21/ φ  in (7.28b) still causes a problem, because an extremely small 0φ →  

implies an extremely large 21/ φ → ∞ .  Ironically, the 21 / φ  which causes GΜΝ → ∞  in the usual 

Kaluza-Klein metric tensor (1.1) for very small φ  – which problem was solved by the non-singular 

(4.22) – nevertheless still persists, because of its appearance in (7.28b).  And it persists in the form 
of a very large yet unobserved impact on the physical, observable Lorentz motion.  The only 
apparent way to resolve this, is to require that / 0d dφ τ = .  If that is the case, then (7.28) both 

condense precisely into the Lorentz Force motion.   
 

Now, on first appearance, the thought of requiring that / 0d dφ τ =  seems to suggest that φ  

must be a constant field with no gradient, which as pointed out in [11] imposes unwarranted 
constraints on the electromagnetic field.  Indeed, this also defeats the purpose of a “field” if that 
field has to be constant.  But in (7.28), /d dφ τ  is not a gradient nor is it a time derivative.  Rather, 

it is a derivative along the curve with curvature specified by the metric tensor (2.15), and it is 

related to the four-gradient µφ∂  by the chain rule ( ) ( )/ // x dd udxd µ µ µ
µφ φ φτ τ= ∂ = ∂∂  with the 

usual four-velocity /u dx dµ µ τ≡ .   Moreover, we have now learned at (7.19b) that φ  must be a 

massless, luminous scalar field, which requirement has been embedded in (7.28b).  So, this 
derivative along the curve will always be taken in frames of reference which travel with the 
luminous field.  Moreover, these luminous reference frames can never be transformed into the rest 
frame – or even into a relatively-moving frame – of a material observer.  As a result, it is indeed 
possible to have / 0d dφ τ =  in the luminous reference frame “along the curve” simultaneously 

with a non-zero gradient 0µφ∂ ≠  defined from the coordinates of a material observer.  As we now 

shall elaborate, this solves the “constant scalar field / zero gradient” problems which have long 
plagued Kaluza-Klein theory, and teaches a great deal of new intriguing information about the 
physical properties of the scalar field φ .  Indeed, what we shall now learn about the Kaluza-Klein 

scalar φ  by requiring the derivative along its luminous propagation curve to be / 0d dφ τ = , will 

enable us to connect this luminous φ  to the massive Higgs boson h of the standard model, and in 

turn, will lay the foundation for the theory of fermion masses in Part II of this paper. 
 

8.  Luminosity and Internal Second-Rank Dirac Symmetry of the Dirac-

Kaluza-Klein Scalar 
 
 In view of the foregoing, we take the final step of connecting (7.28) to the observed Lorentz 
Force motion by formally setting the derivative along the curve for φ  to zero, thus: 
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0
dx

x

d

cd cd

µ

µτ τ
φ φ∂

∂
= = . (8.1) 

 
With this, both of (7.28) immediately consolidate into and become synonymous with the Lorentz 
Force motion (7.25), and we achieve our goal of showing that the DKK metric tensors (3.13), 
(4.22) do indeed maintain the Kaluza “miracle” as regards the Lorentz Force motion of classical 
electromagnetism.  From the standpoint of scientific method, we can take (7.28) together with 
(7.25) as empirical evidence that (8.1) must be true.  Now, let’s explore what (8.1) – if it really is 
true – teaches us about the physical properties of φ . 

 
 To start, let us square (8.1) and so write this as: 
 

2

0
dx dx dx dx

x x

d

cd cd cd cd cd

µ ν µ ν

µ ν µ ντ τ
φ

τ
φ

τ
φ φ

τ
φ∂ 

  ∂ ∂
= ∂



∂ = ∂ = . (8.2) 

 
Now, the four-dimensional spacetime metric (7.5) was formulated using the DKK metric tensor 
(3.13), and also uses (2.12).  Next, let’s apply (7.5) with gµν µνη=  to a luminous particle which 

by definition has 2 0dτ = , as such:  
 

2 2 2 20 c d G dx dx dx dx k x xA dA dµ ν µ ν µ ν
µν µν γ µ γντ η φ= = = + . (8.3) 

 

We already used a variant of this to obtain (7.22).  Then, also appending a 2φ  and using an overall 

minus sign which will become useful momentarily, we restructure this to: 
 

( )2 2 2 0
dx dx

k
c

A
d

A
cd

µ ν

γ µ γνµνη φ φ
τ τ

− + = . (8.4) 

 
 The above (8.4) describes a luminous particle in a five-dimensional spacetime with the 
metric tensor (3.13).  So, we can use this luminosity to supply the zero for the squared derivative 
along the curve in (8.2) if, comparing (8.2) and (8.4), we define the relation: 
 

( )2 2 2 2/ 0k A Aµ ν γ µ γνµνφ φ η φ φ≡∂ ∂ − + ≠Ż . (8.5) 

 
Above, / 2λ π≡Ż  is a reduced wavelength of the scalar φ , needed and therefore introduced to 

balance the 21/ length  dimension of µ νφ φ∂ ∂  with the dimensionless 2 2G k A Aµν γµ µ νν γη φ= + .  To 

be clear: by (8.5) we are requiring the gradient µφ∂  (squared) to be non-zero from a material 

reference frame, then using this together with (8.4) to simultaneously allow (8.2) for /d dφ τ  

(squared) to be zero from the luminous reference frame.  Now, all we need to do is determine a 
first-order (not squared) µφ∂  which satisfies (8.5). 
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  What becomes apparent on close study of (8.5) is that there is no way to isolate a first-
order µφ∂  unless we make use of the Dirac gamma operators in a manner very similar to what 

Dirac originally employed in [13] to take the operator “square root” of the Klein-Gordon equation.  
And in fact, the operator square root we need to take to separate out a linear µφ∂  from (8.5) is 

precisely the ( )0 0j j j jA kAk γ γµ γ γ γ γΓ = + +  we found in (2.14) which satisfy (2.1) with 

gµν µνη= , that is, which satisfy { } 21
2

2, Ak Aµν µ νµ ν η φΓ Γ = + .  Therefore, we may now use these 

µΓ  to take the square root of (8.5), where we also use 1i− = −  choosing i−  rather than i+  for 

reasons which will become apparent at (8.10), to obtain: 
 

i µµφ φ= − Γ∂Ż . (8.6) 

 

 Now, just as the photon gauge field (2.11a) contains a Fourier kernel ( )exp /iq xσ
σ− ℏ  

where qµ  is the photon energy-momentum, and the fermion wavefunction used in (5.6) contains 

a Fourier kernel ( )exp /ip xΣ
Σ− ℏ  with a fermion five-momentum pΜ , let us specify a Fourier 

kernel ( )exp /is xΣ
Σ− ℏ  with a five-dimensional sΜ  which we regard as the five-momentum of the 

luminous scalar φ .  Moreover, because φ  is dimensionless and so too is ( )exp /is xΣ
Σ− ℏ , let us 

then assemble these ingredients to define: 
 

( ) ( )1
1 22

exp /i is xφ φ φ Σ
Σ≡ + − ℏ . (8.7) 

 

Above, ( )exp /is xΣ
Σ− ℏ  is the above-noted Fourier kernel in five dimensions, while 1 2iφ φ+  is a 

dimensionless and complex-valued field.  This complex field, albeit dimensionless, is chosen to 
be analogous to the energy-dimensioned scalar field is used to break symmetry via the standard 

model Higgs mechanism, which we denote by ( )1
1 22h h hiφ φ φ≡ + .  Specifically, 1φ  and 2φ  

introduce two degrees of freedom which can be used to give mass to otherwise massless objects 

via a Higgs-like mechanism.  Because ( ) ( ) 2 2
1 2 1 2 1 2*i iφ φ φ φ φ φ+ + = + , the symmetry of the “circle” 

in the complex Euler plane of 1φ  and 2φ  can always be broken by choosing the 2 0φ =  orientation, 

see, e.g., Figure 14.5 in [20], also analogously to the Higgs mechanism.  In the standard model, 
once the symmetry is broken, the scalar field is expanded about the vacuum having an expectation 

value v via ( ) ( )( )1

2h x v h xµ µφ = + , with fluctuations provided by the Higgs field ( )h xµ .  In the 

standard model, this “vev” is taken to be 246.219650 eV8 Gv = , namely, the Fermi vacuum 

expectation associated with the Fermi coupling via ( )321 / 2 / 2Fv G c= ℏ  based on the latest PDG 

data [21].  In (8.7), which we will connect directly to the standard model Higgs scalar in sections 

11 through 13, the kernel ( ) ( ) ( )exp / cos / sin /is x s x i s xΣ Σ Σ
Σ Σ Σ− = −ℏ ℏ ℏ  provides two additional 

degrees of freedom in the complex Euler plane through which the angle /s xθ Σ
Σ= ℏ  is oriented.  

In total, (8.7) thus provides four degrees of freedom. 
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If we allow ( )1 xφ Μ  and ( )2 xφ Μ  to be functions of five-dimensional spacetime so they 

can be expanded about a minimum v a familiar form ( ) ( )( )1

2
x v h xφ Σ= +  after choosing an 

2 0φ =  orientation analogously to the Higgs mechanism, then the five-gradient of (8.7) is 

straightforwardly calculated to be: 
 

1 2

1 2

i s
i

i

φ φφ φ
φ φ

Μ Μ Μ
Μ

 ∂ + ∂∂ = − + ℏ
. (8.8) 

 
If we then covariantly extend (8.6) into the fifth dimension in the form of iφ φΜ Μ= − Γ∂Ż  and then 

apply (8.8) we find that:  
 

1 2

1 2

i s
i i

i

φ φφ φ φ
φ φ

Μ Μ Μ
Μ Μ

 ∂ + ∂= − = − Γ + 
∂Ż Ż

ℏ
. (8.9) 

 
Stripping off φ , following some algebraic rearrangement including multiplying through by c, then 

using /E c hfω= = =ℏ Ż ℏ for the energy magnitude of the scalar, we then arrive at: 

 

1 2

1 2

i
cs i c

i

φ φω
φ φ

Μ Μ
Μ Μ

∂ + ∂= Γ −
+

ℏ ℏ . (8.10) 

 

The time component of ( )0 0 jjkAγω ω γ γΓ = +ℏ ℏ  within the energy component 0cs  above is 

positive for the upper (particle) components of ( ) ( )0diag ,I Iγ = + −  in the Dirac representation, 

and negative for the lower (antiparticle) components, which we interpret using Feynman–

Stueckelberg.  Having these upper components be positive is the reason we used 1i− = −  at (8.6). 
 
 Finally, we insert (8.10) into (8.7) for the luminous scalar and reduce, to obtain: 
 

( )

( )

1 2
1 2

1 2

1 2
1 2

1 2

1
exp

2

1
exp exp

2

i
i i x x

c i

i
i i x x

c i

φ φωφ φ φ
φ φ

φ φωφ φ
φ φ

Σ ΣΣ Σ
Σ

Σ ΣΣ Σ
Σ

 ∂ + ∂= + − Γ − + 

 ∂ + ∂ = + − Γ −   +   

. (8.11) 

 
The product separation of exponentials in the lower line is possible in view of the Zassenhaus-

Baker-Campbell-Hausdorff relation ( ) [ ]( )exp exp exp exp , / 2 ...A B A B A B+ = −  because 

although xΣ
ΣΓ  is a 4x4 matrix operator, the second additive term inside the top line exponential 

is a 4x4 diagonal matrix which does commute with the first term, i.e., [ ], 0A B = .   Because (8.10) 

contains an energy E hfω= =ℏ , we now must interpret φ  as single luminous field quantum just 
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as at (2.11) we were required to regard A Aµ γ µ=  as an individual photon quantum.  Significantly, 

both the energy-momentum five-vector csΜ  in (8.10) for the scalar, and the scalar itself in (8.11), 

are actually 4x4 operator matrices owing to the presence of ΣΓ  in each.  Thus, these both have an 

implied second rank index pair AB with Dirac spinor indexes 1,2,3,4A =  and 1,2,3,4B = .   

 
To make use of the luminous scalar operator (8.11) in later calculations, it is helpful to 

separate the kernel ( )exp /i x cω Σ
Σ− Γ  into sine and cosine terms using the Maclaurin series 

( ) 2 3 4 51 1 1 1
2! 3! 4! 5!exp 1 ... cos sinix ix x i x x ix x i x− = − − + + − − = − .  To do so, we first use the 

anticommutator (3.1) to calculate the square: 
 

 ( ) { }2 2 21
2

x x x G x x cΣ Μ Ν Μ Ν
Σ Μ Ν Ν Μ ΜΝΓ = Γ Γ + Γ Γ = ≡ Τ , (8.12) 

 

where 2 2 2S c G x xΜ Ν
ΜΝ≡ Τ ≡  is a finite invariant proper length / time in the five-dimensional DKK 

geometry.  Thus ( )2 2 2/x cω ωΣ
ΣΓ ≡ Τ .  Then, we insert this into the series to obtain: 

 

( ) ( ) ( )

2 2 4 4 2 2 4 4

3 3 5 5

1 1 1 1
exp 1 1 ...

2! 4! 3! 5!

1 1
cos ... cos sin

3! 5!

i x i x
c c

x x
i i

c c

ω ωω ω ω ω

ω ω ω ω ω ω

Σ Σ
Σ Σ

Σ Σ
Σ Σ

   − Γ = − Τ + Τ − Γ − Τ + Τ +   
   

Γ Γ = Τ − Τ − Τ + Τ + = Τ − Τ Τ Τ 

, (8.13) 

 
To get to the sin term in the bottom line, we multiplied through by 1 /ω ω= Τ Τ  in the top line.  
Inserting this into (8.11) yields the final expression for the luminous, dimensionless, massless 
Kaluza-Klein scalar, namely: 
 

( ) ( ) ( ) 1 2
1 2

1 2

1
cos sin exp

2

x i
i i x

c i

φ φφ φ φ ω ω
φ φ

Σ
ΣΣ Σ Σ  Γ ∂ + ∂= + Τ − Τ −  Τ +   

. (8.14) 

 

With Dirac indexes made explicit, the Dirac operator characteristics of ABφ φ=  are now seen to be 

isolated in and stem from the ABx xΣ Σ
Σ ΣΓ = Γ  matrix which multiplies the ( )sin ωΤ  term. 

 
 From (8.14) it is straightforward to then calculate the square modulus: 
 

( ) ( )2 2
2 1 22 2

1 2 2 2
1 2

1
* exp

2
x

φ φ
φ φ φ φ φ

φ φ
Σ Σ

 ∂ +
 = = + −
 +
 

 (8.15) 

 

Above, the first of the three multiplicative terms in (8.14) produce ( )2 21
1 22 φ φ+ , which although 

dimensionless, creates an analogue to the symmetry-breaking circle of the Higgs mechanism.  The 
second of these three terms in (8.14) in view of (8.12) produces a 1.  The third term first processed 
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using ( ) ( ) ( )2 2
1 2 1 2 1 21/ /i iφ φ φ φ φ φ+ = − +  which is a standard trick for handling complex numbers 

in a denominator, and then after reduction using ( ) ( )2 2
1 1 2 2 1 22 φ φ φ φ φ φΣ Σ Σ∂ + ∂ = ∂ + .  This reveals 

a 2 2
1 2φ φ+  “Mexican hat” “circle” analogous to what we obtain in Higgs theory to break a local 

U(1) gauge symmetry by choosing a 2 0φ =  orientation in that circle.  see, e.g., sections 14.7 and 

14.8 in [20].  But here, the overall magnitude of *φ φ  is also modified by the exponential which 

contains the five-gradient ( )2 2
1 2φ φΣ∂ +  of the magnitude of this circle.  We shall later see from 

(11.12) to (11.22) and thereafter at (13.7) and in Figure 1, how the gradient terms in (8.14) and 
(8.15) are at the heart of how the Higgs mechanism extracts energy from the Fermi vacuum to give 

rest mass to fermions.  But as noted after (8.7), the kernel ( )exp /is xΣ
Σ− ℏ  which in (8.14) now 

contains the angle θ ω= Τ , provides additional third and fourth degrees of freedom.  In sections 
11 through 13 we shall see that (8.14) above further simplifies when we geometrize the fermion 
rest masses and break the symmetry such that the two degrees of freedom in 1φ  and 2φ  give rest 

masses to the gauge and the Higgs bosons in the usual way, while two degrees of freedom in the 
complex Euler plane with orientation angle θ ω= Τ  give rest masses to the fermions.  
 

For now, the luminous massless scalar operator (8.14) with second-rank Dirac internal 
symmetries solves the Kaluza-Klein problem of how to make the scalar field “constant” to remove 
what are otherwise some very large terms, while not unduly constraining the electromagnetic 
fields:  The gradient of φ  can be non-zero , 0φΜ∂ ≠ , simultaneously with its derivative along the 

curve being be zero, / 0d cdφ τ = , so long as the scalar is a luminous particle which also has a 

second rank Dirac structure.  In turn, if we then return to the metric tensor GΜΝ  in the form of, 

say, (3.11), we find that this too must also have implied Dirac indexes, that is, ABG GΜΝ ΜΝ=  owing 

to the structure (8.14) of the scalar field which sits in its fifth dimensional components.  So (8.14) 
gives a second rank Dirac structure to the metric tensor, alongside of its already second-rank, five 
dimensional spacetime structure.  But as we shall see at (11.12), the symmetry of this Dirac-
indexed scalar is broken to “hide” this internal Dirac structure, so that the DKK metric tensor 
(3.11) reverts to its present form without needing implied Dirac indexes.  And of course, with 
(8.14) being derived to enable / 0d dφ τ = , (7.28) become synonymous with the electrodynamic 

Lorentz force motion, which is one of the key touchstones of Kaluza-Klein theory.   
 

In conclusion, the Kaluza-Klein fifth dimension, taken together with using Dirac theory to 
enforce general covariance across all five dimensions, has turned a metric tensor (1.1) with an 
entirely classical character, into a quantum field theory metric tensor with luminous photons and 
luminous scalar field quanta.  If this is all in accord with physical reality, this means that nature 
actually has three spin types of massless, luminous field quanta: spin-2 gravitons, spin-1 photons 
and gluons, and spin-0 scalars with an internal second rank Dirac-tensor symmetry.  This also 
means that the massless, luminous Kaluza-Klein scalar in (8.14) is not the same scalar as the usual 
Higgs, because the latter is massive and material.  However, the scalar (8.14) has properties similar 
to the Higgs, and as we shall see in Part II of this paper, once connected to the Higgs field, it can 
be used to spontaneously break symmetry, whereby the two degrees of freedom in the amplitude 

( )1 2 / 2iφ φ+  enable the gauge bosons and the DKK scalar to become massive with the latter 
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corresponding to the Higgs boson, and the additional degrees of freedom in the θ ω= Τ  plane 
provide masses to fermions.  This, in turn, enable us to develop a theory of fermion masses and 
mixing angles which fits all the known the experimental data, and which in a number of cases, 
refines the known data by two or more orders of magnitude.  Moreover, a better understanding is 
obtained for the type of Higgs production paired with top quarks reported out of CERN in the 
middle of 2018 [22], [23], [24]. 

 
The next step in the development of the luminous Kaluza-Klein scalar (8.14) entails 

spontaneous symmetry breaking which will be pursued in section 11, followed by connecting this 
scalar to the standard model Higgs boson which will be pursued in sections 12 and 13, followed 
by the development of a theory of fermion masses and mixing angles and beta decays which will 
commence in section 14 and proceed throughout the balance of this paper.  Because these next 
steps will develop and then cross the bridge from Dirac-Kaluza-Klein theory to elementary particle 
physics, we now pause the further development of the scalar (8.14) for the next two sections, so 
that we can conclude our exposition of Kaluza-Klein theory on its own terms before proceeding to 
how this connects to the elementary particle physics of the standard model.  In short, in the next 
sections we shall conclude the first of the “two papers in one” referenced in the preface, so that we 
can then proceed on to the second paper. 
 

9.  How the Dirac-Kaluza-Klein Metric Tensor Resolves the Challenges faced 

by Kaluza-Klein Theory without Diminishing the Kaluza “Miracle,” and 

Grounds the Now-Timelike Fifth Dimension in Manifestly-Observed Physical 

Reality 
 
 Now let’s review the physics implications of everything that has been developed here so 
far regarding Kaluza-Klein theory.  As has been previously pointed out, in the circumstance where 

0jAγ =  and 0φ =  (which using the vector (3.12) is simply 0µΦ = ), then when gµν µνη= , (3.13) 

reduces to ( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − +  with 1GΜΝ = − .  And we saw at (6.3) that this result 

does not change at all, even when all components of 0µΦ ≠ .  But in the similar circumstance 

where 0jA =  and 0φ = , the usual Kaluza-Klein metric tensor (1.1) reduces to 

( ) ( )diag 1, 1, 1, 1,0GΜΝ = + − − −  with a determinant 0GΜΝ = .  And even for 0jAγ ≠ , so long as 

0φ =  we still have 0GΜΝ = .  This of course means that whenever 0φ =  the Kaluza-Klein metric 

tensor (1.1) is not-invertible and therefore becomes singular.  Again, this may be seen directly 

from the fact that when we set 0φ =  in (1.1) we obtain 55 21/G g A A g A Aα β α β
αβ αβφ= =+ + ∞ .  

This degeneracy leads to a number of interrelated ills which have hobbled Kaluza-Klein as a viable 
theory of the natural world for an entire century: 
 

First, with 2
55G φ= , the scalar field φ  carries a much heavier burden than it should, 

because Kaluza-Klein theory relies upon this field being non-zero to ensure that the five-
dimensional spacetime geometry is non-singular.  This imposes constraints upon φ  which would 

not exist if it was not doing “double duty” as both a scalar field with its own physics, and as a 
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structural element required to maintain the non-degeneracy of Minkowski spacetime extended to 
five dimensions. 

 
Second, a metric that becomes singular when one of the physical fields becomes zero is 

thoroughly at odds with the most bedrock principles of theoretical physics first advanced by 
Einstein in the General Theory of Relativity [2].  In the General Theory, the space and time of real 
physical spacetime combine into a Minkowskian “union of these two” [25], with a flat spacetime 

signature ( ) ( )diag 1, 1, 1, 1µνη = + − − −  that is structurally sound even in the absence of any fields 

whatsoever.  But what does one make of a signature that is ( ) ( )2diag 1, 1, 1, 1,η φΜΝ = + − − −  with a 

determinant 2η φΜΝ = −  when gµν µνη=  and 0kAγ = ?  How is one to explain the physicality of 

a Minkowski signature which, because 2
55G φ= , is based entirely on a field, rather than being 

either a timelike +1 or a spacelike –1 Pythagorean metric component?  Specifically, the Minkowski 
signature defines the flat tangent spacetime to curved spacetime at each event.  So, how can a 
tangent space which by definition should not be curved, be dependent upon a field φ  which if it 

has even the slightest modicum of energy will cause curvature?  This is an internal logical 
contradiction of the metric tensor (1.1) that has plagued Kaluza-Klein theory for an entire century.  
And it leads to such hard-to-justify oddities as a fifth dimensional metric tensor component 

2
55G φ=  and determinant 2η φΜΝ = −  which dilates or contracts (hence the name “dilaton”) in 

accordance with the behavior of 2φ , and which vanishes entirely when 0φ =  to give rise to a 

singular, degenerate theory.  This all contradicts the fundamental theoretical proposition of the 
General Theory of Relativity that one starts with a non-singular flat spacetime metric tensor which 
has a Pythagorean signature with timelike and spacelike dimensions, then represents physical 
fields and their energies by Riemannian curvatures which amount to deviations against this flat 
spacetime background.  If there is a singularity to be had, it should arise from the Einstein field 
equation for an energy tensor source giving rise to exceptionally-sharp curvatures (for example, as 
with black holes), not from a flat tangent-space metric tensor devoid of sources and fields. 
 

Third, the DKK metric tensor (3.13) is obtained by requiring an “operator square root” 
deconstruction of the Kaluza-Klein metric tensor into a set of Dirac matrices obeying 

{ }1
2 , GΜ Ν ΜΝΓ Γ ≡  in (3.1), with the symmetry of full five-dimensional general covariance.  What 

we have found is that it is not possible to have 5-dimensional general covariance with the metric 

components 2
5 5G G kAµ µ µφ= =  which lead to the Kaluza “miracle,” if at the same time 

05 50 0G G= =  and 2
55G φ= , all as in (1.1).  Rather, general 5-dimensional covariance with the 

“miracle” foundation 2
5 5G G kAµ µ µφ= =  requires that 05 50G G φ= =  and 2

55 1G φ= +  as in (3.13), 

see also (3.11).  Further, to have general covariance even in four spacetime dimensions alone, we 
are required to gauge the electromagnetic potential to that of the photon, as first revealed at (2.10).  
Without these changes to the metric tensor components, it is simply not possible to make Kaluza-
Klein theory compatible with Dirac theory and to have 5-dimensional general covariance.  This 
means that there is no consistent way of using the usual (1.1) to account for the fermions which 
are at the heart of observed matter in the material universe.  No Dirac covariance  no Dirac 
equation  no fermions!  Such an omission – even without any of its other known ills – most-
assuredly renders the usual Kaluza-Klein metric (1.1) “unphysical.”   
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Fourth and finally, there is the century-old demand which remains unmet to this date: 

“Show me the fifth dimension!”  There is no detected observational evidence at all to support the 
physical reality of the fifth dimension, either in direct experience or empirical experimentation, at 
least in the form specified by (1.1) which requires this fifth dimension to be spacelike.  Nor do any 
later studies of Kaluza-Klein to date appear to have managed to remedy these problems.  If 
anything, they only compound these problems by taking the fifth dimension presumed to be 
spacelike, developing this into a tiny curled up “string” orders of magnitude smaller than anything 
that one can ever hope to observe, and then adding even more spacelike dimensions. 
 

In these regards, it should be obvious to anyone familiar with the Dirac µγ  and the axial 

operator 5 0 1 32iγ γ γ γ γ≡ −  that one may easily use an anticommutator { }1
2 ,η γ γΜΝ Μ Ν≡  to form a 

five-dimensional metric tensor with ( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  which has a Minkowski 

tangent signature with two timelike and three spacelike dimensions, such as in (3.13), see also 
(3.11).  But it is not at all obvious how one might proceed to regard 5γ  as the generator of a truly-

physical fifth dimension on an absolute par with the generators µγ  of the four truly-physical 

dimensions which are time and space.  This is because as pointed out in toward the end of [11], 
with 2

55G φ=  in the Kaluza-Klein metric tensor (1.1), if we require electromagnetic energy 

densities to be positive, then the fifth-dimension must have a spacelike signature.  And this directly 
contradicts making 5γ  the generator of the fifth dimension because 5 5 1γ γ =  produces a timelike 

signature.  So, as physically-real and pervasive as are the observable consequences of the 5γ  

matrix, the Kaluza-Klein metric tensor (1.1) does not furnish a theoretical basis for associating 5γ  

with a fifth dimension, at the very least because of this timelike-versus-spacelike contradiction.  
This is yet another problem stemming from having φ  carry the burden of maintaining the fifth-

dimensional signature and the fundamental Pythagorean character of the Minkowski tangent space, 
in addition to being a field within the spacetime-plus-fifth-dimension geometry. 
 

This inability to connect 5γ  with the fifth dimension persists, notwithstanding the clear 

observational evidence that 5γ  has a multitude of observable physical impacts.  The reality of 5γ  

is most notable in the elementary fermions that separate into R Lψ ψ ψ= +  using the factor 

( )1
52 1 γ±  for right- and left-chirality; in the weak interaction of fermions always being left-chiral; 

and in the many observed pseudo-scalar mesons ( 0PCJ −+= ) and pseudo-vector mesons ( 1PCJ ++=  

and 1PCJ +−= ) laid out in [26], all of which require the use of 5γ  to underpin their theoretical 

origins.  So 5γ  is real and physical, as would therefore be any fifth dimension which can be 

properly-connected with 5γ .  But again, there is a contradiction between the spacelike signature 

emerging from Kaluza-Klein’s (1.1) and the timelike signature of 5 5 1γ γ = , so such a connection 

is simply not feasible based on (1.1).  Instead, decades have been spent chasing tiny curled-up 
spacelike dimensions that have not a shred of observational support. 
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With all of these problems and perplexities, the reason Kaluza-Klein has nonetheless 
managed to maintain some measure of viability, is because of its “miracle” of providing an 
entirely-geometrodynamic foundation for Maxwell’s electrodynamics, the Lorentz Force Law, and 
the Maxwell stress-energy tensor.  And also, as will be reviewed in the next section, because it 
offers the possibility of the fifth dimension being a “matter dimension” as has long been advocated 
by the 5D Space-Time-Matter Consortium [18]. 
 

So, to summarize, on the one hand, Kaluza-Klein theory has a fifth physical dimension on 
a par with space and time, but it has been impossible to connect that dimension with actual 
observations in the material, physical universe.  Nor has it been possible to make credible sense of 
the dilation and contraction of that dimension based on the behavior of a scalar field, and especially 
of the Minkowski tensor singularity that occurs when 0φ = .  On the other hand, Dirac theory has 

an eminently-physical 5γ  with pervasive observational manifestations on an equal footing with 

µγ , but it has been impossible to connect this 5γ  with a true physical fifth dimension, or at least, 

with the Kaluza-Klein metric tensor (1.1) in five dimensions.  At minimum this is because the 
metric tensor signatures conflict.  Kaluza-Klein has a fifth-dimension unable to connect to physical 
reality, while Dirac theory has a physically-real 5γ  unable to connect to a fifth dimension.  And 

the origin of this disconnect on both hands, is that the Kaluza-Klein metric tensor (1.1) cannot be 
deconstructed into Dirac-type matrices while maintaining five-dimensional general covariance 
according to (3.1).  Moreover, because there is no five-dimensional covariance, there is no way to 
theoretically represent Dirac fermions.  All of these problems, weigh against what is otherwise the 
“miracle” of the geometrodynamic foundation which Kaluza-Klein does lay for electrodynamics.   
 

To maintain general 5-dimensional covariance and achieve a Dirac-type square root 
operator deconstruction of the metric tensor, (1.1) must be replaced by (3.13) and (4.22).  Once 
that has been done, the metric tensors (3.13) and (4.22) lead to a whole other picture, and the 
problems reviewed above all evaporate.  Following the same sequence as above, let us summarize 
how the problems and perplexities reviewed above are now “fixed” by (3.13) and (4.22): 
 

First, with 2
55 1G φ= +  the metric signature is now decoupled from the energy requirements 

for φ .  And with G gΜΝ ΜΝ=  from (6.3) the metric tensor determinant becomes entirely 

independent of both Aγ µ  and φ .  This means that φ  is no longer doing “double duty” as both a 

scalar field and as a structural element required to avoid a Minkowski metric singularity when 
0φ = .  Rather, the metric is stabilized by the 1 in 2

55 1G φ= + , and as we see in (3.10), this 5 51 γ γ=  

is directly generated by the axial operator 5γ .  

 
Second, as a direct result of this, there is no longer any singularity when 0φ = .  Implicitly, 

the litmus test for this is (6.3), whereby the five-dimensional determinant G G g gΜΝ ΜΝ== =   

no matter what the values of Aγ µ  and φ   may be.  And when g ηΜΝ ΜΝ=  this reduces to 

1G G ηΜΝ ΜΝ= = −≡ .  Explicitly, this is seen in (4.20) through (4.22) where 55 55G g=  generally, 

and in flat spacetime where 55 55 5 5 1G η γ γ= = =  is well-behaved, always.  And as with the 
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determinant, 55G  is entirely independent of Aγ µ  and φ , always, in contrast to the usual GΜΝ  in 

(1.1) which is singular and badly-behaved because 55G → ∞  when 0φ → .  Then, because the 

tangent space when all fields are zeroed out now has 55
55 1G G= = + , the Dirac-Kaluza-Klein 

theory based on (3.13) and (4.22) is wholly consistent with the General Theory of Relativity.  This 
is because while physical fields do correlate with curvature and strong-enough sources can lead to 
extreme curvature based on the Einstein Equation, when all the fields are turned off, there is still 
a stable, well-behaved tangent space which has a Pythagorean signature with Minkowskian 
timelike and spacelike dimensions. 
 

Third, the metric tensors (3.13) and (4.22) are formed by explicitly demanding five-
dimensional Dirac covariance, from which we obtain a set of ΜΓ  defined by in (1.3) by 

{ }1
2 , GΜ Ν ΜΝΓ Γ ≡ .   Therefore, by definition, a 5-covariant Dirac equation (5.6) can be formed, so 

there is no problem of incompatibility with Dirac theory.  Working from (5.6), we may then 
anticipate that all aspects of fermion physics can be fully accounted for.  And in Part II we will 
show that this is indeed so, wherein the Kaluza-Klein scalar which has thus far advanced to (8.14) 
becomes connected to the Higgs scalar, and it thereafter becomes possible to explain the masses, 
mixing angles and beta decays of the elementary fermions, entirely consistently with the standard 
model, and in a number of cases, with improved predictive accuracy. 

 
Fourth, perhaps most importantly in terms of the scientific method requiring concurrence 

between theory and observation, when 0jAγ =  and 0φ =  and g ηΜΝ ΜΝ= , and because of the 

foregoing decoupling of φ  from the metric signature, we now have a timelike 555 5 1γ γη = = +  

which is directly generated by 5γ .  As a consequence, the fifth dimension of Kaluza-Klein theory 

which has heretofore been disconnected from physical reality, can now be identified with a true 
physical dimension which has 5γ  as its generator, just as 0γ  is the generator of a truly-physical 

time dimension and jγ  are the generators of truly-physical space dimensions.  And again, 5γ  has 

a wealth of empirical evidence to support its reality, such as weak interaction chirality, and the 
observed plethora of pseudo-scalar and pseudo-vector mesons. 
 

Further in this regard, with a tangent space ( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  we now have 

two timelike and three spacelike dimensions, with matching tangent-space signatures between 
Dirac theory and the Dirac-Kaluza-Klein theory.  With the fifth-dimension now being timelike not 
spacelike, the notion of “curling up” the fifth dimension into a tiny, never-to-be-seen “cylinder” 
comes off the table completely, while the Feynman-Wheeler concept of “many-fingered time” 
returns to the table, providing a possible avenue to study future probabilities which congeal into 
past certainties as the arrow of time progresses forward with entropic increases.  And because 5γ  

is connected to a multitude of confirmed observational phenomena in the physical universe, the 
physical reality of the fifth dimension in the metric tensors (3.13) and (4.22) is now supported by 
every single observation ever made of the reality of 5γ  in particle physics, regardless of any other 

epistemological interpretations one may also arrive at for this fifth dimension.  This is in contrast 
to the dearth of observational evidence for a spacelike fifth dimension. 
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Of course, it would not be beneficial if the foregoing problem solutions came at the cost of 
sacrificing the Kaluza “miracle.”  Of course, the field equations obtained from (3.13) and (4.22) 
rather than (1.1) will change somewhat because now 05 50G G φ= =  and 2

55 1G φ= +  and the gauge 

fields are fixed to the photon A Aµ γ µ=  with only two degrees of freedom.  But there is no reason 

to suspect that the many good benefits of Kaluza-Klein theory will be sacrificed because of these 
changes which eliminate the foregoing problems.  Rather, as already seen in sections 7 and 8 where 
the Lorentz Force motion “miracle” is faithfully reproduced, we simply expect some extra terms 
and some additional phenomenology to emerge in the equations of motion and the field equations 
because of these modifications.  One example of this additional phenomenology is the requirement 
deduced at (7.19b) that to fully reproduce the Lorentz Force, the Kaluza-Klein spin-0 scalar must 
be luminous and massless alongside of the spin-2 graviton and the spin-1 photon, leading to this 
scalar having the explicit form of (8.14) prior to any of the mass-producing symmetry breaking 
still to be reviewed in Part II.  And so, we expect that the Kaluza-Klein benefits having of 
Maxwell’s equations, the Lorentz Force motion and the Maxwell-stress energy embedded, should 
remain fully intact when using (3.13) and (4.22) in lieu of (1.1), as we have already begun to see 
in sections 7 and 8. 
 

Finally, given all of the foregoing, beyond the manifold observed impacts of 5γ  in particle 

physics, there is every reason to believe that using the five-dimensional Einstein equation with the 
DKK metric tensors (3.13) and (4.22) will fully enable us to understand this fifth dimension, at 
bottom, as a matter dimension, along the lines long-advocated by the 5D Space-Time-Matter 
Consortium [18].  This may thereby bring us ever-closer to uncovering the truly-geometrodynamic 
theoretical foundation at the heart of all of nature.  These geometrodynamic interests are the subject 
of the next and final section devoted to Dirac-Kaluza-Klein theory on its own terms, before we 
turn in Part II to the connection between DKK theory and the particle physics of elementary 
fermions emerging from the 5-dimensional Dirac equation (5.6). 
 

10.  Pathways for Continued Exploration: The Einstein Equation, the “Matter 

Dimension,” Quantum Field Path Integration, Epistemology of a Second Time 

Dimension, and All-Interaction Unification 
 

 Starting at (7.6) we obtained the connection 5α
ΜΓɶ  in order to study the 5α

ΜΓɶ  term in the 

equation of motion (7.4), because this is the term which provides the Lorentz Force motion which 
becomes (7.28) once φ  is understood to be a luminous field with / 0d dφ τ =  as in (8.1) thereafter 

deduced explicitly in (8.14) to which we will soon return to break symmetry.  The reason this was 
developed in detail here, is to demonstrate that the DKK metric tensors (3.13) and (4.22) in lieu of 
the usual (1.1) of Kaluza-Klein do not in any way forego the Kaluza miracle, at least as regards 
the Lorentz Force equation of electrodynamic motion.  But there are a number of further steps 
which can and should be taken to further develop the downstream implications of using the DKK 
metric tensors (3.13) and (4.22) in lieu of the usual (1.1) of Kaluza-Klein, to demonstrate a similar 
favorable result in relation to the Einstein Equation for sources and fields. 
 

First, it is necessary to calculate all of the other connections Μ
ΑΒΓɶ  using (7.3) and the metric 

tensors (3.13) and (4.22) similarly to what was done in section 7, then to fully develop the 
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remaining terms in the equations of motion (7.2), (7.4) which have not yet been elaborated here.  
And as regards the field equation, it is also necessary to obtain the five-dimensional Riemann 
tensor, the Ricci tensor in lower- and mixed-index form, and the Ricci scalar: 
 
ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

R

R R

R G R G G G G

R R G G G G

Α Α Α Α Σ Α Σ
ΒΜΝ Μ ΝΒ Ν ΜΒ ΜΣ ΝΒ ΝΣ ΜΒ

Τ Τ Τ Τ Σ Τ Σ
ΒΜ ΒΜΤ Μ ΤΒ Τ ΜΒ ΜΣ ΤΒ ΤΣ ΜΒ

Α ΑΒ ΑΒ Τ ΑΒ Τ ΑΒ Τ Σ ΑΒ Τ Σ
Μ ΒΜ Μ ΤΒ Τ ΜΒ ΜΣ ΤΒ ΤΣ ΜΒ

Α ΑΒ Τ ΑΒ Τ ΑΒ Τ Σ
Α Α ΤΒ Τ ΑΒ ΑΣ ΤΒ

= ∂ Γ − ∂ Γ + Γ Γ − Γ Γ

= = ∂ Γ − ∂ Γ + Γ Γ − Γ Γ

= = ∂ Γ − ∂ Γ + Γ Γ − Γ Γ

= = ∂ Γ − ∂ Γ + Γ Γ −

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ΑΒ Τ Σ
ΤΣ ΑΒΓ Γɶ ɶ

. (10.1) 

 
Once these are obtained, these may then be placed into a fifth-dimensional Einstein field equation: 
 

1
2

ˆ ˆ ˆT G RRΜΝ ΜΝ ΜΝ−Κ = − , (10.2) 

 
with a suitably-dimensioned constant Κ  related to the usual κ  as will be discussed momentarily.  
This provides the basis for studying the field dynamics and energy tensors of the DKK geometry. 
 

The development already presented here should provide some confidence that the Kaluza 
miracle will remain be undiminished when the DKK metric tensors (3.13) and (4.22) are used in 
(10.2) in lieu of the usual Kaluza-Klein (1.1), because as first established at (7.12), notwithstanding 
any additional terms, 21

5 2 ...kFµ µσ
α αση φΓ = +ɶ  contains the electromagnetic field strength exactly as 

before.  So, we may be comfortable that the terms needed to reproduce the Maxwell tensor 

( )12

4 4
1

eT c F Fk g F Fµν µσ ν αβ στ
σ στπ= − −  via the field equation (10.2) will be embedded in the (10.1) 

terms housed originally in Α Σ Α Σ
ΜΣ ΝΒ ΝΣ ΜΒΓ Γ − Γ Γ , because these terms are of second order in the 

connections.  Moreover, because the electromagnetic source current density 0 J Fµ σµ
σµ = ∂ , we 

may also be comfortable that Maxwell’s source equation will be embedded in the terms housed 
originally in Α Α

Μ ΝΒ Ν ΜΒ∂ Γ − ∂ Γ , because these terms contain gradients of the connections tied to 

the field strength.  Moreover, we may also be comfortable that Maxwell’s magnetic charge 

equation ; ; ; 0F F Fα µν µ να ν αµ∂ + ∂ + ∂ =  will likewise be embedded, because ( )1
2

;

ˆ ˆ 0R G RΜΝ ΜΝ

Μ
=−  

which via (10.2) ensures a locally-conserved energy ;
ˆ 0T ΜΝ

Μ = , is contracted from the second 

Bianchi identity ; ; ;
ˆ ˆ ˆ 0R R RΑ Α Α

ΒΜΝ Ρ ΒΝΡ Μ ΒΡΜ Ν+ + = , which has the same cycling of indexes and the 

correct differential order in relation to the connections.  In short – although we leave this to a future 
paper for detailed development – we may be comfortable based on what has already been 
demonstrated here, that the Kaluza miracle will remain intact once field equations are calculated.  
But we should expect some additional terms and information emerging from the field equation 
which do not appear when we use the usual (1.1). 
 

 Second, the Ricci scalar R̂  is especially important because of the role it plays in the 
Einstein-Hilbert Action.  This action provides a very direct route to the view that the fifth 
dimension is a matter dimension [18].  Moreover, this action can be used to calculate five-
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dimensional gravitational path integrals which may be of assistance in better-understanding the 

nature of the second time dimension 5t .  So, let us briefly preview these development paths. 
 
 The Einstein-Hilbert action reviewed for example in [27], in four dimensions, is given by: 
 

( )( ) 4
M d1/ 2S R g xκ= + − L ,  (10.3) 

 
where R Rσ

σ= .  The derivation of the 1
2 RT R gµν µν µνκ− = −  from (10.3) is well-known.  So, in 

five dimensions, we expect that (10.2) will emerge from changing ˆR R֏  and M M
ˆ֏L L  and 

g G֏ , thus extending (10.3) to: 

 

( )( ) ( ) ( )( )5 5 5
M 5 M1/ 2 1/ 2 1/ 2ˆ ˆ ˆˆ ˆ ˆd dS R G x R R G xσ

σΚ Κ= + − = + + −Κ L L  . (10.4) 

 

The above also uses 5
5

ˆ ˆ ˆ ˆR R R Rσ
σ

Σ
Σ= = +  from (10.1) and the G already obtained in (6.3).  And the 

new κ λκΚ ≡֏  contains some suitable length λ  to balance the extra space dimensionality in 
5d x  versus 4d x .  In Kaluza-Klein theory based on (1.1) λ  is normally the radius of the 

compactified fourth space dimension and is very small.  Here, because there is a second time 
dimension, this will become associated with some suitable length = c*time.   
 

However, the energy tensor T µν  in four dimensions is placed into the Einstein equation by 
hand.  This is why Einstein characterized the 1

2 g RRµν µν−  side of his field equation as “marble” 

and the T µνκ− side as “wood.”  And this T µν  is defined from the Lagrangian density of matter by: 
 

M
M2T g

g
µν µνµν

δ
δ

≡ − +L
L  . (10.5) 

 
Therefore, in the Five-Dimensional Space-Time-Matter view of [18], and comparing (10.4) to 

(10.3), we see that the “wood” of ML̂  may be discarded entirely from (10.4) by setting M
ˆ 0=L  

leaving behind: 
 

( ) ( )( )5 5
51/ 2 1/ˆ ˆ d2ˆS R R G xσ

σΚ Κ= + − . (10.6) 

 
Then we associate 
 

( ) 5
M 51/ 2ˆ R̂≡ ΚL  (10.7) 

 
with the matter Lagrangian density, giving this an entirely-geometrodynamic interpretation based 

on the curvature component 5
5R̂ .  As a result, this is now also made of “marble.”   
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With this, (10.4) may be simplified to the 5-dimensional “vacuum” equation (see [28] at 
428 and 429): 
 

( ) 5ˆ ˆ d1 / 2S R G x= −Κ . (10.8) 

 
We also anticipate that the variation of the Ricci scalar will produce the usual relation: 
 

5
5

ˆ ˆˆ
ˆ R RR
R

G G G

σ
σδ δδ

δ δ δΜΝ ΜΝ ΜΝ ΜΝ= = + , (10.9) 

 
but now in five dimensions.  Then, the field equation (10.2) derived from varying (10.8), combined 
with (10.9), becomes the vacuum equation: 
 

1 1
2 2

ˆ ˆˆ0
ˆ

R G
R

R R
G

G
δ

δΜΝ Μ ΜΝ ΜΝΝ= − = − . (10.10) 

 
And for the energy tensor, we generalize (10.5) to five dimensions, then apply (10.7) to obtain: 
 

5
55M

M 5

ˆ ˆ1

2

1ˆ ˆ2
R

T G G R
G G

δδ
δ δΜΝ ΜΝ ΜΝΜΝ ΜΝ≡ − + −

Κ
+=

Κ
L

L  . (10.11) 

 

This makes clear how the energy tensor is now constructed out of the “marble” of 5
5R̂ .   

 

 It is useful to multiply the above through by −Κ ,  then use 5
5

ˆ ˆ ˆR R Rσ
σ= + , to obtain: 

 
5

55
5

ˆ ˆ1 1ˆ ˆ
2 2

R R
T G R G R

G G

σ
σσ

σ
δ δ
δ δΜΝ ΜΝ ΜΝΜΝ ΜΝ−Κ = = +−−  . (10.12) 

 
Note that the equality of the latter two expressions can be used to immediately reproduce (10.10).  
The spacetime components of (10.12) of course are: 
 

5
55

5

ˆ 1 1 ˆ
2

ˆ
2

ˆR R
T G R G R

G G

σ
σσ

µν µν σ µνµν µν
δ δ
δ δ

−Κ += −= . (10.13) 

 

And if we take an ( ) 4ˆ ˆ d1 / 2S R G x= −Κ  action which integrates only over the four spacetime 

dimensions 4d x  rather than 5d x , then we can remove the extra compensating space dimension 
from the overall constant and revert λκ κΚ ≡ ֏  and so write the above as: 
 

5
55

5

ˆ 1 1 ˆ
2

ˆ
2

ˆR R
T G R G R

G G

σ
σσ

µν µν σ µνµν µν
δ δ
δ δ

κ − += −= . (10.14) 
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So, with the above, the drill is to first obtain R̂ ΒΜ  from (10.1), then raise an index and 

obtain R̂ σ
σ  summed only over the four dimensions of spacetime, or alternativity obtain 5

5R̂ .  Then 

we calculate either the variation ˆ /R Gσ µν
σδ δ  or 5

5
ˆ /R Gµνδ δ , then use all of this to obtain Tµν .  

The facilitate this calculation without having to calculate either of these variations directly, one 

may use the spacetime portion of (10.9) together with 5
5

ˆ ˆ ˆ ˆR R R Rσ
µν µν µνσ µν

Τ
Τ= = +  to write: 

 
5

55
5

ˆ ˆˆ
ˆ ˆ ˆR RR
R R R

G G G

σ
σσ

µν µνσ µνµν µν µν
δ δδ

δ δ δ
+ == = + . (10.15) 

 
We can then math the structural features of the summed indexes to separate out: 
 

5
55

5;
ˆ ˆ

ˆ ˆR R
R R

G G

σ
σσ
µνσ µνµν µν

δ δ
δ δ

= = . (10.16) 

 
We then use the above in (10.14) to obtain the alternative expressions for the energy tensor which 
are interrelated via (10.10): 
 

5 51 1
5 52 2

ˆ ˆ ˆ ˆT R G R R G Rσ σ
µν µνσ µν σ µν µνκ −= = − + . (10.17) 

 
Then we directly substitute the pertinent connection components from (10.1) into the above.  For 
the former alternative: 
 

( )
1
2

1
2

ˆ ˆ

                                  

T R G R

G G G G G

σ σ σ σ σ σ
µν µνσ µν σ ν µσ σ µν ν µσ σ µν

σ σ σ σ
µν σ σ σ σ

κ Σ Σ
Σ Σ

Β Τ Β Τ Β Τ Σ Β Τ Σ
ΤΒ Τ Β Σ ΤΒ ΤΣ Β

− ∂ Γ − ∂ Γ + Γ Γ − Γ Γ

− ∂ Γ − ∂ Γ + Γ Γ Γ

= =

− Γ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ
, (10.18a) 

 
and for the latter: 
 

( )
5 5 5 5 5 51

5 5 5 5 5 52

5 5 5 51
5 5 5 52

ˆ ˆ

                                     

T R G R

G G G G G

µν µν µν ν µ µν ν µ µν

µν

κ Σ Σ
Σ Σ

Β Τ Β Τ Β Τ Σ Β Τ Σ
ΤΒ Τ Β Σ ΤΒ ΤΣ Β

− + −∂ Γ + ∂ Γ − Γ Γ + Γ Γ

+ ∂ Γ − ∂ Γ + Γ Γ −

= =

Γ Γ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ
. (10.18b) 

 
Finally, we calculate all the necessary connections as we did in section 7 (see, for example, (7.17a) 

for 5
µ
αΓɶ ), then look amidst Tµν  to find field configurations which, up to multiplicative coefficients, 

resemble the Maxwell tensor, which is part of the Kaluza miracle, and perhaps the tensors for dust, 
perfect fluids, and the like.  Any such tensors will then have been created out of geometric 
“marble” rather than hand-introduced “wood.” 
 

In a similar regard, one of the most important outstanding problems in particle physics, is 
how to introduce fermion rest masses theoretically rather than by hand, and hopefully thereby 
explain why the fermions have the observed masses that they do.  Here, just as the five spacetime 
dimensions introduce a “marble” energy tensor via (10.7), we may anticipate that when the five-
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dimensional Dirac equation (5.6) is fully developed, it will become possible to discard the hand-

added “wood” mass m entirely just as we discarded ML̂  from (10.4), and in its place substitute a 

mass-dimensioned scalar number that is naturally contained in the “marble” of Dirac’s equation.  
Using the momentum space Dirac equation (5.7), this is precisely what will be developed from 
(11.1) to (11.3) supra, and thereafter. 
 

 Third, the action ( ) 5ˆ ˆ1 / 2 dS R G xκ= −  of (10.8), like any action, is directly used in the 

quantum field path integral.  Using (10.8), this is: 
 

( ) ( ) ( )( )5ˆ dˆexp / exp / 1/ 2Z DG iS D R xG i GΜΝ ΜΝ= = Κ −  ℏ ℏ . (10.19) 

 
Here, the only field over which the integration needs to take place is GΜΝ , because this intrinsically 

contains not only the usual gµν , but also the photon Aγ µ  and the scalar φ .  But aside from the 

direct value of (10.19) in finally quantizing gravity, one of the deeply-interesting epistemological 
issues raised by path integration, relates to the meaning of the fifth time dimension – not only as 
the matter dimension just reviewed – but also as an actual second dimension of time. 
 

For example, Feynman’s original formulation of path integration considers the multiple 
paths that an individual field quantum might take to get from a source point A to a detection point 
B, in a given time.  And starting with Feynman-Stueckelberg it became understood that negative 
energy particles traversing forward in time may be interpreted as positive energy antiparticles 

moving backward through time.  But with a second time dimension 5t , the path integral must now 
take into account all of the possible paths through time that the particle may have taken, which are 
no longer just forward and backward, but also sideways through what is now a time plane.  Now, 

the time 0t  that we actually observe may well become associated with the actual path taken 
through time from amidst multiple time travel possibilities each with their own probability 

amplitudes, and 5t  may become associated with alternative paths not taken.  If one has a 
deterministic view of nature, then of course the only reality rests with events which did occur, 
while events which may have occurred but did not have no meaning.  But if one has a non-
deterministic view of nature, then having a second time dimension to account for all the paths 
through time which were not taken makes eminent sense, and certainly makes more intuitive and 
experiential sense than curling up a space dimension into a tiny loop.  And if path integral 
calculations should end up providing a scientific foundation for the physical reality of time paths 
which could have occurred but never did, this could deeply affect human viewpoints of life and 
nature.  So, while the thoughts just stated are highly preliminary, one would anticipate that a 
detailed analysis of path integration when there is a second time dimension may help us gain 
further insight into the physical nature of the fifth dimension as a time dimension, in addition to 
how this dimension may be utilized to turn the energy tensor and the fermion masses from “wood” 
into “marble.” 
 

Finally, Kaluza-Klein theory only unifies gravitation and electromagnetism.  As noted in 
the introduction, weak and strong interactions, and electroweak unification, were barely a glimmer 
a century ago when Kaluza first passed his new theory along to Einstein in 1919.  This raises the 
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question whether Kaluza-Klein theory “repaired” to be compatible with Dirac theory using the 
DKK metric tensor (3.13) and its inverse (4.22) might also provide the foundation for all-
interaction unification to include the weak and strong interactions in addition to gravitation and 
electromagnetism. 
 

In ordinary four-dimensional gravitational theory, the metric tensor only contains 
gravitational fields gµν . The addition of a Kaluza Klein fifth dimension adds a spin one vector 

gauge potential Aµ  as well as a spin 0 scalar φ  to the metric tensor as seen in (1.1).  The former 

becomes the luminous Aγ µ  of (2.11) and the latter becomes the massless, luminous ABφ  of (8.14) 

for the DKK metric tensor (3.13) and inverse (4.22).   So, it may be thought – and indeed has been 
thought – that if adding an extra dimension can unify gravitation with electromagnetism, adding 
additional dimensions beyond the fifth might bring in the other interactions as well.  This has been 
one of the motivations for string theory in higher dimensions, which are then compactified down 
to the observed four space dimensions.  But these higher-dimensional theories invariably regard 
the extra dimensions to be spacelike dimensions curled up into tiny loops just like the spacelike 
fifth dimension in Kaluza Klein.  And as we have shown here, the spacelike character of this fifth 
dimension is needed to compensate for the singularity of the metric tensor when 0φ →  which is 

one of the most serious KK problems repaired by DKK.  Specifically, when Kaluza-Klein is 
repaired by being made compatible with Dirac theory, the fifth dimension instead becomes a 
second timelike rather than a fourth spacelike dimension.  So, if the curled-up spacelike dimension 
is actually a flaw in the original Kaluza-Klein theory because it is based on a metric degeneracy 
which can be and is cured by enforcing compatibility with Dirac theory over all five dimensions, 
it appears to make little sense to replicate this flaw into additional spacelike dimensions. 
 

Perhaps the more fruitful path is to recognize, as is well-established, that weak and strong 
interactions are very similar to electromagnetic interactions insofar as all three are all mediated by 
spin-1 bosons in contrast to gravitation which is mediated by spin-2 gravitons.  The only salient 
difference among the three spin-1 mediated interactions is that weak and strong interactions 
employ SU(2) and SU(3) Yang-Mills [29] internal symmetry gauge groups in which the gauge 
fields are non-commuting and may gain an extra degree of freedom and thus a rest mass by 
symmetry breaking, versus the commuting U(1) group of electromagnetism.  Moreover, Yang-
Mills theories have been extraordinarily successful describing observed particle and interaction 
phenomenology.  So, it would appear more likely than not that once we have a U(1) gauge field 
with only the two photon degrees of freedom integrated into the metric tensor in five dimensions 
as is the case for the DKK metric tensors (3.13) and inverse (4.22), it is unnecessary to add any 
additional dimensions in order to pick up the phenomenology of weak and strong interactions.  
Rather, one simply generalizes abelian electromagnetic gauge theory to non-abelian Yang-Mills 
gauge theory in the usual way, all within the context of the DKK metric tensors (3.13) and inverse 
(4.22) and the geodesic equation of motion and Einstein equation machinery that goes along with 
them.  Then the trick is to pick the right gauge group, the right particle representations, and the 
right method of symmetry breaking. 
 

So from this line of approach, it seems as though one would first regard the U(1) gauge 
fields Aγ µ  which are already part of the five dimensional DKK metric tensor (3.13), as non-abelian 
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SU(N) gauge fields i iG T Gµ µ=  with internal symmetry established by the group generators iT

which have a commutation relation ,i j ijk kT T if T  =   with group structure constants ijkf .  Prior 

to any symmetry breaking each gauge field would have only two degrees of freedom and so be 
massless and luminous just like the photon because this constraint naturally emerges from (2.10).  

Then, starting with the metric tensor (3.13), one would replace i iA G T Gγ µ γ µ γ µ=֏  everywhere 

this field appears (with γ  now understood to denote, not a photon, but another luminous field 

quantum), then re-symmetrize the metric tensor by replacing { }1
2 ,G G G Gγ µ γ ν γ µ γ ν֏  because 

these fields i iG T Gγ µ γ µ=  are now non-commuting.  Then – at the risk of understating what is still 

a highly nontrivial problem – all we need do is discover the correct Yang-Mills GUT gauge group 
to use for these Gγ µ , discover what particles are associated with various representations of this 

group, discover the particular way or ways in which the symmetry of this GUT group is broken 
and at what energy stages including how to add an extra degree of freedom to some of these Gγ µ  

or combinations of them to give them a mass such as is required for the weak W and Z bosons, 
discover the origin of the chiral asymmetries observed in nature such as those of the weak 
interactions, discover how the observed fermion phenomenology becomes replicated into three 
fermion generations, discover how to produce the observed (3) (2) (1)C W emG SU SU U⊃ × ×  

phenomenology observed at low energies, and discover the emergence during symmetry breaking 
of the observed baryons and mesons of hadronic physics, including protons and neutrons with 
three confined quarks.  How do we do this? 
 
 There have been many GUT theories proposed since 1954 when Yang-Mills theory was 
first developed, and the correct choice amongst these theories is still on open question.  As an 
example, in an earlier paper [30] the author did address these questions using a (8)G SU=  GUT 

group in which the up and down quarks with three colors each and the electron and neutrino leptons 

form the 8 components of an octuplet ( ) ( )( ), , , , , , ,R G B R G Bu d d e d u uν  in the fundamental 

representation of SU(8), with ( ), ,R G Bu d d  having the quark content of a neutron and ( ), ,R G Bd u u  

the quark content of a proton.  Through three stages of symmetry breaking at the Planck energy, 
at a GUT energy, and at the Fermi vev energy, this was shown to settle into the observed 

(3) (2) (1)C W emSU SU U× ×  low-energy phenomenology including the condensing of the quark 

triplets into protons and neutrons, the replication of fermions into three generations, the chiral 
asymmetry of weak interactions, and the Cabibbo mixing of the left-chiral projections of those 
generations.  As precursor to this SU(8) GUT group, in [31] and [32], rooted in [33], it was shown 
that the nuclear binding energies of fifteen distinct nuclides, namely 2H, 3H, 3He, 4He, 6Li, 7Li, 
7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 14N, are genomic “fingerprints” which can be used to 
establish “current quark” masses for the up and down quarks to better than 1 part in 105 and in 
some cases 106 for all fifteen nuclides, entirely independently of the renormalization scheme that 
one might otherwise use to characterize current quark masses.  This is because one does not really 
need to probe the nucleus at all to ascertain quark masses, but merely needs to decode the mass 
defects, alternatively nuclide weights, which are well-known with great precision and are 
independent of observational methodology.  Then, in [7.6] of [34], the quark masses so-established 
by decoding the fingerprints of the light nucleon mass defects, in turn, were used to retrodict the 
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observed masses of the proton and neutron as a function of only these up and down quark masses 
and the Fermi vev and a determinant of the CKM mixing matrix, within all experimental errors for 
all of these input and output parameters, based directly on the SU(8) GUT group and particle 
representation and symmetry breaking cascade of [30].  So if one were to utilize the author’s 

example of a GUT, the i iA G T Gγ µ γ µ γ µ=֏  in the DKK metric (3.13) would be regarded to have 

an SU(8) symmetry with the foregoing octuplet in its fundamental representation.  Then one would 
work through the same symmetry breaking cascade, but now also having available the equation of 
motion (7.4) and the Einstein equation (10.10) so that the motion for all interactions is strictly 
geodesic motion and the field dynamics and energy tensors are at bottom strictly geometrodynamic 
“marble” rooted fully gravitational curvature. 
 
 In 2019, the scientific community celebrates the centennial of Kaluza-Klein theory.  
Throughout this entire century, Kaluza-Klein theory has been hotly debated and has had its staunch 
supporters and its highly-critical detractors.  And both are entirely justified.  The miracle of 
geometrizing Maxwell’s electrodynamics and the Lorentz motion and the Maxwell stress-energy 
tensors in a theory which is unified with gravitation and turns Einstein’s “wood” tensor into the 
“marble” of geometry is tremendously attractive.  But a theory which is rooted in a degenerate 
metric tensor with a singular inverse and a scalar field which carries the entire new dimension on 
its shoulders and which contains an impossible-to-observe curled up fourth space dimension, not 
to mention a structural incompatibility with Dirac theory and thus no ability to account for fermion 
phenomenology, is deeply troubling.   
 

By using Dirac theory itself to force five-dimensional general covariance upon Kaluza-
Klein theory and cure all of these troubles while retaining all the Kaluza miracles and naturally 
and covariantly breaking the symmetry of the gauge fields by removing two degrees of freedom 
and thereby turning classical fields into quantum fields, to uncover additional new knowledge 
about our physical universe in the process, and to possibly lay the foundation for all-interaction 
unification, we deeply honor the work and aspirations of our forebears who worked toward a 
unified geometrodynamic understanding of nature, as we come upon the Kaluza-Klein centennial. 
 

PART II: THE DIRAC-KALUZA-KLEIN SCALAR, THE HIGGS FIELD, 

AND A THEORY OF FERMION MASSES, MIXING AND WEAK BETA 

DECAYS WHICH RUBUSTLY FITS THE EXPERIMENTAL DATA 
 

11.  Spontaneous Symmetry Breaking of the Massless Luminous Dirac-

Kaluza-Klein Scalar, and Integration to Deduce its Spacetime Behavior 
 
 As we embark upon the theory of fermion masses which will be the focal point of Part II 
of this paper, it is natural and indeed required that we begin with Dirac’s equation 

( )2 0i c mcΜ
ΜΓ ∂ − Ψ =ℏ  from (5.6), because this is the governing equation for fermions in the 

“spacetime plus one” dimensionality of DKK theory.  However, because our interest is in the 

fermion masses m and their related rest energies 2mc , it is best to work from the momentum-space 

Dirac equation ( ) ( )2
0 0mccp U pΜ Σ

ΜΓ − =  of (5.7).  To go from (5.6) to (5.7), recall that we first 
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defined a five-dimensional energy-momentum vector ( )5cp cp cpµΜ =  containing the usual 

four-dimensional ( )cp E cµ = p  plus a brand-new energy-dimensioned 5cp , then used this to 

define a wavefunction ( ) ( )0 exp /U p ip xΣ Σ
ΣΨ ≡ − ℏ .  We then converted (5.6) from configuration 

space to momentum space in the usual way, merely in five dimensions, to obtain (5.7). 
 

 In the context of Dirac’s equation, this newly-defined 5cp play a very similar role to that 

of ( ) 5
M 51/ 2ˆ R̂≡ ΚL  in (10.7) from which the energy tensor was defined in (10.11).  Specifically, 

just as we discarded the “wood” of ML̂  entirely from the action (10.4) and then replaced it with an 

( ) 5
M 51/ 2ˆ R̂≡ ΚL  based entirely on the “marble” 5

5R̂  component that is part of the Ricci scalar 

5
5

ˆ ˆ ˆ ˆR R R Rσ
σ

Σ
Σ= = + , here we will discard the “wood” of the 2mc  in Dirac’s equation and see if it 

can be replaced in some fashion by this new 5cp  about which we presently know little beyond the 

fact that it arises out of the fifth dimension just as does 5
5R̂ , and so has a “marble” character. 

 

 First, leaving pΣ  in ( )0U pΣ  implicitly understood, we swap upper and lower indexes in 

(5.7) and expand using the three-part metric tensor (3.8) as such:  
 

( ) ( )
( )

2 0
0 0 5 0

0 0 5 0 0

5 2

5 5 2

0 j

j j
k j

j

k j

cp U cp cp cp U

E k E cp k cp cp cp

mc c

A mc U

m

Aγ γφ φ φγ γ γ γ γ γ

Μ
Μ= Γ − = Γ Γ Γ −

= −

+ +

+ + + + +
. (11.1) 

 

In the above, 2mc  is the rest energy of the fermion, and it is placed into the Dirac equation “by 
hand.”  It would, however, be very desirable to give this rest mass an interpretation purely in terms 

of the geometry and the 5cp  component of the five-momentum so it need not be entered by hand.  

And it would be even more desirable if the scalar φ  which we now know is luminous and massless 

can be used in a manner analogous to the Higgs mechanism to break symmetry and enable us to 
understand the observed pattern of fermion rest masses and mixing angles. 
 
 Toward these ends, we remove the hand-added mass entirely from (11.1) by setting 

2 0mc = , just as we did with ML̂  from (10.4).  Then, in place of this now-removed “wood” mass, 

we instead use the 5cp  terms in (11.1), by postulate, to define a “marble” fermion mass via the 

eigenvalue relation: 
 

( )5
0 0

2 5 5
0 05 5U cp U cp cmc p Uγ γφ− Γ =≡ + . (11.2) 

 
This is exactly what we did at (10.7) for the matter Lagrangian which defines the energy tensor at 
(10.11), but in the context of Dirac’s equation rather than Einstein’s equation.  By this postulate 

from which we shall now develop the implications, a fermion rest energy 2mc  represents the 

eigenvalues of the operator 5
5

5 0
55cp cp cpφγ γ= − −−Γ .  Not only are 0γ  and 5γ  4x4 Dirac 
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operators as always, but from the result in (8.14), so too is the luminous scalar ABφ φ= .  These 

Dirac indexes highlight some very important points regarding spontaneous symmetry breaking. 
 

At present, it is not known in detail how to arrive at fermion rest masses through 
spontaneous symmetry breaking without putting in mass numbers by hand to determine coupling 
to the Higgs field.  But we do know how to arrive at vector boson rest masses from independent 
couplings, so let’s first review this process as a template for proceeding:  When a scalar field (also 
denoted φ , but not the same scalar as in (8.14)) is used to break the symmetry, for example, of a 

triplet of three weak interaction gauge fields 
aW µ

 in the adjoint representation of a local SU(2) 
Yang-Mills [35] gauge group where 1,2,3a =  is an internal symmetry index associated with the 

SU(2) generators aτ  which have a commutator relation ,a b abc cτ τ ε τ  =   (see section 14.9 of [20]), 

the scalars are placed into the fundamental representation of SU(2) whereby 

( )1 2 3 4
T i iφ φ φ φ φ= + +  is an SU(2) doublet of complex scalars providing four real scalar degrees 

of freedom.  Note that †a aτ τ=  are Hermitian, and that the Yang-Mills gauge fields a aW Wµ µτ≡ .  

This structural matching of the scalars in the fundamental representation of SU(2) with the gauge 
bosons in the adjoint representation of SU(2) enables the scalars to be coupled to the gauge fields 

in the Lagrangian density term 2 † 2 †a a b b
W Wg W W g W Wµ µ

µ µφ τ τ φ φ φ= , which coupling underlies the 

spontaneous symmetry breaking.  If we make the spinor indexes of the fundamental representation 

explicit with A, B, C, all ranging from 1 to 2 for SU(2), this term is really 2 †
W A AB BC Cg W W µ

µφ φ . 

 

With this as a guide, let us restore the Fourier kernel and thus ( )0 exp /U ip xΣ
Σ≡ −Ψ ℏ  as 

specified prior to (5.7), into (11.2).  We know that the Lagrangian density term for a fermion rest 

mass has the form mΨΨ , and we know that the wavefunctions AΨ = Ψ  contain normally-implicit 

Dirac spinor indexes.  So, if we explicitly show the Dirac indexes A, B, C now all ranging from 1 

to 4, from (11.2) we discern that a term 5
0 0

5
A AB BC Ccp cpγ φ γφΨ Ψ = Ψ Ψ  will be part of the 

Lagrangian density.  Importantly, this means that ABφ φ=  in (8.14) couples perfectly to Dirac 

fermion wavefunctions, so symmetry can be broken and the fermions can obtain rest masses.  This 
is just as the scalar Aφ φ=  used to break SU(2) weak interaction symmetry couples perfectly in the 

term 2 †
W A AB BC Cg W W µ

µφ φ  to the gauge bosons for which this scalar is intended to generate a mass. 

  
This means that the seeming “oddity” of the luminous scalar having picked up a second 

rank Dirac structure in (8.14) in order to have / 0d dφ τ =  in (8.1) so that (7.28) can be covariantly 

combined to precisely reproduce the Lorentz force motion (7.25), actually makes perfect sense in 
view of (11.2):  Gauge bosons have a Yang-Mills internal symmetry structure against which the 
internal symmetries of the scalars used to spontaneously break symmetry and give mass to these 
gauge bosons via the Higgs mechanism must be matched, so that the scalars properly couple to the 
bosons.  Likewise, fermions have a Dirac spinor structure (in addition to their Yang-Mills internal 
symmetry structure) against which we have to expect any scalars used to spontaneously break 
symmetry and give mass to the fermions will also have to have to be matched, so that the scalars 
properly couple to the fermions.  So, the luminous scalar (8.14) having a Dirac structure which 
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couples with the Dirac structure of fermions is in precisely the same league as the scalars used to 
break gauge boson symmetries having internal symmetry structure which couples with the internal 
symmetry of the gauge bosons.  And it is in the same league, for example, as having to use a spin 
connection (see, e.g., [36]) for fermions to be able to covariantly couple to gravitation.  So, 
notwithstanding the “oddity” of the scalar in (8.14) picking up a Dirac structure, this luminous 
massless scalar (8.14) turns out to be ready-made for generating fermion rest masses through 
spontaneous symmetry breaking using the Higgs mechanism.  Moreover, if the scalar ABφ φ=  in 

(8.14) did not have Dirac indexes, then it would not be possible to use this scalar to break symmetry 
and provide mass to the fermions.  So, in sum, the sequence of requiring / 0d dφ τ =  at (8.1) to 

match the Kaluza-Klein equation of motion to the Lorentz Force law which ended up causing this 
scalar to take on a Dirac structure, serendipitously caused ABφ φ=  to be ready-made for breaking 

symmetry to reveal fermion masses. 
 
Finally, when we do the accounting for degrees of freedom, the luminous massless scalar 

(8.14) is also perfectly matched to generate fermion masses while also generating a massive Higgs 
boson.  By way of contrast, with a subscript H used to denote the standard Higgs mechanism, a 

scalar which we write as ( )1 2 / 2h h hiφ φ φ= +  used to break a local U(1) gauge symmetry starts 

out with two scalar degrees of freedom provided by 1Hφ  and 2Hφ , with ( )2 21
1 22*h h h hφ φ φ φ= +  

defining a “circle” for symmetry breaking.  One of these degrees of freedom is “swallowed” by a 
gauge boson which starts out massless with two degrees of freedom (see, for example, (2.11b) for 
the photon polarization) and thereby becomes massive by acquiring a longitudinal polarization.  

The other degree of freedom is swallowed by a Higgs scalar ( ),h t x  introduced by the expansion 

( ) ( ), ,h t v h tφ = +x x  about the vacuum vev v, thereby giving mass to that scalar.  The empirical 

observation at CERN of the theoretically-anticipated massive Higgs scalar [37] is perhaps one of 
the most significant scientific events of the past few decades.   

 

Here (8.14) contains the same form of expression ( )1 2 / 2iφ φ+  used in the Higgs 

mechanism.  Likewise, ( )2 21
1 22 φ φ+  defines the circle for symmetry breaking as seen explicitly in 

(8.15), where a gradient ( )2 2
1 2φ φΣ∂ +  also appears.  So, these fields 1φ  and 2φ  carry two degrees 

of freedom available to be “swallowed” by other particles during symmetry breaking via the 
Goldstone mechanism [38].  But there are two important differences from the simple 

( )1 2 / 2h h hiφ φ φ= +  of the standard model, which we shall now study:  First, (8.14) has an 

additional phase angle θ ω= Τ , which can be oriented in any direction as an additional aspect of 
symmetry breaking and used to provide a two additional degrees of freedom which can also be 
swallowed by other particles, and will be swallowed by fermions.  Second, 1φ  and 2φ  in (8.14) are 

presently-dimensionless, whereas the usual Higgs scalars, ( )1 2 / 2h h hiφ φ φ= +  have energy 

dimension and so can be connected with ( ) ( ), ,h t v h tφ = +x x  following symmetry breaking to 

create a scalar field expansion about the Fermi vacuum.  This yields a Lagrangian term 2 2v hλ−  

which, by comparison to the expected mass term form 2 4 21
2 hm c h− , “reveals” a Higgs rest energy 
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2 22hm c vλ= , see sections 14.6 through 14.8 in [20].  So, we will need to find a way to introduce 

an energy dimensionality for the fields in to (8.14), which we shall do shortly. 
 
These two extra degree of freedom is advantageous, because with four degrees of freedom 

rather than two, we have the means to add two degrees of freedom to a fermion to provide it with 
mass in a gauge-symmetric fashion, and we still have two degrees of freedom left to provide mass 
to the scalar itself and so produce the massive Higgs boson of the standard model, and well as to 
provide mass to a gauge boson.  Specifically, it is well-known that any hypothetical “massless” 
fermion would carry two degrees of freedom and be fully chiral:  Consider that a generation ago, 
when neutrinos were thought to be massless before this was disproven by leptonic neutrino 

oscillations, the massless ( )51
2 1Lv vγ= −  would have had only two degrees of freedom, with right-

chirality nonexistent.  This was the basis, for example, for the Georgi-Glashow GUT model [39] 

which entirely discarded ( )51
2 1Rv vγ= + .  So, for (8.14) to generate a fermion mass for an initially-

massless chiral fermion, it is necessary that both degrees of freedom from represented by θ ω= Τ  
in (8.14) go into the fermion, so that the fermion can be bumped up from two to four degrees of 
freedom and acquire a mass.  

 
With this overview, we now proceed with some further calculations.  First, starting with 

the Dirac equation (11.1) we initially remove the hand-added 2mc  and so write this as the entirely 

geometric 00 cp UΣ
ΣΓ= .  Then we reintroduce the mass term, but using (11.2), thus:  

 

( ) ( ) ( )2 5 5
5

5
0 0 0 5 0 00 cp U cp cp U cp U cp cp cp Umcσ σ

σ σ
σ

σ γ φγΣ
Σ= = + +Γ Γ Γ = Γ − Γ += . (11.3) 

 
This is precisely analogous to how we went from (10.4) to (10.8) for the Einstein-Hilbert action.  
The fermion mass term is no-longer hand-added, but rather, originates in the fifth-dimensional 

operator 5
5cpΓ .  It makes its usual appearance in the form of ( )2

00 mcp Ucσ
σΓ −=  when the fifth-

dimensional 5
5cpΓ  is replaced by 2mc−  via (11.2).  So, the momentum space Dirac equation (5.7) 

becomes 0 0cp UΣ
ΣΓ =  and the configuration space equation (5.6) becomes 0i c Μ

ΜΓ ∂ Ψ =ℏ , now, 

importantly, without a hand-added mass. 
 
 Next, let us use the anticommutator (3.1) for three interdependent calculations, starting 
with 0 0cp UΣ

ΣΓ =  and 0 0
2cp U Umcσ

σ =Γ  and 5
0 0

2
5cp U Umc=Γ  all of which are contained in 

(11.3), and the last of which is also (11.2).  In all cases, we “square” the operators using the 
anticommutator, strip off the operand, and apply (3.1) to obtain, respectively: 
 

{ }1
2 , 0cp cp cp cp G cp cpΜ Ν Μ Ν Μ Ν

Ν Μ Ν ΜΝΜ = =Γ Γ Γ =Γ , (11.4a) 

 

{ } 2 41
2 ,cp cp cp cp G c cc mp pµ ν µ ν µ ν

µνµ ν µ νΓ Γ =Γ Γ= = , (11.4b) 

 
5 5 5 5

5
2 4

5 55cp cp G cp cp m cΓ =Γ = . (11.4c) 
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Note that 2 4G cp cp m cµ ν
µν =  in (11.4b) is just the usual form of the relativistic energy momentum 

relation prior to applying local gauge symmetry.  Expanding (11.4a) in two-part form, we obtain: 
 

5 5 5
5 5520 G cp cp G cp cp G cp cpµ ν µ

µν µ= + + , (11.5) 

 
which we may then combine with (11.4b) and (11.4c) to write the chain of relations: 
 

5 5 5
55

2 4
5G cp cp G cp cp G cp cpm c µ ν µ

µν µ= = = − . (11.6) 

 
As we shall see in section ???, (11.6) can be used to derive Weyl’s local U(1) gauge theory [5], 
[6], [7] from Kaluza-Klein theory, but for the moment, we remain focused on spontaneous 
symmetry breaking to generate fermion rest masses. 
 

Equation (11.4a), which is the anticommutator “square” of 0 0cp UΣ
ΣΓ =  with a geometric 

“marble” fermion mass, leads to a very interesting and important consequence for the five-
dimensional metric line element Sd cd= Τ  defined by: 
 

2 2c d G dx dxΜ Ν
ΜΝΤ ≡ . (11.7) 

 
Specifically, if we further define the five-momentum in terms of mass and motion in the usual way 

by 2 /cp mc dx cdτΜ Μ≡  where 2 2c d G dx dxµ ν
µντ ≡  is the four-dimensional line element, and if we 

then multiply (11.7) above through by 
2 4 2 2/m c c dτ , we obtain: 

 
2

2 4 2 2

2

d dx dx
m c G mc mc G cp cp

d cd cdτ τ τ

Μ Ν
Μ Ν

ΜΝ ΜΝ
Τ = = . (11.8) 

 
Then, comparing (11.8) with (11.4a) which is equal to zero and identical to (11.8), and presuming 
non-zero 0m ≠  and 0dτ ≠ , the five-dimensional infinitesimal line element must also be zero: 
 

S 0d cd= Τ = . (11.9) 
 
This is a very important and useful result, and it is one of the direct consequences of the postulated 
eigenvalue relation (11.2) to define the fermion rest mass out of the “marble” of geometry rather 
than hand-added “wood.”  This means that with “marble” fermion masses, the five-dimensional 
metric line element (11.7) is null 0G dx dxΜ Ν

ΜΝ =  and the five-dimensional relativistic energy 

momentum relation 0G cp cpΜ Ν
ΜΝ =  is akin to that of a zero-mass body.  This may be thought of 

as a form of five-dimensional masslessness and luminosity, which in four spacetime dimensions 
nevertheless reveals massive, subluminal material bodies. 
 

Our first use of this result, will be to break the symmetry of the sine and cosine terms in 
(8.14) for the Kaluza-Klein scalar ABφ φ=  .  In this regard, what we learn from (11.9) is that any 

finite five-dimensional proper metric interval 
0 0S S Sc d cd c= Τ = = Τ = = Τ   obtained from 
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integrating (11.9), whether of length or time dimensionality, must be equal to zero plus a constant 
of integration 0 0S c= Τ .  And this in turn means that Τ in the ωΤ  terms of (8.14) is zero up to a 

constant of integration, and specifically, that 00Τ = + Τ .  So, we now wish to use this finding to 

break symmetry in the most advantageous way possible. 
 

Toward this end, starting with ( )cos ωΤ  in (8.14), let us break the symmetry in the plane 

of the angle θ ω= Τ  by imposing the symmetry-breaking constraint ( )cos 1ωΤ ≡ .  This of course 

means that 0 2 nω ω πΤ = Τ =  is quantized, with ( )0, 1,2,3...n = ±  being any integer.  Using c ω= Ż  

which we can do because φ  in (8.14) is massless and luminous, and also 2λ π= Ż , this constraint 

2 nω πΤ =  is alternatively formulated in terms of the five-dimensional space-dimensioned finite 
proper length element S c nλ= Τ =  which is essentially quantized units of five-dimensional length 

set by λ .  As well, this means that ( )sin 0ωΤ = , but we need to be careful because there is also a 

cΤ  in the denominator of the ( )sin ωΤ  term in (8.14).   

 

So, for ( )sin ωΤ , we insert the same 0 2 nω ω πΤ = Τ = , then use c ω= Ż  and 2λ π= Ż , thus: 

 

( ) ( ) ( )sin sin 2 sin 2
2

x x x
i i n i n

c nc n

ωω π π
π λ

Σ Σ Σ
Σ Σ ΣΓ Γ Γ− Τ = − = −
Τ

. (11.10) 

 
If we select 0n =  which produces a 0 / 0 , then we deduce from the top line of (8.13) that (11.10) 

will be equal to /i xΣ
Σ− Γ Ż  and not be zero.  But for any other integer 0n ≠ , the above will be 

equal to zero.  So, we break symmetry by restricting n to a non-zero integer ( )1,2,3...n = ± .  With 

this final constraint (11.10) does become zero and (8.14) reduces to: 
 

( ) 1 2
1 2

1 2

1
exp

2

i
i x

i

φ φφ φ φ
φ φ

ΣΣ Σ ∂ + ∂= + − + 
. (11.11) 

 

Having used S c nλ= Τ =  to break symmetry with ( )1,2,3...n = ±  being a positive or negative non-

zero integer, we see that finite five-dimensional proper lengths are quantized integer multiples of 
the wavelength λ  first specified in (8.5) for the luminous Kaluza-Klein scalar field φ .  This 

follows a long tradition of quantization based on wavelength fitting which started with Bohr [40] 
and culminated with DeBroglie [41]. 
 

Importantly, with (11.11) we need no longer be concerned with the Dirac operator matrix 

ΣΓ  in φ , because we have broken symmetry so as to effectively diagonalize the operation of this 

operator and remove it from explicitly appearing in (11.11).  We do however need to be mindful 
that in breaking symmetry in this way, we have eliminated any overt appearance of the scalar 
frequency / 2f ω π=  or wavelength 2λ π= Ż  or energy hf ω= ℏ  of the scalarφ , which were overt 

in (8.14).  Particularly, we have hidden the dimensionless ratio /x λΣ  in (11.10).  This does not 
mean that the scalar no longer has a frequency or wavelength or energy or even an internal Dirac 
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structure.  Rather, it means that the symmetry breaking has hidden these attributes.  Also, 
importantly, the spontaneous non-appearance of this operator and its two degrees of freedom in 
(11.11), is the mechanism by which these degrees of freedom have now been swallowed by a 
fermion to provide it with a mass. 
 

 We complete the symmetry breaking in the usual way by again noting that 2 2
1 2φ φ+  seen 

in (8.15) defines a symmetry breaking circle, and by orienting the scalar in this circle by setting 

2 0φ =  in the customary manner.  This further reduces (8.14) to its final symmetry-broken form: 

 

1
1

1

1
exp

2
x

φφ φ
φ

ΣΣ ∂= − 
 

. (11.12) 

 
 Now let us return to (11.2) where we defined the fermion rest mass strictly in terms of the 

geometry of 55 0γ γφΓ = +  and the fifth-dimensional component 5cp  of the energy-momentum 

vector.   Into (11.2) we now insert the symmetry-broken (11.12) and restructure, to obtain: 
 

1
5 1 0 0

1

5 5 21
0 exp

2
mccp cp x U

φγ φ γ
φ

ΣΣ 
=   
 

∂+ − + 
 

. (11.13) 

 
Of special interest in (11.13), is that whereas the Kaluza-Klein scalar φ , thus 1φ , has all along been 

physically dimensionless, in (11.13) this has now become multiplied by 5cp  which has dimensions 

of energy.  This means that 5
1cp φ  now has precisely the same characteristics as 1hφ  in the scalar 

field ( ) ( )( )1 2 1/ 2 / 2 / 2h h h hi v h xµφ φ φ φ= + = +֏  employed in standard model Higgs field 

symmetry breaking.  Specifically, being an energy-dimensioned scalar field, 5
1cp φ  now presents 

the opportunity for a connection with the standard model Higgs field h. 
 
 To pursue this possibility, we first use the Dirac representation of γ Μ  to write (11.13) as: 

  

2 5 5

5 2 5

1
1 0

1

1
01

1

1
exp

2
0

1
exp

2

A

B

cp x cp U

Uc

mc

pcp xm c

φφ
φ

φφ
φ

ΣΣ

ΣΣ

  ∂−  
  =   ∂ −  

  

+  
 
 
 −  

. (11.14) 

 
The eigenvalues are obtained by setting the determinant of the above matrix to zero as such: 
 

( ) ( )
2

22 5 52
1

1

1

1
exp 0

2
cp cpmc x

φφ
φ

ΣΣ
  ∂− − =  

  
− . (11.15) 

 
Restructuring and taking both the ±  square roots, we then obtain the eigenvalues: 
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( ) ( )2
1

1

2 2

1
5 51

exp
2

c pmc p c x
φφ

φ
ΣΣ ∂± = − 

 
− . (11.16) 

 

The above now presents a differential equation for 1φ  as a function of the five-dimensional xΣ . 

 
 It is important to note that although obtained from (11.13) which is a Dirac-type operator 
equation, the resulting (11.15) applies to fermions and bosons.  Consider by way of contrast the 

ordinary Dirac equation in momentum space written as 2cp u mc uµ
µγ = , which is analogous in 

form to (11.2) which became (11.13) in view of (11.12).    When we take the anticommutator 

square of the usual momentum space Dirac equation we find { } 2 41
2 , cp cp cp cp m cµ ν µν

µ ν µ νγ γ η= =  

which, of course, is the relativistic energy momentum relation that applies to both fermions and 

bosons.  Of course, the historical sequence is that Dirac started with 2 4cp cp m cµν
µ νη =  as a given, 

then discovered the operator matrices defined by  { }1
2 ,µ ν µνγ γ η≡  which enabled this relation to 

be deconstructed into its operator square root ( )2 0cp mc uµ
µγ − = .  In terms of its applicability to 

bosons as well as fermions, (11.15) is analogous to 2 4 2 2 2 2 4 0cp cp m c E c m cµν
µ νη − = − − =p  

insofar as it also contains a Pythagorean sum of numbers with dimensions of energy-squared.  

Then, (11.16) is simply a square root analogous to the pre-Dirac square root 2 2 2 2E c mc− = ±p  

of the relativistic energy-momentum relation.  As such, it too applies to both fermions and bosons.  
 
 To solve equation (11.16), we restructure a bit further, then take the natural log of both 

sides, then use the identity ( )ln ln lnAB A B= +  to obtain: 

 

( ) ( )2

1 1

2

1

1

2 5

5 1

1

2
ln ln exp ln

cp
x

mc
x

cp

φ φφ φ
φ φ

Σ ΣΣ Σ

 
  ∂ ∂ ± = − = −     

  
 

−


. (11.17) 

 

Then we isolate the rightmost term in the above, use / xΣ
Σ∂ = ∂ ∂  and twice use 

( )ln ln ln /A B A B− = , then further simplify, as such: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

1
1

2 22

1

5 2 5

5 5

2

1

2

1

2 5 5

2 21
ln ln ln

ln 2 ln

mc mc

m

cp cp
x

x cp cp

cp cpc

φ φ
φ φ

φ

Σ
Σ

   
∂    − = ± − = ±   ∂    

   

 = ± −


− 

−



−

. (11.18) 

 
Then we convert d∂ →  and finally restructure this into: 
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( ) ( ) ( )
1

2 5 1
1

22 5

1 1 1

ln 2 lnmc

dx d
x

cp cp

φ
φφ

Σ
Σ = −

  − 
 

−±
. (11.19) 

 
 Now, we place an indefinite integral sign to operate on each side.  And, to simplify the 

integration, we briefly define the substitute variables 1y φ≡ , ( ) ( )22 25ln 2 mcA cp
 ≡ ± − 
 

 and 

5B cp≡ .  Then we carry out the integration.  Prior to the equal sign we employ an integration 

constant defined by ( )5ln 1/C L≡  with 5L  being a constant that has dimensions of length to the 

fifth power.  Then we conclude by replacing the substitute variables.  With all this we obtain: 
 

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

0 1 2 3 5
0 1 2 3 5

0 1 2 3 5 5

0 1 2 3 5

5

1
222 5 5

22 5 5

1
1

2

1

1 1
ln ln ln ln ln ln

1 1
ln ln ln

ln

1 1

ln 2 ln

ln ln 2 ln

dx dx dx dx dx
dx x x x x x

x x x x x x L

x x x x x
dy A By

L A By y

d

cp cp

cp cp

mc

mc

φ
φφ

φ

Σ
Σ

 
= + + + + = + + + + + 

 

 
= = − = −  − 

= −
 ± − − 
 

  = ± − −  
  

 




. (11.20) 

 

The middle line includes using the generalized ( )( )( ) ( )( )1/ ln ln lnA By y dy A By C′− − = − + .  

But this integration constant C ′  is not needed because we have separately used ( )5ln 1/C L≡  to 

integrate the left side of (11.19). 
 

 The upshot, now exponentiating each side and again using ( )ln ln ln /A B A B− = , is: 

 

( ) ( ) ( ) ( ) ( )2
0 1 2 3 5

2

15

22 5
22 5

1

5

5

2
ln 2 ln ln

mc cpx x x x x
cp cp

L cp
mc φ

φ

 −  = ± − − = ±      
 

. (11.21) 

 
Exponentiating one final time, then isolating the energy-dimensioned field 5

1cp φ  which we seek 

to connect to the standard model Higgs field as discussed following (11.13), the final result is:  
 

( ) ( ) ( )
0 1 2 3 5

2

1 5

25 2 52 exp
x x x x x

cp x cp
L

mcφ Μ  
= ± − − 

 
. (11.22) 
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The numerator inside the exponent, which we denote in consolidated form as ( )
0 1 2 3 5

5
V x x x x x≡ , is 

a five-dimensional volume with dimensions of length to the fifth power.  Because the argument of 
the exponential is required to be dimensionless, this means that the constant of integration 

embodied in 5L  is likewise required to have dimensions of length to the fifth power.  This is the 
first of several “initial conditions” we will utilize to determine this integration constant.  The above 

(11.22) directly tells us how the Dirac-Kaluza-Klein scalar, now broken to ( )1 xφ Μ , behaves as a 

function of the spacetime-plus-one coordinates.  As we shall see in section 13, this result will play 
a central role in describing how fermions extract energy from the Fermi vacuum via the Higgs 
mechanism to obtain their rest masses.  Again, as we pointed out following (11.16), this equation 
applies to both fermions and bosons. 
 

12.  The Fifth-Dimensional Component of the Dirac-Kaluza-Klein Energy 

Momentum Vector 
  

As discussed following (11.13), the fact that the dimensionless 1φ  is now multiplied by the 

energy-dimensioned ( )2 55 /cp mc dx cdτ=  in (11.22) presents an opportunity to connect 5
1cp φ  

with the standard model Higgs field h.  So, the next step is to obtain a direct expression for 5cp  

which, of course, is the fifth component of the energy momentum ( )5cp cp cpµΜ =  first defined 

following (5.6).  To directly study 5cp , recall that (7.27) connects electric charge to motion in the 

Kaluza-Klein fifth dimension.  So, using 5 2 2/ /dx cd q mckτ φ=  from (7.27), and also “borrowing” 

k based on the standard Kaluza-Klein theory from (1.2), we obtain: 
 

2
5

2 2

5
2

2
ekq qdx

cp mc
c Gd

c

kφ φτ
= = = . (12.1) 

 
Formally speaking, we have not yet proved that (1.2) is the correct value of k for the DKK 

metric tensor (3.13).  Rather, we have borrowed the value for k which is determined using the 
ordinary Kaluza-Klein metric tensor (1.1) in the five-dimensional Einstein equation.  When this 
calculation is carried out, included amidst the expressions obtained is the term combination  

1
4g F F g F Fαβ αβ

µα νβ µν αβ−  recognizable as the body of the Maxwell stress-energy tensor, see, e.g. 

[11].  Then, the definition (1.2) is required to match this body with its correct coefficients in the 
stress-energy.  However, the DKK metric tensor does not omit any of the terms in (1.1).  Rather, 
referring to (3.11) for g ηΜΝ ΜΝ=  in view of 0 0Aγ = , it merely adds terms while fixing the gauge 

field via A Aµ γ µ֏  to that of the standard model photon.  In particular, it adds a 1 to 2φ  in 55G , 

and it adds a φ  to 0 0Aγ =   in 05G , while fixing A Aµ γ µ֏ .  Moreover, we proved in section 7 how 

the field strength F A Aµν µ ν ν µ= ∂ − ∂  appears in the DKK equation of motion just as it does in 

ordinary Kaluza-Klein theory following the gauge transformation v vF Fγ µ µ→  reviewed prior to 

(7.11), and at (7.27) how electric charge becomes connected to fifth-dimensional motion in the 
exact same way.  There are additional terms in DKK, but no terms are lost.  So, there is every 
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reason to expect that the exact same stress energy body 1
4g F F g F Fαβ αβ

µα νβ µν αβ−  will appear when 

the DKK metric tensor (3.13) is used in to obtain the energy tensor via (10.18), and that k will 
likewise turn out to be exactly the same as in (1.2).  It is for this reason, in advance of a detailed 
calculation of the five-dimensional Einstein equation using the DKK (3.13) which will be the 
subject of a subsequent paper, that we “borrow” k from (1.2).  But we shall also continue to show 
k in our calculations, in order to also obtain results that apply without this borrowing. 
 
 Proceeding on this basis, we combine (12.1) with 5 2

5
45

5G cp cp m c=  from (11.4c) and 
2

55 1G φ= +  from (3.11) for g ηΜΝ ΜΝ= , and also borrow (1.2), to obtain: 

 

( ) ( )
422

5 5 2 2
5

4

45
2

4 2
1 1

4
eqq

G cp cp
k

k c
m c

Gφ
φ φ

φ
= + = + = . (12.2) 

 

This easily restructures into a quadratic for 2φ , which we write as: 

 
2 4 2

2

2

4 4
2

2

2
0 1 4 1

e

m c Gm

k

k

q q
φ φ φ φ= − − = − − . (12.3) 

 
We see that this includes the very small dimensionless ratio 22 / eGm k q  of gravitational-to-

electrical interaction strength for a charge q with mass m. 
 
 The next step is to solve the quadratic equation for (12.3).  But first, because q and m in 
(12.3) are the charges and masses of individual fermions given the genesis of (12.3) in the DKK 
momentum space Dirac equation (11.3), it will be helpful to rewrite this ratio to facilitate 
downstream calculation.  First, we observe that q Qe=  for any individual fermion, where Q is the 

electric charge generator for that fermion, and where the charge strength e is related to the 

electromagnetic running coupling by 2 /ek e cα = ℏ , with 1 / 137.035999139α =  being the low-

probe value of the running fine structure number as reported in [21].  The charge generator 1Q = −  

for the , ,e µ τ  leptons, 2 / 3Q = +  for the u, c, t quarks and 1/ 3Q = −  for the d, s, b quarks, and has 

reversed signs for the antiparticles.  Also, we note that the Planck mass 

( ) 19 21.220 910 29  1 0  GeV /PM c= ×  using the value reported in [42], see also [43], is defined as 

the mass for which the coupling strength 2
PGM c≡ ℏ .  Therefore, we may calculate that the ratio 

22 / eGm k q  in (12.3) may be rewritten as: 

 
2 2 2 2 2

2 2 2 2 2 2 2 2
e e P P

Gm Gm Gm Gm m

k q Q k e Q c Q GM Q Mα α α
= = = =

ℏ
. (12.4a) 

 
The square root of this will also be of interest.  We write this as: 
 



Jay R. Yablon, January 9, 2019 

71 
 

2

2
e e e P

Gm G m G m Gm m

k q k q k Qe Q c Q Mα α
= = = =

ℏ
 (12.4b) 

 
without the ±  that regularly arises when taking a square root, because masses such as m and PM  

are always taken to be positive numbers, because α  is always taken to be a positive 

dimensionless measure of charge strength, and because it is important to maintain the proper 
positive or negative sign for Q without washing it out with a ± .  The above enables us to readily 
use each fermion’s / Pm M  ratio, as well as to directly account for its positive or negative Q. 

 
 Solving (12.3) with the quadratic equation, and using (12.4), the positive and negative roots 
in several modes of expression are found to be at: 
 

2 22 4 2 2
2

2 4 2 22 2 2 2

22 2

2
16 16

8
1 1 4 1 1 1 1

2 8
e P

e P

k Q Mm c Gm m

m c Gm k m Q

qq k

k q Mq

αφ
α±

     
= ± + = ± + = ± +     

     
     

. (12.5) 

 

Placing these two root solutions into 2φ  in (12.1) we obtain two corresponding solutions for 5cp , 

also in several modes of expression: 
 

2 4 2 2 2
5

22 4 2

22

22

2 2

2
4 4

1 1 4 1

1

16 11 1 1 6
e P

e P

k
c

m c Gm mc m mc

k q Q Mm c G
p

q k

q q

m m

k Q M

α
α

± = = =
± + ± + ± +

 (12.6) 

 

Applying what we now write for both solutions as ( )2 55 /cp mc dx cdτ± ±= , it is also helps to obtain: 

 
2 2

2

5

2 4 2 2

2 2

2

2 2

2
4 4

1 1 4 1

1 1 1

6 1 61 11 1
e P

e P

mc Gm m

k q Q Mm c

d

Gm m

k Q M

x k

cd q k

q q

ατ
α

± = = =
± + ± + ± +

 (12.7) 

 
for the “motion” 5 5/ /dx cd dt dτ τ± ±= , which is really a rate of time progression through the 

timelike fifth DKK dimension.  Also, because the DKK metric tensor component 2
55 1G φ= +  for 

g ηΜΝ ΜΝ= , see (3.11), which we therefore now write as 2
55 1G φ± ±= + , it is also useful to employ 

(12.5) to write these two solutions as: 
 

2 4 2

55 2 4 2

2 2 2

22 2
2

2 2

2 2 2

2
1 1 1 1 4 1 1 16

16
8

1
2 8

1 1 1

e

e

P

P

km c Gm
G

m c Gm k

Q M m

m Q

qq k

M

k q q

α

φ

α

± ±

   
= + = + ± + = + ± +   

   
   

 
= + ± + 

 
 

, (12.8) 
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 Now, the ratio 2 2 2 2216 / 16 / 1e PGm Qqk m Mα= ≪  inside the radicals above is a very small 

number for all of the elementary fermions with an electrical charge 0Q ≠ , because the ratio 
2 2/ Pm M  is on the order of 

4010−
 for all of the known fermions.  Moreover, even if we had not 

“borrowed” from (1.2), we likewise expect 22 4 24 / 1km qc ≪  to be a very small number.   

Therefore, we can use the first three terms of the series expansion 2 2 41 1
2 81 1x x x+ = + − +…  in 

each of (12.5) through (12.7) to a very close approximation, to obtain: 
 

2 4 2
2

2 4 2 4 2 2

2 2 2 2 2

2 2

2 22 2 2

2 2 2 2

2 2

1
2 8 8

1

1

2
4

4

e e

e

P P

P

k km c Gm

m c m c Gm Gm

q qq q k

k k q k

Q M Q M m

m Q

q

m M

φ

α α
α

± + − +… + − +
  

= ± = ±   
 

…

+ − +

 


± …


=  

 

, (12.9) 

 
2 4 2 2

5

22 22 4 2 4 2 2

2

2
2 2

2 2 2 2

2 2

2 2 2 2

1

1 2 2 1 8 32
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Q

q q

M Q

q

M
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α α

±
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± ±  
 

=
 

±  


    

 
 + − +…

  

, (12.10) 

 
5
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2
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1 1

1 2 2 1 8 32
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1 1
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4

1

e

e e
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q

mc Gm

k qm c m c Gm Gm

k k

m

Q M m m

Q M Q

q q

M

q

τ

α
α α

± = =
 

±
    
   + − +… + − +…        

 
 + − +…

±  
 

=
 

± 
  

 

. (12.11) 

 
 Now let’s consider the separate ±  solutions originating when we applied the quadratic 

equation to (12.3), as well as certain inequalities.  Using 22 / 1Pm M ≪  which is valid to a 1 part 

in 1040 approximation, (12.9) separates into: 
 

2 2
2

2 4

22

2 2 2

2 4 2
2

2

22 2

1
4 4

1 4 11

e P

P

k Q M

m c Gm m

m

qq

k

k

q

c m

Q M

αφ

φ
α

+

−

≅ = =

≅ − + = − + ≅ −

≫

. (12.12) 

 

Likewise, also using ( )1/ 1 1x x− ≅ +  for 1x≪ , (12.10) separates into: 
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2 4 2

5 2 2 2 2 2

2
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2 2

2
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1 1

2 2

1

1

2

e P P

e P
P
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k Q M
mc mc Q M c mc

mc Gk mm

α α

α α

+

−

≅ = = =

≅ − = − = − = −

≪

≫

. (12.13) 

 
And for (12.11) we similarly obtain: 
 

5

25

2 2

2

2 4 2

2 2

1 1
1
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1
e P

e P

dx k

cd q

qdx q

c

mc Gm m

k q Q M

k Q M

m c Gmd k m

τ α

τ
α

+

−

≅ = =

≅ − = − = − ≫

≪

. (12.14) 

 
Also, because the DKK metric tensor component 2

55 1G φ= +  for g ηΜΝ ΜΝ= , see (3.11), which 

we wrote as 2
55 1G φ± ±= +  at (12.8), it is also useful to use (12.12) to write the two solutions as: 

 
2 2 2 2

55 2 4 2 2 2

2

2

4 2

2
2

2

55 2

2

2
2

2 22

4 4 4
1 1 1 1 1

0 41 4 1
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e P

k Q M Q M
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m c Gm m m

m c Gm m
G

k Q

qq
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k

q Mq

α αφ

α
φ

+ +

− −

= + ≅ + =

<

+ = + ≅

= + ≅ = = ≪

≫

. (12.15) 

 
Note also, referring to (3.11) through (3.13), that (12.12) can be used in the 5 5G Gµ µ=  metric 

tensor components.  With 20/ 10PM m ≅  roughly, 5 20/ 10dx cdτ− ≅  in (12.14) reproduces the usual 

result from ordinary Kaluza-Klein theory, see toward the end of [12], in which the “movement” 
through the now-timelike fifth dimension is very rapid.  Reciprocally, 55G −  is very small, on the 

order of 2 2 40/ 10Pm M −≅ , yet still retains a timelike rather than a spacelike signature.  Therefore, 
5 5/ /dx cd dt dτ τ− −=  is a very rapid rate of fifth dimensional time flow, and not a space velocity 

on the order of 2010 c .  Taken together, the upper result 4
55

010 1G + ≅ ≫  can be thought of as 

embodying in the DKK metric tensor, how in the Fermi vacuum the electromagnetic interaction is 

inordinately-stronger than the gravitational interaction, while the later result 5
40

5 100 1G −
−< ≅ ≪  

embodies how the Fermi vacuum is inordinately-less-energetic than the Planck vacuum. 
 
 Finally, we insert the next-to-last expression from the two quadratic solutions (12.13) into 
(11.22) which was the final result in the last section, and likewise split this into: 
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c
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m
c M c Q

L L

αφ
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α

φ+
+

−
−

    
= ± − − ≅ ± −     

    

    
= ± − − ≅ ± −     

    

. (12.16) 

 
Recall again that these two solutions for 1

5cp φ+  and 1
5cp φ−  contain the two root solutions obtained 

starting at (12.5), to the quadratic (12.3).  Above, we also split the integration constant into L± , 

allowing for this to also be different for each of the two solutions.  Note that the upper (+) solution 

above is independent of the fermion charge generator Q and α , while the lower (–) solution is 

not.  However, the lower solution is independent of the fermion rest mass while the upper is not.  
As we shall see in the next section, the former solution applies in the Fermi vacuum with an energy 

vev 246.2196508 0.0000 GeV633v ±=  rooted in the Fermi coupling via ( )322 FG v c= ℏ  [21], while 

the latter applies in the Planck vacuum in which the Planck energy 2 191.220 910 1 0  GeVPM c = ×  

[43] is established from the Newton coupling via 2
PGM c≡ ℏ .  As with (11.22) upon which it is 

based, the above applies to both fermions and bosons.  Now, we have all that is needed to connect 
all of this to the standard model Higgs field. 
 

13.  Connection between the Dirac-Kaluza-Klein Scalar and the Higgs Field, 

and the Extraction of Energy from the Higgs Field by the Top Quark 
 

 At the outset it should be noted that ( )1
5cp φ+ X  and ( )1

5cp φ− X  in (12.16) are both energy-

dimensioned scalar fields, as is the Higgs field ( )h X .  Inside the exponential ( )
0 1 2 3 5

5
V x x x x x=  is 

a five-dimensional volume element.  As to the ratio ( )
5 0 1 2 3 5 5

5
/ /V L x x x x x L±= , recall that 5L±  arose 

at (11.20) via the constant of integration ( )5ln 1/C L≡ .  So, like any integration constant, it must 

be determined by suitable “initial conditions.”  Consequently, the length-to-the-fifth power 

dimensionality of 5L  was required as an “initial condition” to provide a proper dimensionless ratio 
inside the exponential in view of ( )5

V  also having a fifth-order length dimension. 

 
Another “initial condition” we now impose on this integration constant is that the overall 

ratio ( )
5

5
/V L  in (12.16) must be invariant under rotations and boosts, which are linear, not general 

coordinate transformations.  This is simply a requirement for symmetry under six of the ten 

parameters of the Poincare group.  The reason for this is to ensure that ( )0 1 2 3 5 5exp /x x x x x L±−  and 

therefore the 1
5cp φ±  in (12.16) do not change simply because we rotate or boost the observational 

coordinate system.  This in turn means that when the coordinate system is changed, 5L  must rotate 
and Lorentz transform in exactly the same manner as  ( )5

V .  To enforce this symmetry, we keep in 

mind that this exponential ( )0 1 2 3 5 5exp /x x x x x L±−  emerged from (11.12) following integration, 
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and originated in the Fourier kernel ( )exp /is xΣ
Σ− ℏ  in (8.7).  And, we note that /sΣ ℏ  inside the 

original kernel can be used to define a wavevector  /k sΣ Σ≡ ℏ  with dimensions 1/length, in which 

event the kernel becomes ( )exp cos sinik x k x i k xΣ Σ Σ
Σ Σ Σ− = − .  Rotation and boost symmetries are 

then naturally achieved by the construction of k xΣ
Σ , because while xΜ  is not a vector under 

general coordinate transformations, it is a vector under the linear transformations of rotations and 

boosts, so that k xΣ
Σ  is likewise a scalar under the same linear transformations.  If we also add a 

phase symmetry for these kernel waves – effectively translational invariance – we complete the 

Poincare group.  Moreover, in the five DKK dimensions, we add one time rotation between 0t  and 
5t , three more Lorentz boosts between each of the three space coordinates and 5t , and one more 

translation through 5t , so that the Poincare group now has fifteen (15) parameters.   
 

With all this in mind, we expect that to maintain Poincare symmetry in (12.16) each of the 

five L in 5L  will be in the nature of one component of a five-dimensional wavevector k Μ  with 

1/length dimensionality.  Then, ( )
5

5
/V L  will take the form of a product of the five terms in k xΣ

Σ , 

that is, ( ) ( )5 0 1 2 3 5
0,1,2,3,5 0 1 2 3 55

/V L k x k k k k k x x x x xΣ
Σ= Σ= Π = .  This product of course, is merely what 

emerged at (11.20) during integration from what was originally the ( )exp ik xΣ
Σ−  kernel.  So, 

( ) ( )
5 0 1 2 3 5 5 0 1 2 3 5

0 1 2 3 5 0 1 2 3 55 5
/ /V L k k k k k x x x x x V L k k k k k x x x x x′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= → =  becomes the required 

symmetry under coordinate rotations and boosts.   Again, all we have done here is simply impose 
“initial conditions” on the constant of integration in (12.16) to require a) proper physical 
dimensionality and b) rotational and Lorentz symmetry. 

 

Now, for a wavevector ( ) ( )/ / 1/k c cσ ω ω= =k Ż  in four dimensions, the magnitudes 

of the frequency ω  and the wavelength components 2π= Żλ  for a particle of mass m and reduced 

Compton wavelength / 2 / / 2C C mc h mcλ π π= = =Ż ℏ  are determined by the Lorentz scalar  
2 2 2/ 1/ Cg k k m cµ ν

µν = =ℏ Ż .  With this in mind, the question arises as to the energy / length scale 

of the five-dimensional k Μ , which has now inherited the role of the integration constant 5L  which 

first entered at (11.20).  For this, we return to the three relations (11.4), namely 0G cp cpΜ Ν
ΜΝ = ,  

2 4G cp cp m cµ ν
µν =  and 5 2

5
45

5G cp cp m c= , as well as 5 4
5

2G cp cp m cµ
µ = −  from (11.6).  If we next 

define a wavevector /k pΣ Σ≡ ℏ  following the usual pattern generalized to five dimensions, then 

the foregoing relations produce the following five-dimensional DKK wavevector relations: 
 

2 5 5 2 5 2
55 51/ ; 1/ ; 1/0; C C CG k k G k k G k k G k kµ ν µ

µν µ
Μ Ν

ΜΝ = = = = −Ż Ż Ż . (13.1) 

 
Still, all we are doing with (13.1) is establishing the “initial conditions” on the constant of 

integration now represented in k Μ , by pinning the 1/length magnitude of the wavevector 
components to the inverse of the Compton wavelength of the scalar bosons which are the field 

quanta of the scalar field 1
5cp φ± .  Although 0G k kΜ Ν

ΜΝ =  is null in five dimensions, in the four-
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dimensions of spacetime, we recover the usual 21/ CG k kµ ν
µν = Ż .  Given the two solutions leading 

to two 5L±  in (12.16), this means that we also need to denote two wavevectors k Μ
±  in 

correspondence with these two solutions. 
 
Now we proceed to the question of what to use for the Compton wavelength /C mc=Ż ℏ  

and associated mass of the scalar bosons.  For this, we recall that when we broke symmetry at 
(11.11) the energy / frequency E hf ω= = ℏ  and wavelength 2λ π= Ż  of the Kaluza-Klein scalar 

became hidden, along with this scalar’s Dirac operator properties which became diagonalized.  But 
as discussed following (11.11), this does not mean that the scalar no longer has energy or a 
wavelength; these are just hidden at the moment.  Moreover, although this scalar started as 
massless and luminous, the symmetry breaking at (11.11) released two degree of freedom that now 

enables the fermions to acquire mass.  And at this point, the scalar fields are the two 1
5cp φ±  in 

(12.16) which have indeed had their symmetry broken.  So, once we finish connecting these scalar 

solutions 1
5cp φ±  to the Higgs field (and actually, to two Higgs fields, one for the Fermi vacuum 

and one for the Planck vacuum), this will mean that CŻ  and m in /C mc=Ż ℏ  in 21/ CG k kµ ν
µν = Ż  

will become the Compton wavelengths of the Higgs boson(s).  This is the final “initial condition” 
imposed on the constant of integration, and it removes the physical energies of the scalar from 

hiding and makes them visible once again, in the k µ  which have inherited the integration constant.  
Now, let’s proceed to finally make this connection to the Higgs field and boson. 
 

Recall that in the standard model, we expect a fermion (f) rest energy 2
fm c  to be related 

to the Fermi vev 246.219650 eV8Gv ≅  by the relation 2 1

2f fm c G v= , where fG  is an arbitrary 

coupling not provided by presently-known theory and only deducible by knowing the observed 
fermion mass, see, e.g., [15.32] in [20].  Also note from electroweak theory, that the masses of the 

electroweak W and Z gauge bosons are related to this same vev by 2 1
2B Bm c g v= , with B=W, Z.  

Referring to the constant coefficients in these mass / coupling relations, this means that for a given 
coupling G for fermions or g for bosons, the fermions couple for strongly to the vacuum than do 

the bosons by a factor of 1 1
22

/ 2= .  In the form 1 1 1
22 2

=  in which the fermion coefficient 1

2
 

is square to obtain the boson coefficient 1
2 , this is another manifestation of how the momentum 

space Dirac equation is the “operator square root” of the relativistic energy momentum relation, 
see following (11.16). 

 

So for the moment, irrespective of the actual physical lengths in 5L±  thus k Μ
± , and 

irrespective of what ( )1
5cp φ± X  physically represent, for a coordinate assignment 

( )0,0,0,0,0xΜ = =0  to an origin, thus ( )
0 1 2 3 5

5
0V x x x x x= = , the term ( )( )5

5
exp / 1V L− = .  Thus, 

with fm m֏  and 5 5
fp p+ +֏  to apply specifically to fermions in the upper equation which is 

where we shall soon focus our attention, (12.16) reduce to: 
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( )
( )
1

1
1

5 2

5 2

2

2

P

ff fcp G v

cp

c

i

m

M c Q

φ

φ α
+

−

= ±

=

=

±

±0

0
. (13.2) 

 
Above, we have replaced the approximation sign ≅  in (12.16) with an equal sign, given that the 
1-part-per-1040 discrepancy is exceptionally small and unlikely to be observable. 
 

Conversely, again irrespective of 5L±  and k Μ
± , for a coordinate assignment with 

( )
5

5
/ 1V L± ≫ , the exponential ( )( )5

5
exp / 0V L±− →  will approach zero, and (12.16) will reduce to: 

 

( )( )
( )( )

5

5

5
1 5

5
1 5

/ 1 0

/ 1 0

fcp V L

cp V L

φ

φ

+ +

− −

=

=

≫

≫

, (13.3) 

 

So, these energy-dimensioned fields ( )1
5 / 2cp xφ Μ

±  are equal to zero far from the origin, while 

at the origin, they are equal to 2
fm c±  and 2

PM c Q α±  respectively, where 2
fm c  is a fermion rest 

energy and 2
PM c  is the Planck energy.  Now we finally turn to the standard model Higgs field. 

 

The Higgs field which we represent in the five DKK dimensions by writing ( )h xΜ , is a 

scalar field with dimensions of energy.  As with any energy field, the physics transpiring in this 
field will favor states of lower energy and disfavor states of higher energy.  Of course, Heisenberg 
uncertainty does not permit us to talk about the “position” of a fermion in any more than a statistical 

way.  So, we cannot technically say that a fermion is “at a given coordinate” xΜ  in the five-
dimensional space.  But we can say that if the Higgs field provides energy “wells” for the fermions 
from which the fermions also obtain their rest masses, then these fermions will find “nests” at 
energetically-minimized locations in the Higgs field where the fermions are most likely to situate. 

 
Now, for a U(1) gauge group, the standard model starts with a scalar field which we denote 

by hφ  to distinguish from the Kaluza-Klein scalar φ , and is given the following assignments at 

the various steps of symmetry breaking:  
 

( ) ( ) ( )( ) ( ) ( )( )1 1 1
1 2 12 2 2h h h hx x i x x v h xµ µ µ µ µφ φ φ φ= + = +֏ . (13.4) 

 

That is, we first assign ( )1
1 22h h hiφ φ φ= + .  Then we break symmetry in the 2 2

1 2h hφ φ+  circle by 

setting 2 0hφ = .  Then, working from the leading terms of a Lagrangian potential 

( )22 * *h h h hV µ φ φ λ φ φ= +  for the complex scalar field, we find that this potential has minima at 

2
1h vφ µ λ= ± − ≡ ± .  Finally, we perturbatively expand around the minimum at 1h vφ =  using the 

Higgs field ( )h xµ  which represents quantum fluctuations about the minima.  Note that the 

potential V has physical dimensions of energy to the fourth power, because this is part of a 
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Lagrangian density T V= −L  with ( ) ( )2 2 *h hT c D Dµ
µφ φ= ℏ  and /D iqA cµ µ µ= ∂ + ℏ , and with 

( )22 * *h h h hV µ φ φ λ φ φ= +  as above.  For non-abelian Yang-Mills gauge theory [29], the kinetic 

portion of the Lagrangian density becomes ( ) ( )†2 2
h hT c D Dµ

µφ φ= ℏ .  This is all nicely reviewed 

in sections 14.6 through 14.9 of [20]. 
 
Most importantly for the present discussion, because 1h vφ = ±  are the minima of the 

potential V and because 246.219650 eV8 Gv =  is a constant energy, the expectation value 

( )1 1
1 2 2h v h vφ = ± + = ± , which means that the expectation value of the Higgs field 0h = .  

This of course makes sense because the Higgs field is defined to represent quantum fluctuations 
about the vev minima in the potential V.  But by being very explicit about all of this, now we see 

how to assign 5
1cp φ  to the respective Higgs fields in both the Fermi and the Planck vacuums. 

 

Specifically, for both solutions (12.16), at the ( )
5

5
/ 0V L± =  origin the exponential 

( )( )5

5
exp / 1 0V L±− = >  is above zero.  Further, where ( )

5

5
/ 1V L± ≫  the exponential 

( )( )5

5
exp / 0V L− →  drops to zero.  So, if we want the origin at xΜ = 0  be the most energetically-

favorable locale for a fermion to “nest” at, we must choose the – signs from the ±  in (12.16) for 

both solutions.  Then, with this choice of sign, we assign ( ) ( )1
5

fcp x h xφ Μ Μ
+ ≡  and 

( ) ( )5
1 2

icp x H xQ αφ Μ Μ
− ≡ , with h and H representing Higgs fields associated with each 

respective solution.  The former, ( ) ( )1
5

fcp x h xφ Μ Μ
+ ≡ , represents the direct connection we have 

been seeking since section 11 between that DKK scalar and the standard model Higgs field.  So, 

showing 2 / 2f fm c G v= , and again with fm m= , (12.16) now becomes: 

 

( ) ( ) ( )

( ) ( )

0 1 2 3 5
5 5

1 5 5 5

0

5 2 2

5 2
1 2 3 5

5

1 5 5

2

2 exp 2 exp exp

2 / 2 exp 2 exp

f f

P

f

P

f

V Vx x x x x
m c m c

Q M c

h x cp G v
L L L

Vx x x x x
H x icp

L L
M c

φ

αφ

Μ
+

+ + +

Μ
−

− −

    
≡ = − − = − − = − −        

     

  
≡ − = − − = − −    

   

. (13.5) 

 
Note from earlier in this section that ( )

5 0 1 2 3 5
0 1 2 3 55

/V L k k k k k x x x x x± ± ± ± ± ±= , which maintains 

Poincare symmetry.  But in general, to keep things simple, we will continue using ( )
5

5
/V L±  unless 

we specifically need to use the k Μ
±  in a given circumstance.  The lower assignment in (13.5) 

includes Q α  to make the background field ( )h xΜ
−  independent of the specific charge generator 

Q of any fermion which may be situated in this field, a factor of i to maintain a real relation between 
h−  and the energy-times-exponential term, and a factor of ½ to have the exact same form in both 

solutions with the sole difference being fm  in the former and PM  in the later.  The capitalization 
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of the latter Higgs field is to indicate the inordinately-higher energies rooted in the appearance of 
2

PM c  versus 2
fm c  in the bottom versus the top relation (13.5).   

 
We note in passing that rather than use the factor of i in the lower Planck-scale assignment, 

it may be possible given ( )1
1 22h h hiφ φ φ= +  to instead assign ( ) ( )2

5

2
icp i x H xQ αφ Μ Μ

− ≡ .  In this 

case we borrow the i from 2hiφ  and thus have the Planck vacuum defined orthogonally to the Fermi 

vacuum in the complex Euler plane of 1 2h hiφ φ+ .  With this, after reaching (11.11) we break 

symmetry twice – once for the Planck vacuum by setting 1 0φ =  and once for the Fermion vacuum 

by setting 2 0φ = .  Either way, the net result is (13.5). Now let’s examine the evidence in favor of 

the assignments (13.5). 
 
 With these assignments, and having chosen the – sign from the ±  in (12.16), if we denote 

( )
5

5
/ 0x V L±≡ ≥  to make (13.5) maximally-transparent, we see that both Higgs fields vary in 

accordance with xh e−∝ − , xH e−∝ − .  And, we learn explicitly from (13.5) that ( ) 22 f ch m= −0  

and ( ) 22 PcH M= −0  at the origin, while ( ) 0h xΜ =  and ( ) 0H xΜ =  far from the origin.  With 

the Higgs fields having energy minima at the origin, the origin provides the most energetically-
favorable locale at which the fermions will “nest.”  Again, this is why we chose the – sign.  Given 
this, we next proceed albeit in five dimensions to make the standard model assignment 

( ) ( )( )1

2h x v h xφ Μ Μ= +  from (13.4).  We also assign ( ) ( )( )1

2H Px v H xφ Μ Μ= +  for the Planck-

scale Higgs field, where 2
P Pv M c≡  is the Planck energy about which ( )H xΜ  represents Planck-

scale perturbations.  Consequently, from (13.5) we obtain: 
 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

5 52
1

2

5 5

5

5

1 1 1 1 1
exp exp

2 2 2 2 2

1 1
exp

2 2

f

P

h h f

H P P

V V
x v h x v v G vm c

L L

V
x v H x v c

L
M

φ φ

φ

Μ Μ

+ +

Μ Μ

−

   
= = + = − − = − −      

   

 
= + = − −  

 

. (13.6) 

 

Further, noting that ( ) / 2h xΜ  and ( ) / 2H xΜ  appear in the above cut by a 2  factor, 

let’s now take the integral of the Higgs field energies as they appear in (13.5), integrated from the 

origin at xΜ = 0  thus ( )
0 1 2 3 5

5
0V x x x x x= =  where a fermion nests, out to infinity over the entire 

five-dimensional volume of the DKK spacetime-plus-one.  This yields:  
 

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

5 5

5 55 5 5 50 0

0

5 5

5

2 2 2

55 5 5 50 0

2 2 2

0

1 1 1
exp exp

2

1 1 1
exp exp

2

f f f

P P P

V V
h x dV dV

L L L L

V V
H x dV dV

L L L L

m c m c m c

M c M c M c

∞
∞ ∞Μ

+ + + +

∞ ∞Μ

− − − −

∞

   
= − − = − = −      

   

   
= − − = −      

   
= −

 

 

. (13.7) 
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Here, in a very important result, we see directly how fermions draw energy out of the vacuum 
using the Higgs field to acquire their rest energies, consistently with energy conservation.  Let us 

focus specifically on ( )h xφ Μ  and ( )h xΜ  in (13.6) and (13.7), which has the 246.219650 eV8 Gv =  

vev  of the Fermi vacuum  (sans experimental errors) to see how this mass draw mechanism works: 
 

 At the ( )
0 1 2 3 5

5
0V x x x x x= =  origin where the fermion is most-likely to nest because the 

energy of the Higgs field is at its lowest, the upper (13.6) reduces to ( ) 1

2

2
h fv m cφ = −0 .  Far from 

the origin we have ( )( )5 1
5 2

/ 1h V L vφ + =≫ .  So, where the fermion is nested there is a depression 

in the ( )h xφ Μ  field which has dropped below 1

2
v  by an energy precisely equivalent to the fermion 

mass 2
fm c .  Far from the origin ( ) 1

2h x vφ Μ = , and there is no energy drop.  Thus, the fermion 

has clearly extracted energy from the Fermi vacuum, and most of that energy is extracted close to 
the fermion.  But what we learn from (13.7) is that the total energy extracted from the vacuum, 
integrated from the locale at the origin where the fermion is nested to the infinite reaches of the 

five-dimensional DKK volume element ( )
0 1 2 3 5

5
V x x x x x= , is precisely equal to the rest energy of 

the fermion!  From throughout the spacetime-plus-one, the fermion has drawn an amount of energy 
from the vacuum that is precisely equal to the rest energy now retained by that fermion.  This is 
energy conservation appearing in yet another guise, and it is the method by which fermions draw 
energy out of the vacuum using the Higgs field to acquire their rest masses. 
 
 At this point, we are ready to study the experimental masses of the observed elementary 
fermions, and we begin with the top quark, which is the heaviest of all.  Using empirical mass data 

from PDG’s [44], this quark has a rest energy of 2  173.0 0.4 GeVtm c = ± .  We pointed out 

moments ago that at the origin for a given fermion, ( ) 1

2

2
h fv m cφ = −0 .  With error bars now 

included, we may also calculate 174.1035847 0.0000448/ 2  GeVv ±= .  The vev is known with 
four orders of magnitude greater precision than is the top mass, so the error spread is dominated 
by the top quark.  Thus, from (13.6) we deduce that for the top quark: 
 

( ) 1

2

2 1.1 .04 GeVth m cvφ = ±= −0 . (13.8) 

 

In other words, ( ) 1

2
174.1 GeVh x vφ Μ = ≅  far from the origin, but it drops all the way down to a 

mere ( ) 1.1 .04 GeVhφ ±=0  close to the origin.  So, at the origin of the Higgs well in which the 

top quark nests, almost all, but not all, of the energy has been removed from the Fermi vacuum to 
give the top quark its rest mass.   
 

It is very helpful to calculate 2 0.9937 0.00/ 22 3t fG m c v ±= =  for the top quark, then 

apply the upper (13.6) from the symmetry breaking in (13.4), to obtain:  
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( ) ( ) ( ) ( ) ( )1 5
2

5

5 5
2 1 1 2 exp 1 exp

h h

t
t

V Vx x h x
G

v v v L

m

v L

cφ φΜ Μ Μ

+ +

   
= = + = − − = − −      

   
. (13.9) 

 
This, in turn, is illustrated graphically as shown below: 
 

  
Figure 1: Higgs field extraction of rest energy from the Fermi vacuum, for the top quark 

 
So, the top quark plot above together with (13.7) illustrates a first example of how the fermions 
generally, acquire their rest masses by quite literally sucking out of the vacuum via the Higgs field, 
an energy exactly equal to their rest energies.  But the top quark, as we shall see, is unique insofar 
as Figure 1 shows a very deep well which grows very close to zero where the top quark sits.  
Specifically, because the top quark coupling is very close to 1, the question first arises whether 
this coupling could in fact be equal to 1.  But even when we consider the upper extremum of 
experimental error bars whereby 0.9914 0.9960tG ≤≤ , this coupling is always less than 1.  Thus, 

even at the locale where it nests, the top quark draws almost all, but not all, of the energy out of 
the Fermi vacuum.  That this coupling is very close to 1, but slightly less than 1, in fact provides 
an extremely-important clue that will clear the way for the developing the theory of fermion 
masses, mixing angles, Lagrangian potentials and beta decays which is the central focus of the 
present Part II of this paper.  
 

As we now start speak about quark masses and their “errors,” it must be noted that the error 
bars of the quark masses in from [44] are not just ordinary experimental errors owing to limitations 
in the resolutions of observational equipment.  Rather, as elaborated in [45], “Unlike the leptons, 
quarks are confined inside hadrons and are not observed as physical particles.  Quark masses 
therefore cannot be measured directly, but must be determined indirectly through their influence 
on hadronic properties.  Although one often speaks loosely of quark masses as one would of the 
mass of the electron or muon, any quantitative statement about the value of a quark mass must 
make careful reference to the particular theoretical framework that is used to define it. It is 
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important to keep this scheme dependence in mind when using the quark mass values tabulated in 
the data listings (original emphasis).”  For the moment, we will speak “loosely” about these error 
spreads, and later on, will discuss these spreads in more precise terms in relation to observational 
schemes. 
 
 Finally, the very recent observation at CERN of a clear affinity between the Higgs boson 
and the top quark [22], [23], [24] is very graphically understood on the basis of Figure 1 as a 
manifestation of how the top quark – uniquely amongst all fermions – draws almost all of the 

energy out of the Fermi vacuum, in its immediate vicinity where ( )
5

5
/ 0V L ≅ .  This insight about 

how the top quark removes almost all of the energy from the Fermi vacuum, while very interesting 

in its own right and illustrative of the observed tH H  affinity, points toward a deeper meaning that 
leads directly to a theory of why the fermions actually have the rest masses that they do.  This is 
the subject of the next several sections. 
 

PART IIA: QUARKS 
  

14.  Theory of Fermion Masses and Mixing: Up, Charm and Top Quarks 
 
 As stated in the previous section, it is highly intriguing in its own right that the coupling 

0.9937 0.0023tG ±=  for the top quark is very close to 1 but just under 1, and also, that this 

closeness to 1 is outside the error bars.  In other worlds, there is no possibility that 1tG =  and 

simply needs to be established as such by more accurate testing, or by some renormalization 
“scheme” by which it becomes 1.  This leads us to raise the question whether the sum of the up-
plus-charm-plus-top rest energies might yield a total energy for which the coupling is equal to 1 
within experimental and scheme-dependent errors, and if so, whether this could be of theoretical 
significance toward developing a viable theory which solves the presently-unsolved mystery 
puzzle of why the fermions have the rest masses that they do and how these masses relate to the 
CKM and PMNS mixing angles. 
 

 Using the empirical value 174.103584/ 2 eV7 Gv =  sans error range, and using empirical 

mass data from PDG’s [44], the dimensionless couplings 2 1

2
/f fG m c v=  for the up, charm and 

top quarks are calculated to be: 
 

0.000003 0.00014
0.000002 0.000200.000013 0.00732 0.9937 0.002; ; 3u c tG G G+ +

− − = ±= = , (14.1) 

 
In (14.1) we see again how tG  is just under 1, irrespective of the error bars.   In other words, as 

already pointed out, although tG  is close to 1, it is not possible for this to be equal to 1, because 

such a result would be outside the errors bars.   
 

 It turns out, however, that if we calculate this coupling 2 1

2
/f fG m c v=  for the sum of the 

three isospin-up quark masses, and account for the error bars in all three, we obtain:  
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( ) 0.00244
0.00

2 1

2 2501.0010/ 3u c t u c tG G G m m m c v +
−+ + = + + = , (14.2) 

 
i.e., 0.99853 1.00348u c tG G G< + + < .  So, given the errors, it is possible that the sum of these 

three quark masses is exactly equal to 1

2
v and that this equality is a relation of true physical 

significance.  If this is so, then because 246.2196508 0.0000 GeV633v ±=  is known with greater 

precision than any of the up, charm or top quark masses, we first of all have an immediate resource 
for narrowing the range of error in the top quark mass, down to the error range of the charm quark.  
This provides immediacy in its ability to be confirmed or contradicted by more-precise 
experiments to measure the top quark mass.  Secondly, if this equality is true, then it becomes 
possible to theoretically account for all three quark masses using bi-unitary CKM-style mixing 
rotations acting on a mass matrix, which possibility has been entertained on and off for four 
decades, see., e.g., [46].  Third, once these bi-unitary transformations are established for the 
isospin-up quark masses, similar transformations may be established for the isospin-down quarks, 
and for the charged leptons.  Fourth and finally, once such transformations have been established, 
it becomes possible to revisit the potentials 2 2 41 1

2 4h hV µ φ λφ= +  for the Higgs theory scalar, and 

reestablish these in a fashion that ties together all of the foregoing fermion masses with the very 
tiny, presently unknown, masses of the neutrinos.  Over the next several sections, we shall take up 
each of these four matters. 
 
 First, let us use the empirical data that 0.99853 1.00348u c tG + +< <  from (14.2) to postulate 

that in fact, this coupling sum 
 

( ) 2 1

2
1/u c t u c tG G G m m m c v+ + = + + ≡ , (14.3) 

 
based on this being true within experimental and scheme-dependent errors.  Directly in terms of 
rest energies, this means that: 
 

2 2 2 1

2
174.1035847 GeVu c tm c m c m c v+ + ≡ = . (14.4) 

 
We use the center of the Fermi vev error range in 246.2196508 0.0000 GeV633v ±=  because the vev 

precision is far greater than the precision in either .0005
.0004.0022 GeVum +

−=  or .025
.0351.275 GeVcm +

−= , 

as well as in 173.0 0.4 GeVtm = ± , see [44].  So, we need not be concerned with the errors in v, 

but instead will account for the errors particularly in cm  by transferring these over to the top mass.  

Combining (14.4) with the known up and charm mases we then deduce that: 
 

2 2 2 0.035
0.026174.1035847 GeV 172.826 GeVt c um c m c m c +

−= −− = . (14.5) 

 
The .061 GeV  error spread in the above is tighter than the currently-known 0.8 GeV  spread from 

173.0 0.4 GeVtm = ±  by more than a full order of magnitude.  This result in (14.5) is a prediction 

which can and should be tested in experiments designed to obtain a more precise direct 
measurement of the top quark mass.   



Jay R. Yablon, January 9, 2019 

84 
 

 
If (14.5) is true, then it is also convenient for the next step to collect all of the isospin-up 

quark masses together as such: 
 

2 .0005 2 .025 2
.0004 .0

0.035
0.023 65.0022 GeV; 1.275 GeV 172.826 Ge; Vu c tm c m c m c +

−
+ +
− −= = = . (14.6) 

 

We may also revise the isospin-up quark couplings 2 1

2
/f fG m c v=  in (14.1) as such: 

 
0.000003 0.00014 0.00021
0.000002 0.00020 0.000140.000013 0.00732 0.99266; ;u c tG G G+ + +

− − −= = = , (14.7) 

 
 Second, taking the foregoing to be true, and also given what we just learned in relation to 
Figure 1, let us now form the following hypothesis of how these three isospin-up quarks obtain 
their mass:  In Figure 1, at the origin of the Higgs field energy well where the top quark is 
energetically most likely to be seated, almost all of the energy, but not quite all of the energy, is 
drawn out of the Fermi vacuum and used to give the mass to the top quark, via the energy 
integration calculated in (13.7).  But if there was to exist a single quark with the sum (14.4) of all 
three quark masses – or if the masses of all three quark masses could be transformed into the mass 
of a single quark – then that single quark would draw the entirety of the energy out of the Fermi 
vacuum at the origin of its Higgs field energy well.  And in fact, the type bi-unitary mass matrix 
transformations discussed in [46] provide the precise vehicle for this to occur.   
 
 Specifically, we know there is a Fermi vacuum with an energy that has an expected value 

246.219650 eV8 Gv = , and that fermions acquire their masses by drawing energy out of this 

vacuum.  So one way for the top, charm and up quarks to acquire their masses would be for all 
three quark to start out formally massless (i.e. with two degrees of freedom), and for the symmetry 
to then be broken in the manner reviewed leading to (11.12) whereby the top quark gains a mass 

of 2 1

2
174.1035847 GeVtm c v≡ =  which depresses the vacuum down to a rock bottom 0 GeV at 

the origin of the Higgs well.  Then, some of this mass may be rotated over to the charm and up 
quarks via a bi-unitary transformation operating on a mass matrix with the rest energies 2

tm c , 
2

cm c  and 2
um c  on its diagonal as reviewed four decades ago in [46].   

 
To achieve this, we begin with a mass matrix defined by: 

 
1

2

2 2

174.1035847 GeV0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

t t c t u

uct t c c c u

t u c u u

m m m m m v

M c m m m m m c

m m m m m

          ≡ = =     
         

 . (14.8) 

 

Then, we transform this into †
uct uct uctM M U M U′ ′→ = , where U is a unitary matrix † 1U U = .  An 

important point to note, is that under a bi-unitary transformation the trace ( ) ( )tr truct uctM M ′=  is 

preserved so that 2 2 2 1

2u c tm c m c m c v+ + ≡  in (14.4) will remain true not matter what specific 

angles or phases are used in this transformation. 
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 The next deliberation is what to use for the unitary mass mixing matrix U.  As a 3x3 matrix 
this could have up the three real angles 21θ , 32θ , 31θ  and one imaginary phase δ  – thus four angles 

in total – in the same manner as the CKM and PMNS mixing matrices used to characterize 
generation-changing weak interaction beta decays for quarks, and leptonic neutrino oscillations.  
But the up, charm and top masses represent only three unknown mass parameters.  Moreover, 
because the Fermi vev is known, (14.4) reduces this down to two unknown parameters.  Thus, we 
ought not use more than two real angles without a phase to re-parametrize these two unknown 
masses, so that we simply trade two mass unknowns for two angle unknowns.  For this purpose, 
we may choose any two of 21θ , 32θ , 31θ  and structure the matrices accordingly. 

 
Proceeding, we may choose a first parametrization using 32θ  and 21θ , whereby some of the 

mass in 2 1

2tm c v=  first is rotated using 32θ  into 2
cm c  , then “downward cascades” using 21θ  into 

2
um c .  Likewise, we may choose a second parameterization wherein the top quark mass is 

“distributed” to both the charm and up quarks by 32θ  and 31θ  respectively.  A third parametrization 

uses first rotates the top mass rotates into the up quark using 31θ , then “upward cascades” into the 

charm quark using 21θ .  For reasons that momentarily become apparent, it is fruitful to develop 

both the first and second “downward cascade” and the “distribution” parameterizations, while the 
third “upward cascade” parameterization turns out to be duplicative of the first but with a flip and 
90-degree rotation of one of the angles. 
 
 Using the first, “downward cascade” parameterization, this bi-unitary transformation is: 
 

2 2 † 2

1

232 32 32 32

21 21 32 32 32 32 21 21

21 21 21 21

2
32 32 32 21 32 32 21

21
32 32 21 32 212

0 01 0 0 c s 0 c s 0 1 0 0

0 c s s c 0 0 0 0 s c 0 0 c s

0 s c 0 0 1 0 0 0 0 0 1 0 s c

c c s c c s s

c s c s c

uct uct uctM c M c U M c U

v

v

′→ =

 −     
      = − −      

       −      

= 2 2 2
32 21 21

2 2 2
32 32 21 32 21 21 32 21

s c s

c s s s c s s s

t t c t u

t c c c u

t u c u uI

m m m m m

m m m m m c

m m m m m

 ′ ′ ′ ′ ′ 
   ′ ′ ′ ′ ′=   
    ′ ′ ′ ′ ′   

. (14.9a) 

 
So now the energy 1

2
v  from the Fermi vacuum that started out all in the top quark has been rotated 

into and shared with the charm and up quarks.  With the second, “distribution” parameterization: 
 



Jay R. Yablon, January 9, 2019 

86 
 

2 2 † 2

1

231 31 32 32 32 32 31 31

32 32 32 32

31 31 31 31

2 2 2
32 31 32 32 31 32 31 31

1
32 32 31 32

0 0c 0 s c s 0 c s 0 c 0 s

0 1 0 s c 0 0 0 0 s c 0 0 1 0

s 0 c 0 0 1 0 0 0 0 0 1 s 0 c

c c c s c c c s

c s c s

uct uct uctM c M c U M c U

v

v

′→ =

 − −     
      = −      

       −      

= 2 2
2 32 32 31

2 2 2
32 31 31 32 32 31 32 31

c s s

c c s c s s c s

t t c t u

t c c c u

t u c u uII

m m m m m

m m m m m c

m m m m m

 ′ ′ ′ ′ ′ 
   ′ ′ ′ ′ ′=   
    ′ ′ ′ ′ ′   

. (14.9b) 

 
 There are three mathematical points to now note in (14.9).  First, as already mentioned, the 
trace is preserved under (14.9), because 2 2 2 2 2

32 21 32 21 32s s s c c 1+ + =  in the former and 
2 2 2 2 2

32 31 32 31 32c c c s s 1+ + =  in the latter.  Thus, 2 2 2 2 2 2 1

2u c t u c tm c m c m c m c m c m c v′ ′ ′+ + = + + = , so 

we also preserve the mass sum (14.4) as required.  Second, all of the square root relations in the 
off-diagonal positions are preserved, viz: 2 2 2

32 32 21c s ct cm m′ ′ = , 2 2 2
32 32 21c s st um m′ ′ =  and 

4 2 2
32 21 21s c sc um m′ ′ =  in the former while 2 2 2

32 32 31c s ct cm m′ ′ = , 4 2 2
32 31 31c c st um m′ ′ =  and 

2 2 2
32 32 31c s sc um m′ ′ = , whether calculated from the diagonal or the off-diagonal elements.  Third, 

although the masses and their associated couplings related by 21

2 f fvG m c=  are the same no 

matter which parameterization scheme we use, the angles are defined differently depending on the 
scheme.  For this reason, outside the matrix containing the sines and cosines of these angles on the 
final lines of (14.9), we have denoted all of the angles by the I and II subscripts for the first and 

second schemes, respectively.  Note also, if we use the coupling relation 21

2 f fvG m c= , then 

dropping the primes of the transformations in (14.9) from here on, we can explicitly identify these 
couplings in the first and second parameterizations to be: 
 

2
32 32 32 21 32 32 21

2 2 2
32 32 21 32 21 32 21 21

2 2 2
32 32 21 32 21 21 32 21

c c s c c s s

c s c s c s c s

c s s s c s s s

t t c t u

uct t c c c u

t u c u u I

G G G G G

G G G G G G

G G G G G

   
   = =   
       

, (14.10a) 

 

2 2 2
32 31 32 32 31 32 31 31

2
32 32 31 32 32 32 31

2 2 2
32 31 31 32 32 31 32 31

c c c s c c c s

c s c s c s s

c c s c s s c s

t t c t u

uct t c c c u

t u c u u II

G G G G G

G G G G G G

G G G G G

   
   = =   
       

. (14.10b) 

 
Note that for both of these, the trace tr 1uct t c uG G G G= + + = .  This is another reflection of (14.4). 

 
Now we turn to the empirical data and calculate these angles to see if they bear any relation 

to any other known empirical particle data.  Specifically, we use the revised coupling data in (14.7) 
to calculate 32Iθ  and 21Iθ  in (14.10a), and  32IIθ  and 31IIθ  in (14.10b).  From (14.10a) we first 
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deduce 2
32c I tG= , then ( )2 2 2

21 32 32c / s / 1 cI c I c IG G= = − , then ascertain the angles in both radians 

and degrees.  From (14.10b) we likewise deduce 2
32s II cG=  followed by 

( )2 2 2
31 32 32c / c / 1 sII t II t IIG G= = −  followed by the angles.  In this way, we calculate that: 

 
0.00085 0.04893
0.00120 0.06874

0.00084 0.04801
0.00119 0.06801

0.00403 0.23071
0.00343 0.19673

0.00038
0.000

32

32

2

31 34

1

0.08575 rad 4.91338

0.08568 rad 4.90914

0.04152 rad 2.37864

0.00357 ra

I

II

I

II

θ
θ
θ
θ

+ +
− −

+ +
− −

+ +
− −

+
−

= °

= °

=

=

== °

= 0.02206
0.01953d 0.20442+

−= °

. (14.11) 

 
The scheme-dependent 32θ  differ but slightly between these two parameterizations, and 

the angles of approximately 4.91°  do not “ring any bells” regarding other known empirical data.  

But for 21Iθ  and 31IIθ  one cannot help but notice based on the 2018 PDG data [47] that these are 

equal to two of the three CKM quark mixing angles within experimental errors.  Specifically, using 
the Wolfenstein parameterization reviewed in [47], it is possible in a known manner to deduce that 
for the empirically-observed standard parameterization CKM angles (subscript C): 
 

0.0003 0.015
0.0002 0.013

0.0348 1.995
0.0335 1.91

12

13

23

7

0.2265 0.0005 rad 12.975 0.026

0.0036 rad 0.209

0.0422 0.0009 rad 2.415 0.053

1.2391 rad 70.998

C

C

C

C

θ

δ

θ

θ

+ +
− −

+ +
− −

= ± ± °

= °
= ± ± °=

==

=

=

°

 . (14.12) 

 
Doing the comparisons, we see that 0.23071

0.1967321 2.37864Iθ +
−= °  versus 23 2.415 0.053Cθ ±= °  which 

overlap within the error bars, and that 0.02206
0.01953 31 0.20442IIθ +

−= °  versus 0.015
0.0113 30.209Cθ +

−= °  which 

likewise overlap within the error bars.  In fact, 21Iθ  which has a wider error bar, has a central 

portion fitting entirely within the error range for 23Cθ , and 31IIθ  with a wider spread also has a 

central region fitting entirely within the errors for 13Cθ . 

 
 So, our goal was to see whether the mass mixing angles in the bi-unitary transformation 

†
uct uct uctM M U M U′ ′→ =  bore any relation to any known data.  And in the comparison between 

(14.11) and (14.12) we found that we have two “hits” directly in the middle of the empirical data 
for two of the three real CKM mixing angles.  (In the next section we will likewise connect with 
the third real CKM angle using the isospin-down quark masses.)  With two simultaneous such hits 
not just one, the statistical chances of this being a coincidence are extremely remote.  Therefore, 
we now conclude that this concurrence between (14.11) and (14.12) in fact is the discovery of two 
fundamental physical relations:  
 

21 23

3
0.015
0.1 13 013

2.415 0.053

0.209

I C

II C

θ θ
θ θ +

−

± °

≡

≡ =

= °
. (14.13) 
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Above, we use the empirical data from the CKM angles because their error bars are smaller. 
 
 Once we have made the connections in (14.13), it becomes possible to express the isospin-

up quark masses via their couplings 2 1

2
/f fG m c v= , directly in terms of the CKM mixing angles, 

and vice versa.  From the relations embedded in (14.10) which were used to obtain (14.11), we 
may now use (14.13) to find that: 
 

2 2
23 21 2 2

32 32

2 2
13 31 2 2

32 32

cos cos
sin 1 cos 1

cos cos
cos 1 sin 1

c c c
C I

I I t

t t t
C II

II II c

G G G

G

G G G

G

θ θ
θ θ

θ θ
θ θ

= = = =
− −

= = = =
− −

. (14.14) 

 
Then, solving (14.14) as simultaneous equations in tG  and cG ,  while also using 

2 2 2 2
32 21 32 31s s c su I I II IIG = =  from (14.10) along with (14.13), we are able to deduce that: 

 
2 2 2 2

23 31 23 31
2 2 2 2

23 31 23 31

2 2
2 2 23 31

23 31 2 2
23 31

sin cos cos sin
; ;

1 cos cos 1 cos cos

sin sin
tan tan

1 cos cos

C C C C
t c

C C C C

C C
u c C t C

C C

G G

G G G

θ θ θ θ
θ θ θ θ

θ θθ θ
θ θ

= =
− −

= = =
−

. (14.15) 

 

The quark masses are then related to these by 2 1

2f fm c vG= . 

 
Consequently, (14.15) expresses the isospin-up quark masses entirely in terms of the CKM 

angles 31Cθ  and 32Cθ  which mix the third-generation quarks with the first and second generations, 

and the Fermi vev v.  Only two of the three relations (14.15) are independent.  But together with 
(14.5) which related the sum of the three isospin-up quarks directly to the Fermi vev, we have now 

expressed all of these three quark masses as functions ( )31 23, , , ,u c t C Cm m m F v θ θ=  of other known 

parameters, namely, the Fermi FG  coupling and its related vev, and the two third-generation CKM 

mixing angles.  In this way, what began at the start of this section as twelve unexplained fermion 
rest masses for six quarks flavors and six lepton flavors, have now been reduced down to only nine 
remaining unexplained masses.  Three of these twelve masses, for the isospin-up quarks, can now 
be expressed entirely in terms of other known physical parameters.  This is the first step toward 
doing similarly, over the next several sections, for all twelve fermion masses. 

 
Additionally, there is a very simple geometric interpretation of the results in (14.14).  From 

(14.10) we may use 1t c uG G G+ + =  then 21

2 f fvG m c=  to rewrite (14.14) as: 
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2 2

2 2
23 21 2 2 2 2

2 2

2 2
13 31 2 2 2 2

cos cos
1

cos cos
1

c cc c
C I

t c u c u c u

t tt t
C II

c t u t u t u

G mG G

G G G G G m m

G mG G

G G G G G m m

θ θ

θ θ

= = = = =
− + + +

= = = = =
− + + +

. (14.16) 

 

If we now establish a three-dimensional rest mass space in which the square roots cm , um  and 

tm  are respectively plotted against the x, y, and z axes, we see that 13 31C IIθ θ θ= =  is simply the 

polar angle θ  of descent from the z axis and 23 21C Iθ θ φ= =  is the azimuthal axis of rotation through 

the x and y plane about the z axis, using spherical coordinates.  This is graphically illustrated below, 
using the quarks mass values in (14.6): 

 
Figure 2: Isospin-Up Quark Mixing in Rest Mass Space 

 
Because the top quark mass is so much larger than the up quark mass, even after taking square 
roots the top-to-up ratio is still about 280-to-1.  So, any visual representation drawn to scale would 
be difficult to see.  Therefore, in the above we have rescaled the axis for the top mass by dividing 
by 10 and rescaled the axis for the up mass by multiplying by 10.  What is remarkable is not only 
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that the Fermi vev of about 246.22 GeV can be rotated in this square root space to produce the 
mass of each quark as illustrated, but that the azimuthal and polar angles correspond also to two 
of the three CKM mixing angles. 
 
 Two final points are worth noting before we move on to examine the isospin-down quark 
masses.  First, as between the first and second parameterizations, we also uncovered two other 
angles 32Iθ  and  32IIθ  in (14.11).  And we did not develop an available third parameterization using 

what we shall denote as 21IIIθ  and 31IIIθ .  This is because as noted, the angles obtained from the bi-

unitary transformations in (14.9) are parameter-dependent but the masses and their couplings are 
not nor can they be.  So, once we attach a physical significance to 2

21cos Iθ  and 2
31cos IIθ  in (14.13) 

we have squeezed all of the independent information we can out the bi-unitary transformations.  
The remaining angles 32Iθ  and  32IIθ  furnish no further information, as they are not independent of 

the physical connections established in (14.13) but simply contain redundant information.  
Likewise, the third parameterization using what we shall denote as 21IIIθ  and 31IIIθ  produces a 

21 2190III Iθ θ= ° −   and 31 32III Iθ θ=  which effectively flips then rotates 21Iθ  by 90 degrees,  renames 

32Iθ  to 31IIIθ , and in the process, also flips the signs of all the square roots which contain cG .  As 

such, this too is redundant and adds no new independent data. 
 

 Second, in Figure 1 we used 2 0.9937 0.00/ 22 3t fG m c v ±= =  to plot (13.9) for the top 

quark.  At the origin  ( )
5

5
/ 0V L+ =  this plot bottomed out at 0.0063 0.001 22 / 3h tv Gφ = − = ∓ , 

signifying the extraction of almost all the energy from the vacuum at the center of the well in which 

the top quark nests.   With the tightened 0.00021
0.000140.99266tG +

−=  in (14.7), Figure 1 is now slightly 

modified with the bottom at 0.00014
0.000210.007342 / 1h tv Gφ −

+= − =  to reflect this revised coupling.   In 

view of (14.7), however, we may now also draw plots similar to Figure 1 for the up and charm 
quarks.  These plots have the exact same form as Figure 1, with the only difference being how 

deeply the energy well descends from 2 / 1h vφ =  i.e. / 2h vφ = .  For the charm quark with 

0.00014
0.000200.00732cG +

−=  the well at the origin bottoms out at 0.00020
0.000140.992682 / 1h cv Gφ −

+= − = .  

Meanwhile for the up quark with 0.000003
0.0000020.000013uG +

−=  the well at the origin bottoms out at 
0.000002
0.0000030.9999872 / 1h uv Gφ −

+= − = .  Because the top quark is far more massive than the charm and 

up quarks, it is no surprise to respectively see dimensionless origin bottoms of 0.00734 , 0.99268  
and 0.999987  at the center of the error bars:  The top quark draws almost all of the local energy 
from the Fermi vacuum to supply its rest mass, while the charm and especially the up quark draw 
very little local energy to supply their rest masses. 
 

15.  Theory of Fermion Masses and Mixing: Down, Strange and Bottom 

Quarks 
 

 If it is possible to express the three up quark masses as ( )31 23, , , ,u c t C Cm m m F v θ θ= , and 

given that the two CKM angles parameterize generation changes during weak beta decays between 



Jay R. Yablon, January 9, 2019 

91 
 

isospin-up and isospin-down quarks, and because 12 12.975 0.026Cθ ±= °  in (14.12) is still 

unaccounted for, it is natural to examine whether a carbon copy of the bi-unitary transformations 
in the last section can also be used to characterize the down, strange and bottom quark masses in 
a similar fashion, while also relating the unaccounted 12 12.975 0.026Cθ ±= °  to these masses.  

From here, to avoid notational confusion, we shall start to use the subscript   to denote various 
angles and objects associated with the isospin-down quarks when necessary to clearly distinguish 

from the results of the last section, and will add the subscript   to the objects and angles of the 
last section when necessary to further establish this distinction. 
 
 To cut right to the chase, let us replicate (14.10) identically, but with the substitutions 

u d֏ , c s֏  and t b֏ , as well as a   subscript for the angles, as such: 
 

2
32 32 32 21 32 32 21

2 2 2
32 32 21 32 21 32 21 21

2 2 2
32 32 21 32 21 21 32 21

c c s c c s s

c s c s c s c s

c s s s c s s s

b b s b d

dsb b s s s d

b d s d d I

G G G G G

G G G G G G

G G G G G 

   
   = =   
       

, (15.1a) 

 

2 2 2
32 31 32 32 31 32 31 31

2
32 32 31 32 32 32 31

2 2 2
32 31 31 32 32 31 32 31

c c c s c c c s

c s c s c s s

c c s c s s c s

b b s b d

dsb b s s s d

b d s d d II

G G G G G

G G G G G G

G G G G G 

   
   = =   
       

. (15.1b) 

 
Here, it is clear that 1b s dG G G+ + = .  As with (14.9) and (14.10), these coupling matrices utilizing 

first and second parameterizations with a   subscript arise following a bi-unitary transformation 
2 2 † 2

dsb dsb dsbM c M c U M c U
 

′ ′→ =  in which before the transformation, dsbM  places all of the rest 

mass into the bottom quark.  Because the diagonals sum to 1, 2 2 2
d s bm c m c m c+ +  is invariant 

under these bi-unitary transformations.  However, based on clear empirical data, 
2 2 2 2 2 2 1

2d s b u c tm c m c m c m c m c m c v+ + ≠ + + = .  So, to mirror the development of the last section 

we shall need to postulate a new, second, isospin-down vev defined by: 
 

0.0495
0.0333

2 2 21

2
4.2797 GeVd s bv m c m c m c



+
−≡ + + = . (15.2) 

 

Above, we have used the individual quark masses 2 0.0005
0.0003.0047 GeVdm c +

−= , 
2 0.009

0.003.095 GeVsm c +
−=  and 2 0.04

0.034.18 GeVbm c +
−=  based on the empirical data in [44] to calculate 

the numerical value 0.0495
0.0333

1

2
4.2797 GeVv +

 −= .  The upside error of 49.5 MeV  is based on the 

unlikely event of all three quarks having a mass at the upper end of their error bars and the 
downside error of 33.3 MeV  conversely is based on all three quarks being at the lower end.  

Technically, because the bottom quark mass is only known to within 70 MeV, we should only 
show two digits past the decimal in (15.2), but to display the tighter strange and down mass errors, 
we show four digits after the decimal.  Also, we now re-denote the fermi vev by v v


֏  to 
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distinguish from the v


 in (15.2).  Thus, (14.4) re-denoted by 1

2
174.1035847 GeVv


=  now 

expresses how the Fermi vev, cut by the same 2  factor, is equal to the sum of the isospin-up 
quarks.  To be clear: at the moment, the existence of this second vev this is a postulate, intended 
to see if we can account for the remaining CKM angle 12 12.975 0.026Cθ ±= °  in the same way we 

have already accounted for the other two CKM angles.  If we can, then the postulate is validated, 
and we need to then take further steps to properly accommodate two distinct vevs, one for isospin-
up quark and one for isospin-down quarks, in our Lagrangian density potential for these quarks.  
 
 Specifically, by having both v


 and v


 vevs, with the latter being much smaller than the 

former, we are implicitly introducing the prospect that the Lagrangian potential 

( ) 2 2 41 1
2 4 ...h h hV φ µ φ λφ= + +  not only has a first minimum at 174.10358472 GeVv


= ⋅ , but has 

a second minimum at 4.2797 G V2 ev


= ⋅  (sans error bars).  This in turn requires us to no longer 

ignore the higher order terms in the potential which will be of order 6
hφ , 8

hφ , 10
hφ  and so on, 

because we cannot have a second minimum without these higher order terms.  We will examine 
this more closely in the next section, but for the moment, let us simply posit that there is some 

( )hV φ , not yet known, which has a second minimum at 4.2797 G V2 ev


= ⋅ , and indeed, which 

is ascertained subject to the requirement that ( )hV φ  have this second minimum at exactly at the 

domain point h vφ


=  as well as the usual first minimum at h vφ


= . 

 
 Now, because the trace of the matrices in (15.1) sums to 1 by trigonometric identity and 
thus 1d s bG G G+ + = , the relation (15.2) requires us to recalibrate the coupling for each individual 

isospin-down quark to 2 1
, , , , 2

/d s b d s bG m c v


= , using the second minimum at 

0.284
0.1924.2797 e2 G Vv +

−
= ⋅  rather than the first minimum at 246.21965 GeV08v


= .  Then, similarly 

to the procedure followed prior to (14.11), we use (15.1a) to calculate 2
32c bI

G


=  followed by 
2 2

21 32c / ssI I
G

 
=  followed by the two angles, and (15.1b) to calculate 2

32sII sG


=  followed by 
2 2

31 32c / cII b IIG
 

=  followed by the two angles.  However, unlike in the last section where v


 was 

independently-known because it is simply the vev energy magnitude associated with the Fermi 

coupling constant, the 0.0495
0.0333

1

2
4.2797 GeVv +

 −=  in (15.2) is itself a function of the down, strange 

and bottom masses and so is subject to their error bars.  Moreover, the , ,d s bG  of the individual 

quarks are interdependent with and so subject to the error bars of the other two quarks.  As a result, 
we shall review four different progressive calculations each based on different assumptions about 
the error bars in the isospin-down quark mass measurements and in the empirical CKM mixing 
angle 12 12.975 0.026Cθ ±= °  from (14.12). 

 
Drawing again from PDG’s [44], we start with the individual quark masses 

2 0.0005
0.0003.0047 GeVdm c +

−= , 2 0.009
0.003.095 GeVsm c +

−=  and 2 0.04
0.034.18 GeVbm c +

−=  used in (15.2).  In 

the first calculation we simply use the central value of the error bars in [44] for each of the three 
masses to calculate the four mass mixing angles as reviewed in the previous paragraph, obtaining: 
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32

32

21

31

0.153 rad 8.779

0.150 rad 8.568

0.219 rad 12.540

0.034 rad 1.921

I

II

I

II

θ
θ
θ
θ









=
=

= °
=

=
=

°
= °
= °

. (15.3) 

 
At the lower end of the empirical 12 12.975 0.026Cθ ±= °  from (14.12) is 12 12.949Cθ = ° , which 

differs from 21 12.540Iθ


= ° above by a mere 0.409° .  Coupled with having already connected two 

mass mixing angles to the real CKM angles in (14.13), this leads us to suspect that 21Iθ


 is in fact 

physically equivalent to 12Cθ , i.e., that 21 12I Cθ θ


= .  So, the next step is to see if such a suspected 

connection falls within the error bars for the three quark masses that went into the successful 
calculation summarized in (14.11). 
 
 It turns out that 21Iθ


 which was calculated to be 12.540°  in (15.3) is very-sensitive to 

variations in the down quark mass, is moderately-sensitive to variations in the strange quark mass, 
and is virtually unaffected by variations in the bottom quark mass.  So for a second calculation, 

we leave the strange and the bottom masses alone at their centers by using 2 .095 GeVsm c =  and 
2 4.18 GeVbm c = , and simply see whether there is some value for the down quark mass that will 

enable 21 12I Cθ θ


=  to in fact become a valid relation within the errors of 2 0.0005
0.0003.0047 GeVdm c +

−=  

and 12 12.975 0.026Cθ ±= ° .  The combination of results turns out to be: 

  
2 2 2

21

2 2 2
21

2 2 2
21

if 4.18 GeV and 95 MeV and MeV, then 

if 4.18 GeV and 95 MeV and GeV, then 

if 4.1

5.064 13.001

5.043 12.9

8 GeV and 95 MeV and GeV, then 

75

5.022 12.949

b s d I

b s d I

b s d I

m c m c m c

m c m c m c

m c m c m c

θ

θ

θ







= = = =

= = = =

= =

°

°

= = °

. (15.4) 

 
That is, now in MeV, with the bottom and strange quarks left at their centers, a down quark mass 

in the range 2 5.043 .021 MeVdm c = ±  corresponds to the empirical range 12 12.975 0.026Cθ ±= °  

for this CKM mixing angle.  Because the error bars for the down quark mass allow this to be as 

large as 2 5.2 MeVdm c = , we have now established that 21 12I Cθ θ


≡  can indeed be a valid 

physical relationship within the known error bars for the isospin-down quark masses and the CKM 
mixing angles.  It also turns out that for the down quark mass taken closer to its central value 

2 4.7 MeVdm c = , it is necessary to reduce the strange quark mass somewhat to stay within the 

range of 12 12.975 0.026Cθ ±= °  for the CKM mixing angle.  

 
 So, in a third calculation, knowing that 21Iθ


 is most sensitive to the down mass which 

needs to be elevated above 2 4.7 MeVdm c =  to hit the CKM target of 12 12.975 0.026Cθ ±= ° , we 

start with a higher down quark mass assumed now to be 2 4.9 MeVdm c = .  Then, we examine the 
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ranges of acceptable values for the strange quark mass which yield the empirical relation 

12 12.975 0.026Cθ ±= ° .  The result of this calculation are as follows: 

 
2 2 2

21

2 2 2
21

2 2 2
21

if 4.18 GeV and MeV and MeV, then 

if 4.18 GeV and MeV 

4.9 91.918 13.001

4.9 92.299 12.and MeV, then 

if 4.18 GeV an

975

4.9 92.68d MeV and MeV, th3 en 

b d s I

b d s I

b d s I

m c m c m c

m c m c m c

m c m c m c

θ

θ

θ







= = = =

= = = °

= =

°

=

= = 12.949°

. (15.5) 

 

Noting again that 2 0.009
0.003.095 GeVsm c +

−= , we see that for the top line calculation the strange mass 

falls just below the error bar, while for the middle and bottom line calculations the strange mass 
ends up below its center but still within the PDG error range.  Weighing all of the data, for the 

example of 2 4.9 MeVdm c =  whereby the down and strange quarks “share” the variations with 

the down moved above center but not as high as in (15.5) and to compensate the strange is moved 

below center, and given that with a 0.009
0.003 GeV+

−  variation the strange quark has less movement 

available on the low end than on the high end, it seems most reasonable to expect that the actual 

12Cθ  is likely on the low end of  the 12 12.975Cθ = °  center value than on the high end.  That is, with 

21 12I Cθ θ


=  taken to be a correct physical relationship given that it is in fact true within the 

experimental and scheme-dependent error bars, we expect that a) the down quark mass is higher 

than the middle of 2 0.5
0.34.7 MeVdm c +

−= , b) the strange quark mass is lower than the middle of 
2 9

395 MeVsm c +
−= , and c) the CKM angle is lower than the middle of 12 12.975 0.026Cθ ±= ° . 

 
 But what is most important is that 21 12I Cθ θ


=  is in fact a correct physical relationship 

within the known experimental and scheme-dependent errors for the pertinent empirical data.  
Once this relationship is taken to be a given, it then becomes possible to more finely tune the up 
and strange masses and the CKM angle 12Cθ .  Again, the bottom mass has negligible impact on 

any of this.  So, we now take the step of defining 21 12I Cθ θ


≡  as a true physical relationship based 

on this empirical concurrence, and we include this with (14.3) updated to differentiate isospin-up 
from isospin-down angles, to obtain: 
 

21 12

31

2

0.015
0.

1 23

31 01313

         

12.975 0.026

1.921

2.415 0.053

0.209

I C

II

I C

II C

θ θ
θ
θ θ

θ θ







+
 −

± °
°
± °≡

≡

≡ =
=
=

= °

. (15.6) 

 
Now, all three of the CKM mixing angles have been connected to mixing angles which are the 
direct result of bi-unitary transformations operating on quark mass matrices. There is also a fourth 
“leftover” angle 31 1.921IIθ


= ° , also shown. 

 
 In a fourth and final calculation, which also necessitates a brief preface, we address the 
scheme-dependency of the quark masses about which to this point we have been speaking loosely.  
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Although the quark masses deduced from hadronic scattering experiments are scheme-dependent 
as reviewed in [45], this does not mean we ought to conclude the quarks do not each have an 
objective mass that is scheme-independent, as do the leptons.  In this regard, the key statement in 
[45] is that “quark masses therefore cannot be measured directly, but must be determined indirectly 
through their influence on hadronic properties.”  Ordinarily, these influences are observed in 
scattering experiments.  However, in [11.22] of [33] and [10.1] of [31], in 2013 the author 
demonstrated the existence of a pair of simultaneous equations 
 

( ) ( )

( ) ( )

3

2

3

2

3 / 2π                                      

3 2 3 2π

d u e

n p u d μ d u

m m m

M M m m m m m

 − =

 − = − + −


 (15.7) 

 
through which the up and down quark masses may be deduced with extremely high precision based 
on the tightly-known, scheme-independent rest mass em  of the electron and the tightly-known, 

scheme independent difference n pM M−  between the free neutron and proton masses.  In this 

scheme, named the “Electron, Proton, Neutron (EPN) scheme,” the electron, proton and neutron 
masses as well as nuclear binding energies and mass defects of various nuclides express indirect 
influences and manifestations of the objective quark masses, and are essentially “fingerprints” or 
parts of a “nuclear genome” to be “decoded,” from which the quark masses may be inferred.  
Using, (15.7) and the known data [48], [49] for the electron, neutron and proton masses, one may 
deduce very precise values for the up and down quark masses, which are: 
 

2

2

2.22379240 MeV

4.90647034 

0 002387339327 u

0 005267312526 u MeV

u

d

m c .

m c .

= =

= =
, (15.8) 

 
see [10.3] and [10.4] of [31] and prior to [3.12] in [34].  As will be reviewed in section 18, with 
updated data for the electron mass [48] and the neutron-minus-proton mass difference [50], these 

values in MeV are 2 2.22379229(55) MeVum c =  and 2 4.90647034(55) MeVdm c = , including 

error bars.  So, in the fourth and final calculation we use this very precise value particularly of the 
down quark mass, which enables us to tighten up the error ranges for other quantities which are 
interconnected with this. 
 
 So now, with (15.8), we repeat the calculations of (15.4) and (15.5) to obtain: 
 

2 2 2
21

2 2 2
21

2 2

4.90647034 MeV 92.039 13.001

4.90647034 

if 4.18 GeV and  a

MeV 92.421 12.975

4

nd MeV, then 

if 4.18 GeV and  and MeV, then 

if 4.18 GeV and  a. nd90647034 MeV

b d s I

b d s I

b d s

m c m c m c

m c m c m c

m c m c m c

θ

θ




= = = =

= = = =

=

°

°

= 2
21MeV, the92.806 1n 2.949Iθ


= = °

. (15.9) 

 
It should also be noted that keeping the down and strange masses as is, and using a bottom quark 

mass anywhere over the entire range given by 2 0.04
0.034.18 GeVbm c +

−= , produces absolutely no 

change in the value of 21Iθ


.  This is why we made the statement at (15.4) that this mass mixing 
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angle and therefore the CKM angle now related to this by 12 21C Iθ θ


=  in (15.6) is virtually 

unaffected by variations in the bottom quark mass.  Based on the match to the central empirical 
data 12 12.975 0.026Cθ ±= °  from (14.12), we shall henceforth use the middle line of (15.9) for the 

mid-range masses of the isospin-down quarks. 
 

Because the results in (15.9) are impervious to bottom mass swings over the whole range 

of 2 0.04
0.034.18 GeVbm c +

−= , we can use the very precise down quark mass in (15.8) and the fairly 

tight 12 21C Iθ θ


=  to calculate a more precise magnitude for the strange quark mass.  This is 

presently known to be 2 9
395  MeVsm c +

−= , and is now tightened, using the ranges in (15.9), to: 

 
2 92.42 0.38 MeVsm c ±= . (15.10) 

 
This is more than ten times as accurate as what is presently known for the strange quark mass, 
and constitutes an additional empirical prediction of this theory which can and should be tested. 
 
 
 Because we have shown in (15.6) that 21 12 12.975 0.026I Cθ θ


±= = °  within experimental 

error bars, and because this is based on the postulate that the Higgs vacuum has a second vev 
2 2 21

2 d s bv m c m c m c


≡ + +  which represents another minimum of the Lagrangian potential, the 

connection established in (15.6) also is confirming empirical evidence that this second vev 
postulated in (15.2) does in fact physically exist.  The first minimum was of course independently-
set by the fermi vev 246.2196508 GeVv v


= = .  But at the moment, all we know about v


 are 

the masses of the down, strange and bottom quarks of which this is the sum.  Therefore, it is 
important to get the tightest error bar fit that we can for this second vev.  For this purpose, 

recognizing that 2 0.04
0.034.18 GeVbm c +

−=  is the least-precise ingredient that goes into this vev, we 

use the very tight value for the down mass in (15.8) and the tightened strange mass in (15.10) to 

recalculate the  numeric value in (15.2) to be 0.0404
0.03

1

2 044.2773  GeVv


+
−= , with two digits still shown 

beyond those warranted by the bottom quark mass.   Note, the high end of v


 corresponds to the 

low end of 12Cθ  and vice-versa.  Any further precision in this number will depend entirely upon 

ascertaining additional precision for the bottom mass.  Rewritten without 2  to enable direct 
comparison to the Fermi vev including its error bars in [21], we have: 
 

( )
( )

0.0571
0.043

2 2

2

0
2

2 2

6.0491 GeV

246.2196508 0.0000633

2

2 GeV

d s b

u c t

v m c m c m c

v m c m c m c





+
−= + + =

= + = ±+
. (15.11) 

 
with a ratio 40.7038/v v

 
≅  at the center values.  The Higgs field rest energy extraction plots 

for the isospin-down quarks look identical to that of Figure 1 with the depth dependent upon the 
particle mass, with the exception that while / /h v h v


=  in Figure 1, for the isospin-down quarks 

it becomes / /h v h v


= , using the smaller vev.  So, for the isospin-down quarks to acquire their 
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masses, the energy extraction begins in a vacuum with a vev magnitude just over 40 times smaller 
than the Fermi vacuum vev, which directly reflects the ratio of the isospin-up mass sum to the 
isospin-down mass sum. 
 
 The connection in (15.6) whereby 21 12 12.975 0.026I Cθ θ


±≡ = °  also means that there are 

some additional theoretical relations between the CKM mixing angles and the    quark masses as 

represented by their couplings ( ) 2 1
, , , , 2

/d s b d s bG v m c v
 

=  .  These relations, assembled with the 

earlier (14.14) updated to reflect that these are for   quarks which use a different vev, and also 

using 1 u c tG G G= + +  from (14.3) and 1 d s bG G G= + +  from (15.1), are: 

 

( ) ( ) ( )
( )

( )
( ) ( )

( ) ( ) ( )
( )

( )
( ) ( )

( ) ( ) ( )

2 2
12 21 2 2 2 2

32 32

2
31 2 2

32 32

2 2
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II II s d b

c c c
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= = = = =
− − +

= = = =
− − +

= = = =
− − ( )

( )
( ) ( )

( ) ( ) ( )
( )

( )
( ) ( )

2 2
13 31 2 2

32 32

cos cos
cos 1 sin 1

c

u c

t t t t

C II

II II c u t

G v

G v G v

G v G v G v G v

G v G v G v
θ θ

θ θ



  

   



    

=
+

= = = = =
− − +

. (15.12) 

 
We have also included the “leftover” angle 31 0.034 rad 1.921IIθ


== °  which does not relate any 

other independently-known data, but which, like 2 2
12 21cos cosC I

θ θ


=  above, is a function of the 

strange and bottom quark couplings. 
 
 Then, solving the top two (15.12) as simultaneous equations in bG  and sG ,  while also 

using 2 2 2 2
32 21 32 31s s c sd I I II IIG

   
= =  from (15.1) along with the results in (15.6), analogously 

(14.15), we obtain: 
 

2 2 2 2
12 31 12 31

2 2 2 2
12 31 12 31

2 2
12 312 2

12 31 2 2
12 31

sin cos cos sin
; ;

1 cos cos 1 cos cos

sin sin
tan tan

1 cos cos

C II C II
b s

C II C II

C II
d s C b II

C II

G G

G G G

θ θ θ θ
θ θ θ θ

θ θ
θ θ

θ θ

 

 






= =
− −

= = =
−

. (15.13) 

 

In contrast to (14.15) where ( )31 23, , , ,u c t C Cm m m F v θ θ


=  so that all three quark masses may be 

expressed as a function of three independently-know parameters, the three , ,d s bG  and associated 

quark masses are now reduced in “freedom” by only one independently-known parameter, namely, 
the third mixing angle 12Cθ .  That is, for the isospin-down masses, we can write down a function 

( )12 31, , , ,d s b C IIm m m F v θ θ
 

=  with the same pattern of relations, but both v


 and 31IIθ


 are only 
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known by knowing the quark masses, so only the use of 12Cθ  is truly a reparameterization.  

Another way to represent this is to write ( )21, , , ,d s b d s Cm m m F m m θ=  or alternatively 

( )21, , , ,d s b d b Cm m m F m m θ= , because ( )2
21cos / 1C s bG Gθ = −  eliminates either sG  or bG  but not 

both as independent parameters.  Thus, all told, we have now six previously-unexplained quark 
masses reduced to two unexplained quark masses plus the three CKM angles plus the Fermi vev.  
Part of the focus from here will be on reparameterizing these remaining two quark masses. 
 
 At (15.10) we tightened our knowledge of the strange quark mass using the very precise 
down quark mass in (15.8) and the tightened 21 12I Cθ θ


= .  If we also use the up-quark mass 

2.22379240 MeVum =  in (15.8) which is tighter than the presently-known .0005
.0004.0022 GeVum +

−=  

by four orders of magnitude, then the bottom two relations in (15.12) which are the same as (14.14) 
enable us to also increase the precision of 23Cθ  and 13Cθ .  This is because in general, once we have 

relations between masses and mixing angles, we can use tighter angles to obtain tighter masses or 
tighter masses to obtain tighter angles, depending on whether we know the masses or the angles 
more tightly.  So, with the up mass in (15.8) being very tight, we can tighten the angles.  This 

calculation proceeds as follows:  First, we calculate 2 1

2
0.00001277281/u uG m c v


= = , which is 

very precise because both um  and v


 are very precise.  Then, via (14.3), with equal precision, we 

may calculate that 1 0.99998722719c t uG G G= =−+ . 

 

 Next, at (14.7) we recalculated 0.00021
0.000140.99266tG +

−=  so as to inherit and reflect the error bars 

of the charm quark.   So, using 0.99998722719c tG G+ =  to write the bottom two relations (15.12) 

entirely in terms of the top mass, then using this now-tightened mass, we obtain: 
 

0.00021
0.00014

0.00021
0.00014

0.00021
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0.00021
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2
2

13

4
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00001277281 0.00001277281 0.992661
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t t
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−
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−
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−

= = =
− − −

=
+

=
+

=
−

− −

. (15.14) 

 
It is now the error bar in the charm quark mass, inherited by the up quark mass, which limits the 
precision of the numeric calculation in (15.14).  What we then calculate, is that: 
 

0.0006 0.0342
0.0004 0.0232

0.0000003 0.00001
0.0000004 0.00

23

3 0021

0.0417  rad 2.3911  

0.0035871  rad 0.20552  

C

C

θ
θ

+ +
− −

+ +
− −

= °=

= = °
. (15.15) 

 
Comparing the upper relation (15.15) with presently-known empirical data 

23 2.415 0.053Cθ ±= °  from (14.12), we see that the center value of this angle is reduced by 

0.0239 1.4329'° =  and that its error range is diminished from 0.106°  to 0.0574° .  This improves 
the accuracy by a factor of 1.8466 – almost 2.  Comparing the lower (15.15) with the empirical 

0.015
0.0113 30.209Cθ +

−= °  also from (14.12), we see that the center value of this angle is reduced by 

0.00348 0.2085'° = , while the error range is diminished from  0.028°  to 0.00004°  which 
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improves the accuracy by a very large factor of 773.29 – almost three orders of magnitude.  Thus, 
we see that 13Cθ  which mixes the first and third quark generations is the recipient of this improved 

accuracy from both the up and top quark masses.  This is another prediction of the present theory 
which can and should be tested experimentally. 
 

Next, similarly to (14.16), using 1b s dG G G+ + =  deduced from (15.1) we may rewrite the 

upper two relations (15.12) as: 
 

2 2

2 2
21 21 2 2 2 2

2 2

2
31 2 2 2 2

cos cos
1

cos
1

s ss s
C I

b s d s d s d

b bb b
II

s b d b d b d

G mG G

G G G G G m m

G mG G

G G G G G m m

θ θ

θ





= = = = =
− + + +

= = = =
− + + +

. (15.16) 

 
Then, as in Figure 2, we may graph a similar geometric relationship in a three-dimensional rest 

mass space in which the square roots sm , dm  and bm  are plotted against the x, y, and z axes.  

Here, in contrast to Figure 2, the masses are close enough once the square root is taken, that they 
may be drawn to scale without re-scaling any axis.  The result is shown below: 

 
Figure 3: Isospin-Down Quark Mixing in Rest Mass Space 
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Here too, what is remarkable, taken together with Figure 2, is that the azimuthal angle ϕ  here 

corresponds also to the third of the three CKM mixing angles.  Each of the four angles in Figures 
2 and 3 is needed to specify projections of the vev vector associated into each of the individual 
masses, but only three of these angles are independent and used also for CKM mixing. 
 
 Taking stock of where we are at the moment, there are two reasons why, as reviewed, there 
are two free masses still remaining in (15.13) for the isospin-down quark masses.  First, there are 
only three real CKM mixing angles, not four.  Two of those already went into the isospin-up quark 

masses ( )31 23, , , ,u c t C Cm m m F v θ θ= .  All that was left for the isospin-down masses was 21Cθ .  

Second, for the isospin-up quarks, we had available v v


=  as an independent energy number 

supplied by the Fermi vev.  On the other hand, at present, we have no independent information 

about v


 in (15.11).  Rather, we only know about this from the 2 2 2
d s bm c m c m c+ +  mass sum.  

So, to squeeze out another degree of freedom from the unknown numbers in the natural world, we 
would need to have independent knowledge of v


, separately from its value in (15.11) arrived at 

from the quark masses themselves.  We will obtain this independent knowledge from the Higgs 
boson mass at (16.5) supra. 
 

Related to this, prior to (15.3) we pointed out how the isospin-down coupling relation 
1d s bG G G+ + =  requires us to relate the isospin-down quark masses to the smaller vev v


 in 

(15.11) according to a relation we now denote by 2 1

2
m c v G

  
= , while the isospin-up quark 

masses reviewed  in the last section are related to the larger Fermi vev v


 by what we now denote 

as 2 1

2
m c v G

  
= .  Consequently, if we use the very tight down quark mass from (15.8) and the 

tightened strange quark mass from (15.10) along with the least-precise bottom quark mass  
2 0.04

0.034.18 GeVbm c +
−= , then we are able to calculate: 

 
0.00015 0.00016
0.00020 0.000210.0 ;0115 0.00001; 0.02161 0.97725d s bG G G+ −

− += =±= . (15.17) 

 
In the above, recognizing that the error is predominantly driven by the bottom mass, we have used 
(15.8) and the center value of (15.10), and obtained the error variation entirely from the bottom 
quark mass.  Effectively, this means we have now truncated the extra to digits shown in 

0.0404
0.03

1

2 044.2773  GeVv


+
−=  and used in (15.11), and simply used 0.04

0.03/ 2 4.28  GeVv +
−

=  while only 

varying the value of the bottom quark mass, to obtain (15.17). 
 

This also means that (13.9) which is (13.6) as graphed for the top quark in Figure 1, now 

becomes ( ) ( )( )5
1 5

/ 1 exp /h x v G V Lφ Μ
+ 

= − −  for the isospin-up quarks generally, while for the 

down quarks the counterpart to (13.9) is now ( ) ( )( )5
1 5

/ 1 exp /h x v G V Lφ Μ
+ 

= − − .  So, while the 

down quark curves will look the same as the curve in Figure 1, now we will have ( ) / 2h x vφ Μ


=  

far from the fermion, indicating a much smaller vev from which to draw energy for mass which 
corresponds directly to the smaller mass sum for the isospin-down quarks.  Then, referring to 
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(15.17), the bottom quark will draw out about 97.73% of the energy out of the energy made 
available from the smaller v


 (contrasted with the approximate 99.4% drawn by the top quark out 

of its larger v


 Fermi vev in Figure 1), the strange quark will draw about 2.16%, and the down 

quark will draw a mere 0.11%. 
 
 In conclusion, the standard model assumes that all fermion masses fm  are related to a 

single vev which is that of the Fermi vacuum, 246.2196508 0.0000 GeV633v ±= , and that the 

associated couplings fG  are then calculated via the relation 2 1

2f fm c vG=  as against this one 

single vev.  But again, these couplings are only known insofar as the fermion masses are known.  
The standard model has to date been incapable of relating these couplings to the CKM mixing 
angles as is done here via the relations (14.15), (14.16), (15.12), (15.13).  However, in order to 

obtain these results, we have been required to utilize one relation 2 1

2
m c v G

  
=  for isospin-up 

quarks and a second relation 2 1

2
m c v G

  
=  for isospin-down quarks, and specifically, we have 

been required to utilize one vev for the energy draw that produces the isospin-up quark masses 
and a second vev for the energy draw that produces the isospin-down quark masses.  And as we 
shall later see, the same pattern applies to leptons as well, so that we end up with a total of four 
distinct vevs, rather than just one.   
 
 Although this fits the empirical mass and mixing angle data in a way that has not heretofore 
been achieved by the standard model, one could fairly take the view that having two (and especially 
four) vevs rather than one vev is less “economical,” though one would also have to fairly 
acknowledge the inability of the standard model to relate the known masses to the known mixing 
angle as has been done here, for the quarks so far.  So, if we are now to have two vevs rather than 
one vev to establish theoretical relationships between the quark masses and other independently-
known parameters, it is necessary to properly and fully develop the relation between these two 
vevs.  This is what brings us to the next stage in our development, which is to derive a Lagrangian 
potential which accounts for having two vev minima at both v


 and  v


 in (15.11), rather than the 

usual single minimum at only the Fermi vev v v


= .  And as we shall see at (16.5) supra, it is the 

Higgs boson which sits at the center of the relation between these two vevs. 
 

16.  Theoretical Relation amongst the Higgs Mass and the Isospin-Up and 

Isospin-Down Quark vevs; and the Two-Minimum, Two Maximum 

Lagrangian Potential for Quarks 
 
 When we first introduced the postulate of a second vev for the isospin-down quarks, this 
was speculative.  But because this postulate led to the connection 21 12 12.975 0.026I Cθ θ


±≡ = °  

with observed empirical data at (15.6) in addition to those already found for 23Cθ  and 13Cθ  at 

(14.13), this connection provided confirming evidence of this second vev.  So, now that the 
empirical data apparently indicates that these two vevs do exist, it is important to understand how 
they are theoretically tied together.  This brings us to the Lagrangian potential. 
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 In the standard model for a U(1) gauge symmetry with a complex scalar field hφ , the 

Lagrangian potential is written as ( )22 * * ...h h h hV µ φ φ λ φ φ= + +  with higher-order terms above 

( )2
*h hφ φ  neglected.  But if there is now to be a second minimum at v


, we can no longer neglect 

these higher order terms, because they will need to be responsible for providing this second 
minimum.  Thus, it is desirable to start by briefly reviewing how the Fermi vacuum is used to 
establish the vev at v v


=  in the standard model, as laid out, e.g., in sections 14.6 through 14.8 of 

[20] including Figure 14.3.  Then we will take on the task of introducing a second vev at v


.  

 
 In the standard model, with a gauge-covariant derivative /D ieA cµ µ µ≡ ∂ + ℏ  and potential 

( )22 * * ...h h h hV µ φ φ λ φ φ= + +  for complex scalar field hφ , one starts with a Lagrangian density: 

 

( )( ) ( )( ) ( )22 1
4

2 4 2 4 21 1
2 2

* * *h h h h h h

A h h

c ieA c ieA F F

m c A A m c

µ µ µν
µ µ µν

µ
µ φ

φ φ µ φ φ λ φ φ

φ

= ∂ + ∂ + − − −

+ −

ℏ ℏL
. (16.1) 

 

In the above, for illustration only, we have also included hand-added terms 2 41
2 Am c A Aµ

µ+  for a 

massive gauge boson of mass Am  and 2 4 21
2 h hm cφ φ−  for a massive scalar boson of mass 2

hmφ .  In 

four spacetime dimensions, L  has a mass dimensionality of +4, i.e., it has dimensions of energy 

to the fourth power.  We then use ( )1
1 22h h hiφ φ φ= +  as reviewed at (13.4) to introduce the real 

and imaginary parts of hφ , and then break symmetry in favor of 1hφ   by setting 2 0hφ = .  Moreover, 

we also remove the hand-added vector and scalar boson mass terms entirely by setting 0Am =  and 

0hmφ =  in the above, in favor of revealing these terms by other means.  This is exactly how at 

(10.6) we set M
ˆ 0=L  in (10.4) to require that the matter Lagrangian must emerge from the DKK 

geometry, as it did from the reassignment ( ) 5
M 51/ 2ˆ R̂≡ ΚL  in (10.5).  This is also exactly how at 

(11.3) we set 0m =  in (11.1) to likewise require that the fermion mass must emerge entirely from 

DKK geometry embodied in 5Γ  and the fifth energy-momentum component 5cp , as it did via the 

reassignment ( )5
0 0

2 5 5
0 05 5U cp U cp cmc p Uγ γφ− Γ =≡ +  in (11.2).   

 
The upshot of all of these steps that that we end up setting 1

12h hφ φ=  in (16.1) while 

removing the illustrative mass terms, to next arrive at: 
 

2 2 2 2 2 2 41 1 1 1 1
1 1 1 1 12 2 2 4 4h h h h hc e A A F Fµ µ µν

µ µ µνφ φ φ µ φ λφ= ∂ ∂ + − − −ℏL . (16.2) 

 

The potential contained in the above has now become 2 2 41 1
1 12 4h hV µ φ λφ= + , expressed with 1hφ  

rather than hφ  as the domain points.  It should also be cross-noted, and will become important 

shortly, that this very same 1hφ  is the range variable in (13.9) and Figure 1 for the top quark, and 

likewise for the other quarks in the manner reviewed near the end of the previous section. 
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The next step is to find the stationary points of V, i.e., those domain points at which 

( )2 2
1 1 1/ 0h h hV V φ φ µ λφ′ = ∂ ∂ = + = .  Clearly, these points occur where 1 0hφ =  and 2 2

1hµ λφ+ , the 

latter of which means that 2 2
1 /hφ µ λ= − .  We assign the energy of this latter stationary point to 

the Fermi vev by definition, by setting 2 2 2
1 /h vφ µ λ= − ≡ , thus 2 2vµ λ= − .  Although the square 

root of 2
1hφ  can be taken with either of the two possible sign choices 1h vφ = ± , because we are 

breaking symmetry we choose only one, customarily the positively signed 1h vφ = + . 

 
 Next, we introduce the Higgs field as also reviewed at (13.4) by expanding 1hφ  in (16.2) 

about the Fermi vev using 1h v hφ = + , with this 1h vφ = +  choice.  We then substitute 1h v hφ = +  

into (16.2) along with 2 2vµ λ= −  just deduced.  After consolidating terms, this produces: 

 
2 2 2 2 3 4 41 1 1

2 4 4

2 2 2 2 21 1 1
2 2 4

c h h v h vh h v

e v A A e h A A e vhA A F F

µ
µ

µ µ µ µν
µ µ µ µν

λ λ λ λ= ∂ ∂ − − − +

+ + + −

ℏL
. (16.3) 

 
Comparing with (16.1) which makes us mindful that the Lagrangian term for a massive vector 

boson is expected to take the form 2 41
2 Am c A Aµ

µ+ , we identify Am ev=  as the mass of this boson, 

so as to now replace the hand-added mass term with one that emerged naturally from the Higgs 
field expansion.  In non-Abelian gauge theory, for example weak interaction SU(2), an additional 
factor of ½ emerges so that the natural unit mass identification becomes 1

2Wm vg=  in relation to 

the coupling strength g.  More importantly for present purposes, because the term for a massive 

scalar boson is expected to take the form 2 4 21
2 h hm cφ φ−  as also illustrated by this hand-added mass 

term in (16.1), we also identify 2 4 21
2 hm c vλ=  with the energy equivalent of the Higgs boson mass 

in the above.  Thus, we have also replaced the hand-added scalar mass with a mass that likewise 

arises naturally from the Higgs expansion.  Restructured, 2 4 2/ 2hm c vλ =  informs us that the 

parameter λ  is undetermined unless and until we know the mass of the Higgs boson. 
 

 As a result of the foregoing, focusing now on the potential 2 2 41 1
1 12 4h hV µ φ λφ= +  and its 

derivative ( )2 2
1 1 1/ h h hV V φ φ µ λφ′ = ∂ ∂ = + , and using v v


=  to start distinguishing the Fermi vev 

from the v


 vev, we employ 2 2vµ λ


= −  and 2 4 2/ 2hm c vλ


=  to rewrite these as: 

 

( )

( ) ( ) ( )

2 4
2 2 4 2 2 4 2 4 2 4

1 1 1 1 1 1 12

2 4 2 4
1 12

2 4
2 2 2 2 2 2

1 1 1 1 1 12
1

1 1 1 1 1 1

2 4 2 4 4 8

1 1 1

4 8

2

h
h h h h h h h h

h h h

h
h h h h h h

h

m c
V v m c

v

m c
v

m cV
V v v

v

φ µ φ λφ λ φ φ φ φ

φ φ

φ µ λφ λφ φ φ φ
φ







 



 = + = − + = − + 
 

 
= − +  

 

∂′ = = + = − = −
∂

. (16.4) 
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If we calculate the second derivative then ascertain its value at each of the stationary points 1 0hφ =  

and 1h vφ


= , we obtain ( ) 2 4
1 0 / 2h hV m cφ′′ = = −  and ( ) 2 4

1h hV v m cφ


′′ = = + , from which we 

discern that the potential has a maximum at 1 0hφ =  and a minimum at 1h vφ


= .  This V, of course, 

is the customary “Mexican hat” potential of the standard model Higgs sector.  Now let’s move on 
from this review, and turn to how to incorporate the second vev at v


.  

 
Empirically, 246.2196508 0.00006 G V33 ev v


= ±=  is obtained from the Fermi 

coupling constant FG .  We calculated 0.0571
0.04306.0491 GeVv +

−
=  at (15.11) from the sum 

0.0404
0.0304

2 2 21

2
4.2773  GeVd s bv m c m c m c +

 −= + + =  of the isospin-down quarks, with two extra 

decimal places shown to display the impact of the strange and down masses which known more 
precisely then the bottom mass, see (15.2), then (15.11) and the discussion following.  And while 
over four decades passed between when the Higgs boson was first postulated and when it was 
finally observed, today we have experimental data showing the Higgs boson to have a rest energy 

2 125.18 0.16 GeVhm c ±= , see PDG’s [51].  It is noteworthy, and will momentarily become 

important, that 2
hm c  is just a touch larger than half the Fermi vev, and to be precise, that 

2 2.07 0.16 GeV/ 2hm c v


±− = .   Also, because we now know the Higgs mass empirically, we 

may deduce that the undetermined parameter 2 4 2 0.1292 0.0003/ 2hm c vλ


±= = .  Were the Higgs 

mass to be exactly equal to half the Fermi vev, we would have 1/ 8λ = .  The consequences of this 
slight deviation from 1/ 8λ =  are important, and will drive many of the results now to be reviewed.  

Finally, using the center values of the data for hm  and v


, the upper (16.4) yields the range value 

( ) ( )2 2 2 4 21
1 8

4
104.39 GeVh hV v m c vφ

 
= = − = −  for the potential at the minimum 1h vφ


= . 

 

 Now, as noted just above, the Higgs mass in 2 2.07 0.16 GeV/ 2hm c v


±= +  is slightly 

above the halfway point between zero and the Fermi vev 246.2196508 0.000063 e3 G Vv


= ± .  

Another way to say this is that twice the Higgs mass is 2 4.12 4 0.32 GeVhm c v


±= + , exceeding 

this vev by 4.14 0.32 GeV± .   Comparing 2 2 21 1

2 2

0.04
0.034.28  GeVd s bv m c m c m c v +

− 
= + + = =  from 

(15.11) with the two extra decimal places removed and the error range now set by the bottom quark 
mass which is least-tightly-known, we see that these two numbers match up within experimental 
errors.  This means that within experimental errors, the Higgs mass is exactly halfway between 

0.04
0.03

1

2
4.28  GeVv +

 −=  and 246.2196508 0.000063 e3 G Vv


= ± , with the errors set by the 

former.  Or, put differently, if we now theoretically define the Higgs mass to be the average of 

( )2 2 22 u c tv v m c m c m c


= = + +  and 2 2 21

2 d s bv m c m c m c


= + +  using the data from (15.11), we 

find that this relation ( )2 1

2
/ 2hm c v v

 
= + , expressed as: 
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( )
( )( )

2 1 1
2 2

2 2 2 2 2 21
2

125.18 0.16 GeV 125.25 0.02 GeV

2

h

u c t d s b

m c v v

m c m c m c m c m c m c

 
= + =

+ + + + +

± ≡ ±

=
, (16.5) 

 

is true within experimental errors.  The question now becomes whether ( )2 1 1
2 2hm c v v

 
= +  

above really is a relation of genuine physical significance, or is just a coincidence.  There are a 
number of good reasons we shall now review, why this is likely a real relation:   
 

First, if ( )hV φ  is to have a second (local, shallower) minimum at 1h vφ


=  to provide a 

“nest” for isospin-down quarks along with its first (global, deeper) minimum at 1h vφ


=  where 

isospin-up quarks are “nested,” as well as its maximum at 1 0hφ = , then it must now also have a 

second maximum at some definitive 1hv vφ
 

< <  in between the two minimum points.  This is not 

optional: elementary calculus demands that if a function has two minima, it inexorably must have 
a maximum somewhere between these two minima.   

 
Second, given this required 1hv vφ

 
< <  domain for the second maximum, it makes 

particular sense in the present context for the maximum to be reasonably close to the halfway point 
between v


 and v


. 

 
Third, given the requirement for a maximum in the domain 1hv vφ

 
< < , just as v


 and v


 

are physically meaningful numbers, we expect that the energy of 1hφ  at this second maximum 

should have some physical meaning, for example, that it should be, or should at least be “based 
on,” the rest mass or mass sum of an elementary particle or particles.  The empirical rest masses 
of significance between v


 (about 6 GeV) and v


 (about 246 GeV) are the top quark mass, the 

masses WM  and ZM  of the electroweak vector bosons, and the Higgs mass.  The top mass and the 

electroweak bosons are theoretically accounted for in other ways, so we will make an educated 
guess that the second maximum is based on the Higgs mass itself.   

 
Fourth, if this maximum is to be close to the halfway point between v


 and v


, and is to 

be based on the Higgs mass, then ( )2 1 1
2 2hm c v v

 
= +  in (16.5) is indeed a good halfway point, 

because v v
 
≪ .  So, we infer that the Higgs itself mass may provide one suitable halfway point, 

whereby the maximum occurs at 2
1h hm cφ = , just above halfway.  Another suitable halfway point 

would be at 2
1h hv m cφ


= − , just below halfway.  Both of these are clearly “based on” the Higgs 

mass.  We will momentarily asses which of these options makes better physical sense.  
 

Fifth, the Higgs mass itself and the related parameter 2 4 2/ 2hm c vλ


=  have long been 

entirely unexplained as a theoretical matter.  Given that we now have good empirical data for the 

Higgs mass, and that ( )2 1 1
2 2hm c v v

 
= +  is confirmed by that data within experimental errors, 
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regarding (16.5) as a new, correct theoretical relation of physical significance would allow us after 
more than four decades to finally place the value of λ  on an entirely theoretical basis, as we shall 
detail further momentarily. 
 

Sixth, the empirical data on the right in (16.5) has a tighter error bound than the data on the 

left: 2 125.25 0.02 GeVhm c ±=  is tighter then the presently-known 2 125.18 0.16 GeVhm c ±= by 

a factor of almost 10, and raises the center value by .07 GeV .  Thus, if we regard (16.5) as true, 
this contains a prediction that when the Higgs mass becomes measured more tightly than at present, 

it will fit in the range 2 125.25 0.02 GeVhm c ±= .  So, this sixth reason to regard (16.5) as a true 

physical relation, is that it can likely be experimentally tested in the foreseeable future. 
 

Seventh and finally, following (15.13) we noted using the parameterization 

( )21, , , ,d s b d s Cm m m F m m θ=  or alternatively ( )21, , , ,d s b d b Cm m m F m m θ= , that we had 

squeezed one degree of freedom from the isospin-down quark masses via the first relation (15.12) 
for the CKM mixing angle 21Cθ  and the couplings for these masses.  With the discovery of (16.5), 

we now have a basis for expressing the previously-undetermined number v


 as a function 

( ), hv F v m
 

= .  In other words, given the Higgs mass and the Fermi vev, we may deduce 

( )2 2 22 d s bv m c m c m c


= + +  from v


 and hm  via (16.5).  This means that if we choose to regard 

the Higgs mass as a “given” number, related to the two vevs by (16.5), we can squeeze yet another 
unexplained energy number out of the parameters which drive the natural world.  This would 
enable us to remove sm  or bm  from the above parameterizations and now write 

( )21, , , ,d s b d h Cm m m F m m θ=  for the isospin-down quark masses.  Together with 

( )31 23, , , ,u c t C Cm m m F v θ θ= , this would mean that we can now eliminate five (5) out of the six 

unexplained quark masses and “explain” these as they relate to 21Cθ , 23Cθ , 31Cθ , v, and hm , leaving 

only dm  now unexplained.  Of course, this would not explain why the five parameters 21Cθ , 23Cθ , 

31Cθ , v, and hm  have the empirical values that they have.  But this would explain how these are 

related to the quark masses and so render five of these six quark mass numbers into the status of 
“redundant” data.   
 

Accordingly, for all the reasons just reviewed, we shall now regard ( )2 1 1
2 2hm c v v

 
= +  in 

(16.5) to be a true theoretical physical relation for the Higgs mass, and will use the tighter, raised-

center value 2 125.25 0.02 GeVhm c ±= for this mass from here on.   

 
Next, turning to the square roots of masses, if we write (16.5) as: 

 

( ) ( ) ( )2 2 2
4/ / 2 2 hv c v c m

 
+ = , (16.6) 

 

we see a Pythagorean relation amongst /v c


, 4/ 2v c


 and 2 hm , with the former two on the 

legs of a right triangle and the latter on the hypotenuse.  This can be used to define an angle: 
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4

4

/ 2 /
sin ; cos ; tan

2 2 2
v v v

h h

v c v c v

m m v
θ θ θ  



≡ = = , (16.7) 

 
wherein vθ  effectively measures the magnitude of each of the two vevs in relation to one another 

and the Higgs mass.  Using the data from (15.11) and (16.5) we calculate that the central value for 
this angle is 6.3085vθ = ° .  This can all be represented in the rather simple geometric Figure below: 

 
Figure 4: Vacuum and Higgs Mass Mixing in Quark Rest Mass Space 

 
Then, as noted in the fifth reason reviewed above, by advancing (16.5) to a meaningful 

relation, we also can deduce that the long-undetermined parameter λ  in 2 2 41 1
1 12 4 ...h hV µ φ λφ= + +  

is theoretically given, also using (16.7), by: 
 

( ) ( )
2 212 4

22 2

2 2

1 1 1
1 0.12938 0.01 0tan 4

2
0

2 8 8 8
h

v

v v vm c

v v v
λ θ  

  

+  
= = = + = + = 


±


. (16.8) 

 

So physically, using Figure 4 and (16.8), λ  and ( )1 4tan / 2v v vθ −
 

=  are now understood as 

measures of the ratio /v v
 

 of the two vevs.  In the limiting case where 0vθ → , we also have 

1/ 8λ → , 2 1
2hm c v


→  and 0v


→ .  With 0v


→ , this also causes all of the isospin-down quark 

masses 2 1

2
0m c v G

  
= →  to approach zero, allocating all mass to the isospin-up quarks. 

 
It is important to understand how Figures 2, 3 and 4 all tie together, wherein the Higgs rest 

energy is distributed into the two quark vevs in accordance with Figure 4, with these two vevs then 
parceling out their energies into the rest energies for each quark in their sector as illustrated in 
Figures 2 and 3, via the bi-unitary mass rotations that we started to develop at (14.9).  Specifically:  

In Figure 2, ( ) 4/ / 2v c


 was the hypotenuse projected into each of three isospin-up mass roots 

and in Figure 3, ( ) 4/ / 2v c


 was the hypotenuse projected into each of three isospin-up mass 

roots.  This means that (16.6) and Figure 4 are the bridge between the two spaces in Figures 2 and 
3, in a mass square root space that is overall six dimensional, as also seen from the bottom line of 
(16.5).  So, with the coefficients and square roots as shown, geometrically, one starts with the 
Higgs mass hm  which is placed along the hypotenuse in Figure 4.  This Higgs mass hypotenuse is 

then projected onto the two orthogonal axes, represented with   and   for the isospin-up and 
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isospin-down, to arrive at the related vevs v


 and v


.  Then, in three of the six dimensions v


 is 

further projected into the masses for the top, charm and up quarks as shown in the not-to-scale 
Figure 2, and in the other three of six dimensions v


 is projected into the bottom, strange and down 

masses as shown in Figure 3.  The azimuthal and polar angles in the former, and the azimuthal 
angle in the latter, simultaneously are the three real CKM mixing angles. 
 
 Now we come to the point touched upon in the second through fourth reasons why (16.5) 

should be regarded as a true physical relation.  From these, we discerned that 2
1h hm cφ =  and 

alternatively 2
1h hv m cφ


= −  can suitably serve as the domain points for the Lagrangian potential 

maximum, because each is approximately halfway between v


 and v


, and because each is clearly 

based upon the Higgs mass.  In the former, 2
1h hm cφ =  is at the energy equivalent of the Higgs 

mass.  Because 1h v hφ


= + , the latter implies 2
hh m c= − , so that the energy of the Higgs field at 

the maximum domain point is equal to the negative energy equivalent of Higgs mass.  Note from 
(13.5) and Figure 1, that the Higgs field energy is always negative close to a fermion.  Now the 
question is: which of these two alternatives makes the best physical sense? 
 

 Using ( )2 1 1
2 2

125.25 0.02 GeVhm c v v
 

±= + =  from (16.5), and mindful of 1h v hφ


= + , 

for the former alternative there would be a Lagrangian potential maximum at the domain point: 
 

( ) ( )
( ) ( ) ( )

2 1 1
1 2 2

2 1 1
1 2 2

125.25 0.02 GeV; 

i.e.  120.97 .02 GeV

h h

h h

x m c v v

h x x v m c v v v

φ

φ

Μ
 

Μ Μ
   

≡ = + =

= − = − = − =

±

− ±
. (16.9a) 

 
But again, while the calculus demands that there be a maximum somewhere in the domain 

1hv vφ
 

< < , it does not tell us exactly where this maximum must be.  The precise location is to 

be decided by physics.  So, given the sensibility of this location being based on the Higgs boson 
mass, we also consider the alternative where the maximum is at: 
 

( ) ( )
( ) ( ) ( )

2 1 1
2 2

2 1 1
1 2 2

125.25 0.02 GeV; 

i.e. 120.97 .02 GeV

h

h h

h x m c v v

x v h x v m c v vφ

Μ
 

Μ Μ
   

− ±

±

= − = − + =

= + = − = − =
. (16.9b) 

 
In effect, (16.9b) this shifts the maximum hypothesized in (16.9a) to the left, toward the isospin-

down vev, by ( ) ( ) 0.04
0.

2 2 21 1 1 1 1
2 22 2 2 034.28  GeVd s bv v v v v m c m c m c

    

+
−− − − = = + + = , which is 

the sum of the charged lepton masses related to (15.11) with the error bar set by the bottom quark.  
Now, we are called upon to determine which of (16.9a) versus (16.9b) is the better hypothesis, and 
this is a physics question, not a mathematics question. 
 

Because standard model electroweak theory teaches that the W and Z bosons draw their 
rest energies from the Fermi vacuum, we anticipate the Higgs boson h draws its rest energy out of 
the vacuum in a similar way.  This is especially so, because as reviewed in sections 11 and 12, the 
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relation (12.16) applies to both fermions and bosons.  Focusing on the upper relation (12.16), we 

noted following (13.1) that while fermions couple to the Fermi vacuum via 2 1

2f fm c G v= , bosons 

couple via 2 1
2B Bm c g v= , with a constant coefficient that is diminished from that for the fermions 

by a factor of 1

2
.  Referring, for example, to Figure 1, this likewise means that for a given coupling 

fG , a fermion draws energy out of the vacuum to acquire its rest masses at an amplified draw rate 

of 2  time the rate at with a boson with a given coupling Bg  draws its rest energy from the 

vacuum.  This 2  amplifier is why in Figure 1, the top quark draws almost all of the energy out 

of a vacuum with a vev 246.22 GeVv ≅ , while having a rest energy that is only just shy of  1

2
v .  

And it is this relation which, at (13.8), provided the first clue which subsequently allowed us in 
sections 14 and 15 to fit all of the fermion masses to the CKM mixing angles using bi-unitary 
transformations acting on fermion mass matrixes.   
 
 Now let’s consider the Higgs boson and how it connects to the Higgs field to draw its rest 
energy out of the Fermi vacuum.  Here, starting with the upper relation (12.16) we set hm m֏  

and 5 5
hp p+ +֏  to have this apply specifically to the Higgs boson, so that with ( )

0 1 2 3 5

5
V x x x x x=

the upper (12.16) becomes  ( )( )5
1 5

5 22 exp /h hm ccp V Lφ+ +≅ ± − .  Now, at (13.5) we used 

( ) ( )1
5

fcp x h xφ Μ Μ
+ ≡  to connect the Higgs field ( )h xΜ  with the symmetry-broken Kaluza-Klein 

scalar ( )1 xφ Μ  for a fermion with a fifth-dimensional momentum component 5
fp+ .   But now we 

need to connect ( )h xΜ  to ( )5
1hcp xφ Μ

+  which is for a Higgs boson, not ( )5
1fcp xφ Μ

+  for a fermion.  

Because the connection to ( )h xΜ  determines the rate at which energy is drawn from the vacuum 

for rest mass, and because bosons with a given g are coupled less strongly to the vacuum than 

fermions with a given G by a factor of 1

2
, this means that boson energy draws will be diminished 

by the same factor.  Therefore, for bosons generally, the appropriate Higgs field connection is 

( ) ( )51
12 Bcp x h xφ Μ Μ

+ ≡ , which is diminished by this 1

2
 in relation to the fermion connection.  

Therefore, for the Higgs boson specifically, with the above multiplied through by 2 , we obtain

( ) ( )1
5 2hcp x h xφ Μ Μ

+ ≡ .  Combined with ( )( )5
1 5

5 22 exp /h hm ccp V Lφ+ +≅ ± −  above, this yields: 

  

( ) ( )5 2 5

1 5

1
exp

2
h hmx cp

L
c

V
h φΜ

+
+

 
≡ = − −  

 
. (16.10) 

 
This is in contrast to the upper (13.5) for fermions.  With h B֏  for the subscript, this likewise 
applies to other massive bosons, most notably the W and Z bosons. 
 
 With (16.10), the counterpart to the upper (13.6), now for the Higgs boson, also multiplied 

through by 2 , and also defining a coupling hg  by 21
2 h hg v m c≡  in the usual form for bosons, is: 
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( ) ( ) ( ) ( ) ( )5 5

1 5 5

2 1
2 exp exp

2
hh h hm

V V
x x v h x v v g v

L L
cφ φΜ Μ Μ

+ +

   
= = + = − − = − −      

   
. (16.11) 

 
Likewise, the energy draw which gives the Higgs boson its mass is a (13.7) counterpart, namely:  
 

( ) ( )
( )

( )
( )5 5

5 55 5 5

2

50

0

2 2

0

1 1
exp exph h h

V V
h x d m c m c mV d

L
cV

L L L

∞
∞ ∞Μ

+ + + +

   
= − − = − = −      

   
  . (16.12) 

 

The only difference from the parallel energy conservation relation (13.7) is the absence of a 2  
in front of the first integral, and again, all of this extends to bosons generally by the subscript 

replacement h B֏ .  Additionally. combining the newly-defined 21
2 h hg v m c


≡  with the positive 

square root of (16.8), as well as using 125.25 0.02 GeVhm = ±   from (16.16) with 

246.2196508 0.0000633 GeVv = ± , for the Higgs coupling hg  we obtain: 

 

( ) ( )
2

2 0.50869 0
1 1 1

2 1 tan
2

.00008 1.01738 0.0 016
2 2

0h
h v

m c
g

v
λ θ



= = ± == + ±= , (16.13) 

 
thus 1.01738 0.00016hg ±= .  Continuing the discussion following (16.8), this also means that 

when 0vθ → , this 1hg → .  Finally, writing (16.11) for ( )1h xφ Μ  in the form of (13.9) we obtain: 

 

( ) ( ) ( ) ( )1 5 5

5

2

5

1
1 1 exp 1 exp

2
hh

h

m c V Vx h x
g

v v L Lv

φ Μ Μ

+ +

   
= + = − − = − −      

   
. (16.14) 

 
Then, analogously to (13.9) and Figure 1, we use this to draw a plot for how the Higgs boson 
extracts the energy for its mass from the vacuum, as shown below: 
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Figure 5: Higgs field extraction of rest energy from the Fermi vacuum, for the Higgs boson 

 
As noted, the other massive bosons, namely the Z and the W, have plots similarly governed by 
(16.11), merely with the subscript replacement h B֏ .  So, at its origin, the plot for the Z boson 
will not dip down quite as far as this Higgs boson plot above, and the plot for the W boson will 
have a slightly-shallower dip than that for the Z boson, because of the respective masses 

2 125.25 0.02 GeVhm c ±=  from (16.5), along with 2 91.1876 0.0021 GeVZm c ±=  and 
2  80.379 0.012 GeVWm c = ±  from [51]. 

 
 So, considered from the viewpoint of Figures 1 and 5 and equations (13.7) and (16.17) 
which show hoe the energy of the vaccum is conserved while fermions and bosons acquire the rest 

energy for their masses, we see that the Higgs field ( )h xΜ  is a measure of how much energy has 

been removed from the vacuum in order to bestow a rest energy upon a particle, and that ( )1h xφ Μ  

is conversely a measure of how much energy is retained by the vacuum after the particle has 

acquired its rest energy.  This means if we choose ( ) 2
hh x m cΜ = −  which is option (16.9b), then 

the V maximum will be based on the amount of energy extracted from the vacuum (with the minus 

sign indicating “extraction” or “removal”).  Conversely, if we choose ( ) 2
1h hx m cφ Μ =  which is 

option (16.9a), then the V maximum will be based on the amount of energy retained by the vacuum 
(with an implicit plus sign indicating “retention.”)  So, the physics question is whether the domain 
point of the V maximum should be based upon energy removed from the vacuum, versus upon 
energy retained by the vacuum.  Figure 5 clearly points toward (16.9b), but let’s make sure we 
examine all considerations. 
 
 Next we turn to (15.11) which teaches that for quarks the Lagrangian potential V has two 
minima, one for isospin-up and one for isospin-down quarks.   This central to what we are presently 
studying, and is why we are needing to pinpoint a V maximum in the first place.  We anticipate 
that v


 will establish energetically-favored “nests” for isospin-down quarks and that v


 will 
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establish energetically-favored nests for isospin-up quarks.  As we shall shortly examine in detail, 
we also anticipate that weak beta decays between isospin-up and isospin-down quarks will require 
the incoming quark at a beta-decay vertex to pass over or through the V maximum between v


 and 

v


 in order to decay into the outgoing quark.  (We shall see that the top quark is an exception to 

what was just stated, because of its exceptionally-large rest mass.)  So if (16.9b) was the alternative 
used to establish the maximum V between these two minima, then the range point 

( ) ( ) 2
1 120.97 .02 0 0 GeVhh m cv h vφ = + = − = ±  which is illustrated in Figure 5 would establish 

the domain point at which V has its inter-vev maximum.  This would mean that while quarks (or 
at least the less-massive quarks) are expected to “nest” near the minima of V, the Higgs bosons 
themselves would be “rooted” at this intermediate V maximum. 
 

This all means that a V maximum established using the alternative (16.9b) would give rise 
to two further physical characteristics for the Higgs boson:  First, as an energy maximum at which 
the Higgs boson is rooted, this V maximum would cause the Higgs boson to be an unstable particle 
that decays quickly toward more stable energy configurations – which it is.  Second, having the 
Higgs boson rooted at the maximum of V would mean that in addition to its large rest mass 

2 125.25 0.02 GeVhm c ±=  from (16.5), the Higgs boson would also have a very high Lagrangian 

potential energy in the vacuum.  This in turn would make available energy which can be used – 

for example – to give rise to the also-large masses 2 91.1876 0.0021 GeVZm c ±=  and 
2  80.379 0.012 GeVWm c = ±  of the Z and W bosons [51], and for any fermion mass increases 

which need to occur during weak beta decay (which depends, of course, on the pair of fermions 
involved).  But most importantly, as we shall see when we study beta decay more closely, this 
would provide the requisite energy for a fermion undergoing beta decay at a vertex with a W boson 
to climb out from the vev minimum of its potential well and pass over or through this V maximum. 

 
Therefore, in view of all the foregoing, as especially the clear quantitative support from 

Figure 5, it makes the most physical sense for the V maximum to be defined at ( ) 2
hh x m cΜ = −  

by the energy drawn out of the vacuum to bestow a mass upon the Higgs boson, and not at 
2

1h hm cφ =  by the energy retained by the vacuum after the energy draw.  The latter would place 

the V maximum at a domain point about 2 2 24.28 GeV d s bm c m c m c+ +≅  shy of the energy draw 

needed to give the Higgs boson its rest mass which is illustrated in Figure 5, and so would be close 
to the V maximum, but not right at the V maximum.  Accordingly, recognizing that the vacuum 

field must give up an energy 2 125.25 GeVhm c ≅ −−  to provide a mass 2 125.25 GeVhm c ≅  to 

a Higgs boson in accordance with the energy conservation principles illustrated by (13.7) and 
(16.12), we now formally make the hypothesis as between (16.9a) and (16.9b), that the maximum 
of the Lagrangian potential V between v


 and v


 is situated at the domain point where 

( ) 2
hh x m cΜ = − , that is, at the point where the Higgs field energy is equal to minus the Higgs mass, 

with the negative sign representing energy which has been drawn out of the Fermi vacuum to 
briefly provide mass to the high-potential thus energetically unstable and short-lived Higgs boson. 
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 Now, we have all ingredients needed to revise the potential in (16.4) with the higher-order 
terms necessary to provide the usual first minimum at 1h v vφ


= =  and the usual first maximum 

at 1 0hφ = , as well as a second minimum at 1h vφ


=  and, via (16.9b) a second maximum at 
2

1h hv m cφ


= − .  We start with 1/ hV dV dφ′ =  and build in these minima and maxima by defining: 

 

( ) ( )( )( )

( ) ( )( )( )
( )( )

2 4
22 2 2 2 2 2

1 1 1 12

2 22 2 2 2 2 2 2 2 3
2 4 1 1

2 22 2 2 5 7
1 1

2

2

h
h h h h h

h h h h
h

h h h

m c
V A v v m c v

v

v v v m c v v v v v m c
m c

A
v v v v m c

φ φ φ φ

φ φ

φ φ

  



       


  

′ ≡ − − − −

 − − + + + −
 

=  
 − + + − +
 

. (16.15) 

 

This is constructed so that the leading terms ( ) ( )2 4 2 2 2
1 1/ 2h h hm c v vφ φ

 
−  in the top line above 

precisely match the usual V ′  in (16.4).  We also include an overall coefficient A which we will 

use to make certain that when we momentarily integrate (16.15), the leading 2
1hφ  term of V in 

(16.4) will continue to be 2 4 21
14 h hm c φ− , with all changes to V introduced at higher order.  This 

leading term we are matching stems from the “mass” term 2 21
12 hµ φ  in 2 2 41 1

1 12 4h hV µ φ λφ= + .  It 

will be seen by inspection that the top line in the above will become zero at all four of 1 0hφ = , 
2

1h hv m cφ


= − , 1h vφ


=  and 1h vφ


= .  We will need to choose the overall sign in A so that the 

first two provide maxima and the latter two provide minima for V itself. 
 

Next, we easily integrate the above.  For the leading term to match 2 4 21
14 h hm c φ−  in (16.4) 

we must set ( )22 21/ hA v v m c
 

= − .  Also based on the “initial condition” of matching (16.4), we 

discard any integration constant.  We then consolidate and reduce to obtain: 
 

( )
( )

( ) ( )

2 4 4
1 1 122 2 2

2 4
1

2 2
6 8

1 12 22 2 2 2 2 22 2

1 1 1 1 1 1

4 8 8

1 1 1 1 1 1

12 16

h h h

h

h h

h h

h h

v v v m c
V m c

v v

v v v v v vv m c v m c

φ φ φ

φ

φ φ

  

 

      

  
  − + + +
  −  =   +  − + +   − −  

. (16.16) 

 

Comparing with V in (16.4), we indeed see the original 2
1hφ  and 4

1hφ  terms.  But there are some 

new additions to the 4
1hφ  term, and brand new  6

1hφ  and  8
1hφ  terms.  These new terms, of course, 

are the ones we expect will deliver the second maximum and minimum as specified via (16.15). 
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 To simplify calculation, it is very useful to restructure the above to separate terms which 

do not and which do have a ( )221/ hv m c


−  coefficient, and to then explicitly apply 

( )2 1

2
/ 2hm c v v

 
= + from (16.5), thus ( )2 1 1

2 2hv m c v v
  

− = − , as follows: 

 

( )

( )
( )

( )
( )

2 2

2 4 2 4 6
1 1 1 12 2 2 2

2 22 4
4 6 8

1 1 12 2 2 2 22

2
1 2 2
2 2 4 6
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V m c

v v v v

v vm c
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 +
= − + −  

 

 +
+ − +  −  

+  +
= − + −  

 

+
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−

2 2

4 6 8
1 1 12 2 2 2 2

1 1 1 1

8 12 16
h h h

v v

v v v v
φ φ φ 

   

 +
− +  

 

. (16.17) 

 

So, the behavior of ( )1hV φ  is entirely driven by the two energy-dimensioned numbers in (15.11).  

The first is the Fermi vev v v


=  which establishes the usual minimum, and which we have learned 

is related to the sum of the isospin-up quark masses via ( )2 2 22 u c tv m c m c m c


= + + .  The second 

is the second vev v


 which establishes a second minimum and is related to the sum of the isospin-

down quark masses via ( )2 2 22 d s bv m c m c m c


= + + .  Additionally, the Higgs mass itself 

establishes a second maximum via (16.9b), but the new relation ( )2 1

2
/ 2hm c v v

 
= +  discovered 

in (16.5) means that only two of these energy numbers are truly independent of one another.   
 

 It is pedagogically-useful to graph the potential ( )1hV φ  in (16.17) using the numerical 

values of v


 and v


 in (15.11), and / or the Higgs mass in (16.5).  Substituting these into (16.17), 

reconsolidating terms at each order, and rounding the coefficient at each order to four significant 

digits, with 1hφ  expressed in GeV thus ( )1hV φ  in GeV4, we obtain: 

 

( ) 4 2 4 6 8
1 1 1 1

8
13922 53.76 0.003032 3.020 10GeVh h h h hV φ φ φ φ φ−  = ×− + − + . (16.18) 

 

Keeping in mind from (16.1) through (16.4) that ( )1hV φ  is part of the Lagrangian density and so 

has physical dimensions of quartic energy, and that 1hφ  is linear in energy, (16.18) can be easily 

graphed to produce the following plot: 
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Figure 6: Lagrangian Potential for Quarks – Wide View  

 

 Above we see the usual minimum at 1 246.22 GeVh vφ


= ≅ , where along the y axis we 

have an energy “well” with a depth of ( ) ( )4

1 514.89 GeVhV φ ≅ − .  But we now have a new 

maximum at 2
1 120.97 GeVh hv m cφ


= − ≅  based on (16.9b), and at this maximum there is an 

energy “barrier” with a height of ( ) ( )4

1 240.37 GeVhV φ ≅ .  Closer to the origin is the usual 

maximum at  1 0hφ =  and the new minimum at 1 6.05 GeVh vφ


= ≅ .  But comparatively to the 

foregoing, these are extremely small, and are impossible to see in Figure 6.  So, it is also useful to 
magnify the domain from 110 GeV 10 GeVhφ− < <  in Figure 6, while also magnifying the range, 

to obtain the magnified view of the center of Figure 6, as shown below:  
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Figure 7: Lagrangian Potential for Quarks – Magnified Center View  

 

Here, the usual maximum at ( )1 0 0hV φ = =  is readily apparent, as is the new minimum at 

1 6.05 GeVh vφ


= ≅ where there is a second energy well of depth ( ) ( )4
16.36 GeVV v


≅ − .  The 

above is simply an extremely magnified view of the region in Figure 6 close to the origin.   
 

As reviewed following (16.4), the well depth for the usual 2 2 41 1
1 12 4h hV µ φ λφ= +  in (16.4) 

at 1h vφ


=  was ( ) ( )2 4
104.39 GeVV v


= − .  But of course, this was based only on square and 

quartic field terms.  Now, in Figure 6, at the same 1h vφ


=  we have  ( ) ( )42 514.89 GeVV v


≅ −  

which is deeper by a factor of almost 5 in linear energy dimensions.  This substantially-increased 

depth is driven by the combination of setting ( )22 21/ hA v v m c
 

= −  going from (16.15) to (16.16) 

to preserve the leading 2 4 21
14 h hm c φ−  mass term in ( )2 4 2 2 4 2 41 1

1 14 8 /h h h hV m c m c vφ φ


= − +  from 

(16.4) without change, and from the new minimum at v


 and new maximum at 2
1h hv m cφ


= − .  

That is, this increased depth is driven entirely by the new higher-order 4
1hφ , 6

1hφ  and 8
1hφ  terms, in 

combination with maintaining the existing 2
1hφ   and 4

1hφ  terms as is.  Given the substantially-

greater depth of ( ) ( )42 514.89 GeVV v


≅ −  versus ( ) ( )4
16.36 GeVV v


≅ − , we see that the 

minimum at 1h vφ


=  is simply a local minimum, while that at 1h vφ


=  is a global minimum, as we 

previewed following (16.5).  Given that quarks situated in these wells will seek out the lowest 
available energy states, this means that will all else being equal, a quark will find it energetically-
favorable to maintain an isospin-up state over and isospin-down state.  As we shall later see, this 
is part of why free neutrons decay into free protons, rather than vice versa. 
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 Even with Figures 6 and 7, however, the energetic behavior of quarks in these wells and 
the impact of the new maximum are not brought out as much as they could be, because 1hφ  is linear 

in energy while V is quartic in energy.  So, it is also useful to reproduce Figures 6 and 7 by taking 

the fourth root ( )4
1hV φ , and also by scaling the energies along the ordinate and the abscissa to 

match one another precisely.  Of course, the fourth root of +1 has the quartic roots 1, –1, i, and –i.  

So below the x axis, to connect everything together, we wish to display what is really ( )4
1hV φ− −  

using 1 for the quartic root.  So, taking the fourth root along the vertical axis in Figure 6 and scaling 
what are now linear energy numbers along each axis to one another, we obtain the plot below: 

 
Figure 8: Lagrangian Potential for Quarks and Bosons, Fourth Root – Wide View 

 
It is important to note the upward-pointing arrows designating the u, c and t quarks, as well 

as the Higgs and Z and W bosons, which will momentarily be reviewed.  Above, we are able to see 
both minima and both maxima in the same plot, although the central region is still rather small.  
Therefore, in Figure 9 below, we magnify Figure 8 over the domain 110 GeV 10 GeVhφ− < < , and 

again scale the energies on a 1:1 basis along the vertical and horizontal axes.  This Figure 9 is 
equivalent to the fourth root of the magnified view of the potential in Figure 7.   
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Figure 9: Lagrangian Potential for Quarks, Fourth Root – Magnified Center View 

 
Here, note also the upward-pointing arrows designating the b, s and d quarks as well as the t quark, 
which will also be reviewed momentarily. 
 
 These two plots in Figures 8 and 9 help provide a deeper understanding of how quarks 
behave in the Lagrangian potential.  First, it will be seen with energies linearized along both axes 
and scaled at 1:1, that the potential wells are very deep and steep.  Moreover, it will be seen that 

the maximum at ( )1 0 0hV φ = =  is not smooth as one might conclude looking at Figures 6 and 7.  

Rather, when comparing energies to energies at a 1:1 scale, this maximum comes to a sharp upward 
point with a slope that is infinite at the origin.  Second, it is apparent, most clearly from Figure 8, 
that the v


 potential well establishes a local minimum while the v


 potential well presents a global 

minimum, as already noted.  The v


 local minimum has an energy depth of –16.36 GeV and the 

v


 global minimum has a depth of –514.89 GeV, about 31.47 times as large.  Third, we see most 

clearly from Figure 8 that there is high barrier between the two wells set by the new maximum 
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which was built around the Higgs boson, which barrier has a height of +240.37 GeV.  All this will 
be important shortly, to better understand the role of the Higgs field and boson in weak beta decay.  
First, however, let’s review how Figures 1 through 9 all tie together, and explain how the upward-
pointing arrows in Figures 8 and 9 lay the foundation for understanding the energetic behaviors of 
the individual quarks. 
 

To fully understand Figures 6 through 9 and what they teach about the behavior of 
individual quarks, it is essential to understand that 1hφ  plotted along the horizontal axis in all of 

Figure 6 through 9 is the very same 1hφ  which is plotted along the vertical axis of Figure 1.  It is 

most helpful to refer to Figure 8 to see this:  Although Figure 1 applies to the up quark, we 
discussed following (15.17) how similar plots with the exact same character can be drawn for all 
of the other quarks as well.  And we just showed in Figure 5 how to draw this plot for the Higgs 
boson, with similar plots albeit with shallower origin dips which may be drawn for the Z and W 

bosons, with energy draws for bosons damped by a factor of 2  relative to fermions for any given 
coupling because of the constant coefficients in the coupling relations 1

2B Bm v g


=  versus 

1

2f fm v g


= .  Far from the charm and up quarks, where ( )
5

5
/V L → ∞ , this Figure 1-type plot will 

likewise level off at 1 246.22 GeVh v vφ


= = ≅ .  But right at ( )
5

5
/ 0V L =  which defines the 

energetic minimum at which a quark is most likely to nest, there will be far less energy taken out 

of the vacuum.  This is because at ( )
5

5
/ 0V L = , based on (14.1), while the dimensionless coupling 

for the top quark 0.9937 0.0023tG ±=  removes about 99.4% of the energy from the Fermi vacuum 

with a global vev minimum v v


=  shown on the horizontal axis of Figure 8, in contrast, for the 

charm quark 0.00014
0.000200.00732cG +

−=  removes only about 0.7% from the vacuum and for the up quark 
0.000003
0.0000020.000013uG +

−=   removes a scant 0.001% from the vacuum. 

 
For the isospin down quarks the vev itself is different, namely 6.05 GeVv


≅ .  But this is 

also plotted on the horizontal axis of Figure 8, albeit far closer to the origin and much shallower 

than v


.  Now referring to (15.7), for ( )
5

5
/V L → ∞  the Figure 1 analogs for each of the b, s, d 

quarks will level off at 1 6.05 GeVh vφ


= ≅ , because of the second vev local minimum.  But right 

at ( )
5

5
/ 0V L =  we have 0.00016

0.000210.97725bG −
+=  which shows that the bottom quark takes an 

approximate 97.7% energy bite out of this diminished-magnitude vacuum, while 
0.00015
0.000200.02161sG +

−=  indicates a 2.1% bite from the strange quark and 0.00115 0.00001dG ±=  a 

0.1%  bite for the down quark.  For both isospin-up and isospin-down quarks, we have the relations 
1u c tG G G+ + =   from (14.3) and 1b s dG G G+ + =  from (15.1), which establish the hypotenuses 

in Figures 2 and 3, respectively.  These two hypotenuses are then tied together by the Higgs mass 
in Figure 4 which also via (16.9b) sets the peak between the isospin-up and isospin-down vevs, 
which peak is in all of Figures 6 through 9, albeit most visually-clearly in Figure 8. 

 
So with this understanding in place, we see that the upward-pointing arrows in Figure 8 

and 8 for the individual quarks simply represent, for each quark, the value of 1hφ  at which their 
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Figure 1-type plots bottom out at ( )
5

5
/ 0V L =  where the quark is most likely to nest.  But of course, 

in Figures 8 and 9  1hφ  is plotted on the horizontal axis, not the vertical axis as in Figure 1.  So, in 

Figures 8 and 9 (and 6 and 7) the removal of energy from the vacuum and its reappearance in the 
rest energy of an individual quark via the energy conservation relation (13.7), is represented by 
right-to-left displacement along the 1hφ+  horizontal axis, rather than by the downward 

displacement of a Figure 1-type plot the along 1hφ+  vertical axis.  So in Figure 8 it is the small 
0.00014
0.000200.00732cG +

−=  for the charm quark and the even-smaller 0.000003
0.0000020.000013uG +

−=  for the up 

quark that places their nest-center arrows very-slightly to the left of the global minimum at 

1 246.22 GeVh v vφ


= = ≅ .  But the very large 0.9937 0.0023tG ±=  causes the top quark not only 

to nest far to the left of v


, but even to the left of 6.05 GeVv


≅ , butting right up against the y 

axis.  Then, in Figure 9 we have a magnified view of the v


 region.  Here, we see the small 
0.00015
0.000200.02161sG +

−=  for the strange quark and the even smaller 0.00115 0.00001dG ±=  for the 

down quark causing these nest-center arrows to situate very-slightly to the left of the local 

minimum at 1 6.05 GeVh vφ


= ≅ .  Bu the very large 0.00016
0.000210.97725bG −

+=  moves the bottom quark 

nest-center arrow far to the left of v


, and indeed, as we can see in this magnified view, also well 

to the left of the top quark. 
 
Turning to the bosons, we see from its upward-pointing arrow in Figure 8 that the Higgs 

boson has its ( )
5

5
/ 0V L =  rooting at the new maximum between the two vev minima, which was 

established by definition when we determined that (16.9b) was the appropriate relation for the 
precise placement of the Lagrangian potential maximum.  This mean that during the brief lifetime 
of a Higgs boson produced by a quantum excitation of the Higgs field, this boson not only has a 

very large mass 2 125.25 0.02 GeVhm c ±= , but it also has a very large (linearized) Lagrangian 

potential energy of approximately +240.37 GeV.  Again, this energy will be very important when 

we review the weak beta decay of quarks in the next section.  We also see the ( )
5

5
/ 0V L =  

placements of the Z and the W bosons.  The former has a Lagrangian potential of about -180.34 
GeV and the latter about -269.06 GeV, both of which are negative energies, albeit still well-above 
the global vev minimum of -514.89 GeV where 1 246.22 GeVh vφ


= ≅ .  Again, any fermion will 

be displaced to the left of its vev minimum by a distance which is amplified by a 2  factor relative 

to boson displacement, because of the coupling relation 1

2f fm v g


=  versus 1
2B Bm v g


= . 

 
Finally, we have tied together Figures 6 through 9 with Figures 1 and 5 by pointing out that 

the vertical axes in Figures 1 and 5 (and their analogues for other quarks and massive bosons) are 
synonymous with the horizontal axes in Figures 6 through 9.  But after (15.7) we pointed out that 

(13.6) which is ( ) ( )( )2 5
1 5

2 exp /h x v m c V Lφ Μ
+ 

= − −  for isospin-up quarks becomes 

( ) ( )( )2 5
1 5

2 exp /h x v m c V Lφ Μ
+ 

= − −  for isospin-down quarks.  And at (16.11) with h B֏  we 

learned that ( ) ( )( )5
1 5

2 exp /h Bm cx v V Lφ Μ
+

= − −  for the Higgs and electroweak gauge bosons.  

We can consolidate this for an elementary particle p which can be a fermion f or a boson B, by 



Jay R. Yablon, January 9, 2019 

121 
 

writing ( ) ( )( )2 5
1 5

exp /ph p p px v c V LmCφ Μ
+= − −  where pv v


=  for the u, c, t quarks and for all the 

bosons including the Higgs, pv v


=  for the d, s, b quarks, 2pC =   for all the quarks, 1pC =  for 

all the bosons, and pm  is the particle mass for all of the quark and massive bosons.  Then,  if we 

wish, we can start with the relation (16.17) for ( )1hV φ , and substitute this consolidated ( )1h p xφ Μ  

to obtain Lagrangian potentials ( )( )5

5
/pV V L+−  as a function of spacetime-plus-one Poincare-

invariant volumetric separation ratio ( )
5

5
/V L+  from the center of the particle “nests,” for each 

particle p, to find that that:  
 

( ) ( )
( ) ( )
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. (16.19) 

 

Right at the center of each nest where ( )
5

5
/ 0V L+ =  thus ( )( )5

5
exp / 1V L+− =  this reduces to: 

 

( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( )
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1 2 2
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2
1 2 2
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. (16.20) 

 

These ( )
5

5
/ 0V L+ =  abscissae are the potentials pinpointed by the several arrow pointers in Figures 

8 and 9, for the six quarks and the Higgs, Z and W bosons. 
 

Now, let’s study what Figures 8 and 9 in particular, teach about the energetic behaviors of 
quarks in the Lagrangian potential, and about the role of the Higgs field not only in the acquisition 
of rest mass by quarks, but in the weak beta decays of quarks. 
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17.  The Role of the Higgs Boson and its Mass and Potential in Weak Beta-

Decays Between Quarks 
 

It has long been understood – at least in general if not specific terms – that the Higgs boson 
and associated fields are the responsible mechanism for giving rest masses to elementary particles, 
including fermions.   What Figures 8 and 9 show, as we shall detail in this section, is that the Higgs 
bosons and fields are also centrally involved in the mechanism for weak interaction beta decays 
between isospin-up and isospin-down quarks.  Experimentally, this also means that close 
observations of beta decays may provide another good way to study the Higgs boson.  In addition 
for Figures 8 and 9, it is helpful for the ensuing discussion of this to also refer to the nine empirical 
components of the CKM mixing matrix CKMV , such as may be found at [12.27] of PDG’s [47], and 

as will be reviewed in the next section to conclude our Part IIA study of quarks. 
 

 Now, the so-called “Mexican hat” Lagrangian potential 2 2 41 1
1 12 4h hV µ φ λφ= +  reviewed in 

(16.1) through (16.4) and associated with the Higgs mechanism is well known.  Figures 6 and 7 
together show a modified “two-dip” Mexican hat potential, and Figures 8 and 9 show this potential 
in linear rather than quartic dimensions of energy, along with arrows designating placement of the 
quarks and the Higgs and Z and W bosons.  But when we talk about this potential, it is very 
important to be clear what this potential actually represents, physically.  This is because physically, 
a potential always represents a field in the vicinity of one material body which will give rise to a 
potential energy of interaction once a second material body is introduced into the field of the first 
body.  For example, the gravitational potential /GM r−  of a massive body is dimensioned in 
energy / per mass, so that once a second m mass is placed into the potential at a given center-
separation r, the construct /GMm r−  represents the energy from the gravitational interaction of 
these two bodies as a function of the separation r between the centers of the two bodies, and 
measures how energetic m will be as it falls in the field and converts its potential energy into 
kinetic energy.  Likewise, the Coulomb expression /ek Qq r  represents a potential energy owing 

to the interaction between two electrical charges, also as a function of center separation r.  So when 
we now talk about V being a potential, albeit with dimensions of energy to the fourth power, we 
must clearly answer three questions:  First, what is the first “material “body analogous to M and Q 
which gives rise to this potential?  Second, what is the second material body that gets places into 
this potential to give rise to a potential energy of interaction?  Third, what is the analogue of the 
center separation r which tells us about variations in the potential and the potential energy? 
 
 For the Lagrangian potential V, the first material body is the Fermi vacuum itself, the 
second material body is any fermion or boson which is placed into the that vacuum, and the 
potential energy is the interaction energy between that fermion or boson and the vacuum.  Further, 

the analogue of r is the Poincare invariant quantity ( )
5

5
/V L+ in (16.19) and (16.20).   But because 

( )
5

5
/ 0V L+ =  not only represents the excepted center position of each particle type in spacetime-

plus-one, but also establishes a different ( )1 0h pφ  for each particle p at its expected center, it is 

more revealing to think about ( )1 0h pφ  – the value of ( )1h p xφ Μ  at the expected particle center – as 

the analogue of r between centers in the gravitational and electromagnetic potentials.  As a result, 
the potential energy of interaction between the vacuum and any particular fermion or boson 
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depends upon the center-valued ( )1 0hφ  of that particular fermion or boson, while the arrows in 

Figures 8 and 9 point to the potential energies of the six quarks and the Higgs and Z and W bosons 
arising from their interactions with the vacuum. 
 
 So, from the linearized potential in Figures 8 and 9, the at-expected-center potential energy 
of interaction between the vacuum and either of the charm or up quarks is approximately –514.89 
GeV.  The same at-center potential interaction energy between the vacuum and the strange and 
down quarks is approximately –16.26 GeV.  The top and bottom quarks have vacuum interaction 
energies of –9.774 GeV and –2.468 GeV respectively, which is much higher than their same 
isospin cousins, and which both sit on a side wall of the v


 vacuum.  So by “least action” the first 

two generations are more energetically-favored thus stable than their third generation cousins, and 
is borne out empirically.  The Z and W bosons do have negative potential energies in their 
interactions with the vacuum, with the former at about –180.34 GeV and the latter at about –269.06 
GeV.  But especially noteworthy is that the Higgs boson – which, recall, was used via (16.9b) to 
define the peak between the two wells – has a positive potential energy of about +240.37 GeV for 
its interaction with the vacuum.  Clearly – with the Z and W bosons sitting on the side wall of the 
v


 well and the Higgs boson sitting right atop the peak – all three of these raised energies cause 

these bosons to be energetically short-lived unstable particles, and they do oblige with their 
observed physical behaviors.  The key point is keep in mind, is that while Figures 8 and 9 (and the 

usual Mexican hat potential) show the potential of the vacuum as a function ( )( )1hV xφ Μ , this is 

still just the potential of a “first body” – here, the vacuum – before a second body is added to give 
rise to a potential energy of interaction.  Showing the arrows designating the quarks and bosons 
into Figures 8 and 9 and cross-referencing these to the potential curve to also show their potential 
energies of interaction with the vacuum, is then analogous to showing the particularly specified 
position r where a particularly-specified m or q is placed into a gravitational or electromagnetic 
potential, to show their potential energies of interaction with the bodies generating these potentials.  
That is, adding these arrows to Figures 8 and 9, corresponds to specifying the second body, then 
placing that second body into the potential of the first body – here, the vacuum. 
 
 Now, we keep in mind principles of “least action” by which physical processes and 
particles always seek out the lowest energy states available.  As just discussed, as regards the 
potential in Figures 8 and 9, least action principles inform us that particles in the vacuum will seek 
out energetic states which minimize the potential energy of their interactions with the vacuum, that 
is, states which are as deep as possible in one of the two wells for isospin up and isospin down.  In 
this regard, there are four general features in Figures 8 and 9 that should be noticed from the outset:  
First, as already noted, the Figure 1 nest-center of the top quark is perturbed so far to the left in 
Figure 8 that the top quark nests on the left side of the v


 energy well.  This crossover of the nest-

center from one vev minimum to the other is unique to the top quark.  Second, the global minimum 

at 1h vφ


=  presents a much deeper energy well than the local minimum at 1h vφ


= , which means 

that with all else being equal, up and charm quarks will be energetically favored over down, 
strange, bottom or (crossed-over) top quarks.  This is one of the reasons why free neutrons decay 
into free protons with an extra up quark versus down quark, and not vice versa.  Third, with the up 
quark slightly to the right of the charm quark and thus deeper in the Lagrangian potential energy 
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well at the v


 global minimum, and with the down quark likewise slightly to the right of the strange 

quark thus deeper in the potential energy well at the v


 local minimum, we also expect that with 

all else equal, the up flavor will be favored over the charm flavor, and the down flavor over the 
strange flavor.  Moreover, the top quark and the bottom quark are both nest-centered well above 
the local v


 minimum, which makes these third-generation quarks the least-energetically-favored 

states.  This is the general reason why first-generation baryons are energetically-favored, hence 
more stable, over second-generation baryons, and second-generation over third-generation 
baryons.  Moreover, the bottom quark, which is even further-left than the top quark, has the 
shallowest descent into a Lagrangian potential well, and so is the least-energetically favored of all 
the quarks.   Fourth, via (16.9), the Higgs field and the Higgs boson mass clearly establish a steep 
energy peak which raises a barrier between the v


 and the v


 Lagrangian potential wells at 

( ) 2
hh x m cΜ = − , and thus, between the up and charm quarks for the former, and the down, strange, 

bottom and (crossed-over) top quark for the latter.  This means that any weak beta decay between 
a u or c quark and a d, s or b quark must either “jump over” or “tunnel through” this barrier.  But 
also, because of the crossover by which the top quark is a “visitor” from the v


 well because of its 

exceptionally large mass, this barrier does not need to be cleared for weak beta decays between 
the top quark and any of the bottom, strange or down quarks.  Now let’s turn to beta decay. 
 

Beta decay for quarks, of course, only occurs between isospin-up and isospin-down quarks.  
For a decay event between an up or charm quark and a down, strange or bottom quark, the decaying 
quark must acquire enough energy to “jump” or “tunnel” past Figure 8 barrier peak at 

( ) 2
hh x m cΜ = − .  But uniquely, for a decay event between a top and any of the down, strange or 

bottom quarks, there is no need for the requisite energy to jump the barrier, because both the top 
and bottom quarks are nested in the same well, owing to the unique crossover properties of the top 
quark.  This would suggest that for same-generation transitions the same-well diagonal CKM 
element 0.999105 0.000032tbV ±=  ought to more energetically-favored thus closer to 1 than either 

of the well-changing, barrier-jumping 0.00010
0.000110.97359csV +

−=  or 0.97446 0.00010udV = ± , see [47], 

as is clearly true.  (Note different use of V than for the Lagrangian potential.)  
 

Now let’s take a closer look at the well-changing transitions, in which a charm or up quark 
beta-decays into a down, strange or bottom quark, or vice-versa.  All of these transitions – which 
are in the top two rows of CKMV  in [12.27] of [47] – cannot happen without the fermions drawing 

sufficient energy out of the vacuum via the Higgs fields and bosons to “jump” over the Lagrangian 

potential maximum at ( )24
1 240.37 GeVh hV v m cφ


= − ≅ .  Given that fermions acquire their 

masses from the Higgs field drawing energy out of the vacuum in accordance with the upper 

equation (13.7), it seems that the energy to jump this barrier at 2
1h hv m cφ


= −  a.k.a. 

( ) 2
hh x m cΜ = −  would come from the very same source: the Higgs field and bosons, and their 

related energies.  This is where the vertical heights of both the wells and the new maximum in 
Figures 8 and 9 come into play. 
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First, start with an up or charm quark in the v


 well.  As noted earlier the energy deficit at 

the bottom of the v


 well is –514.89 GeV.  And as seen in Figure 8, the up and charm quarks for 

all practical purposes nest at the bottom of this well, which is an energetically-preferred state.  

Ignoring the error bars for the moment, with 2 125.25 GeVhm c ≅  ratio 514.89/125 425 1. .11= .  

So, the energy equivalent of just over four Higgs boson masses is needed just to get from the 
bottom of v


 to 0V = .  Then, with a height of +240.37 GeV and 240.37 /125.25 1.919= , the 

energy of just under two additional Higgs bosons is needed to scale the wall and beta decay from 
an up or charm in the v


 well, to any of a down, strange or bottom in the v


 well, from right-to-

left in Figure 8.  So even if these quarks utilize all of their rest energy to clear the well barrier, 
calculating 6.03 4.111 1.919= + , they still need an energy boost totaling just over the rest masses 

of six Higgs bosons.  Additionally, because all of u dm m<  and u sm m<  and u bm m< , any beta 

decay that starts with the up quark will require the new quark at the end to retain for its new rest 
mass, some of the energy that was used to boost it over the well wall.  For the charm quark with 

c dm m>  and c sm m>  but c bm m< , after the barrier transition some of its rest energy is released 

back into the vacuum for the former two transitions, but for charm-to-bottom, some of the barrier-
jump energy will be retained for additional rest mass. 

 
Now, let’s start in the v


 well and go the opposite direction left-to-right.  As noted, top to 

bottom and vice versa decays are intra-well and so occur most freely, which is why 
0.999105 0.000032tbV ±= .  For inter-well transitions we start with one of down, strange or bottom 

and need to hop the barrier in Figure 8.  Here, the energy deficit at the bottom of the well is only 
–16.36 GeV, which is much less than the energy deficit of the v


 well.  For all practical purposes, 

the strange and the down quarks nest at the bottom of this well, which is an energetically-preferred 
state.  To raise these two quarks to the 0V =  level, because 16.36 /125.25 1/ 7.66= , one needs to 
extract a little more than 1/8 of the energy of a Higgs boson from the vacuum.  But from there, one 
still needs the energy of 240.37 /125.25 1.919=  Higgs bosons to scale the barrier and transition 
into an up or charm quark in the v


 well.  Even if the strange or down quark was to apply all of its 

rest energy to getting over the barrier, it would still need an assist from a total of three Higgs 
bosons to get over the top of the well barrier, because they start at about –16.36 GeV.  In all cases 
a bottom quark will release energy into the vacuum following the decay because it will end up 
with a lower mass, a strange quark will need to retain some energy if it is to become a more-
massive charm but release energy if it becomes a less-massive up, and a down quark will release 
energy if converted to an up but retain energy if converted to a charm. 

 
In the same way the top quark is unique insofar as it is a visitor in the v


 well, the bottom 

quark is also unique insofar that it hugs the vertical axis so closely that its ( )
5

5
/ 0V L =  energy in 

the Lagrangian potential is raised all the way up from –16.36 GeV to -2.468 GeV, as shown in 
Figure 9.  Additionally, the bottom quark itself has a mass of 2 0.04

0.034.18  GeVbm c +
−=  [44] which can 

be contributed to scale the barrier.  So, it only needs the energy equivalent of two, not three Higgs 
bosons to help it over the barrier to become a charm or up quark.  Once the bottom quark does 
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decay into a charm or an up quark, it relinquishes most of its energy back into the vacuum because 

b cm m>  and b um m≫ . 

 
So to summarize, not yet counting the energy also needed to raise a W boson to mediate 

the beta decay, it takes the energy equivalent of just over six Higgs bosons to facilitate a 
, ,u d s b→  or a , ,c d s b→  decay from the v v

 
→  well, it takes energy from three Higgs bosons 

to facilitate a ,d u c→  or a ,s u c→  decay from v v
 

→ , and it takes energy from two Higgs 

bosons to facilitate a ,b u c→  decay from v v
 

→ .  And in all these cases, after the decay, some 

of the energy used to jump the barrier is either released back into the vacuum or retained by the 
quark, depending respectively on whether the quark has lost or gained rest mass during the decay.  
Additionally, t b↔  decays require no additional energy to jump the barrier because they both nest 
in v


.  However, because the top quark rest energy is about 169 GeV larger than that of the bottom 

quark, any b t→  transition such as in [52] will need to be facilitated by two Higgs bosons – not 
for a barrier jump, but simply for the extra rest energy.  However, this still takes less energy than 
the 240.37 GeV height of the well barrier, which again helps explain why 

0.999105 0.000032tbV ±=  is closest to 1 of all the CKM components, by a substantial margin. 

 
Consequently, keeping in mind that all of these quark decays are occurring inside a baryon 

which has very large internal energies due to gluon-mediated strong interactions, the picture we 
obtain for quark beta decay is that in the vicinity of a quark about to decay, some number of Higgs 
bosons spontaneously arise as fluctuations in the Fermi vacuum.  The quark about to decay draws 
the energy out of the rest masses of these Higgs bosons in order to jump the barrier and / or acquire 
the additional rest energy needed to change its identity into a different type of quark, and the W 
boson also acquires its rest mass of about 80 GeV.  Then, once the decay is complete, the excess 
energy beyond what is needed for the new rest mass is released back into the vacuum.  Noting that 
Higgs bosons are their own antiparticles, if two Higgs bosons are needed to trigger a beta decay, 

these can each be supplied by a qq  fluctuation inside a hadron.  If three Higgs are needed, these 

can be supplied by each quark in a qqq baryon.  And if six Higgs are needed, each of the three 

quarks in a baryon can precipitate a qq  fluctuation to supply a pair of Higgs bosons.  The Higgs 

bosons therefore operate as the mechanism to transfer energy from the vacuum into the W boson 
and into both the rest energies of the fermions (if needed or a mass increase) and the into barrier 
jump required for beta decays of the fermions in all but t b↔  decays. 

 
It is also important to keep in mind that the v


 well bottoms out at a global minimum with 

a depth of about –514.89 GeV while the v


 well has only a local minimum with a depth of about 

– 16.36 GeV, as seen in Figure 8.  So, it is both easier to get from v v
 

→  than the other way 

around, and it is easier to stay in v


 after a v v
 

→  decay has occurred.  This suggests that 

isospin-up quarks are more energetically stable than isospin-down quarks, again, with all else 
equal.  Given that individual quarks (or, at least, quarks in the first and second generations) are 
always confined in hadrons, and that baryons contain three quarks, this is part of the explanation 
for why free neutrons with a mean lifetime of about fifteen minutes, decay into completely-stable 
free protons.  Simply: becoming and staying an up quark is energetically-favored over becoming 
and staying a down quark.  This will be reviewed further in section 23, where we shall study 
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leptonic weak beta decay following the study of lepton masses, neutrino oscillation PMNS mixing 
angles, and the lepton Lagrangian potential. 
 
 Also, ab initio, the Higgs field h itself represents quantum fluctuations in the Fermi vacuum 

in which the scalar field hφ  is recast as ( )1 1
12 2h h v hφ φ= = + .  But everything we just described 

about beta decay entails Higgs bosons spontaneously arising in the Fermi vacuum while drawing 
energy out of the vacuum for their rest energies, transferring these energies to a fermion so it can 
jump the barrier and / or have the energy needed for its new masses in its new identity, further 
transferring energy into a W boson to mediate the transition, and the fermion and boson finally 
releasing and depositing any excess energy back into the vacuum.  But these ongoing draws and 
deposits of energy from and back into the vacuum energy bank are simply quantum fluctuations 
by another name.  Consequently, every time there is a beta decay event, it is accompanied by 
quantum fluctuations in which there is a quick withdrawal of energy from the vacuum, followed 
by a quick redeposit of energy into the vacuum, with the energy magnitudes of these withdrawals 
and deposits set by the depth of the two wells, the height of the well barrier, and the rest masses 
of the Higgs and W bosons and the involved fermions. 

 
Experimentally, it would be highly desirable to closely observe various beta decay 

transitions associated with all nine components of the CKM matrix, in both directions, with a sharp 
focus on energy fluctuations in the vacuum.  For v v

 
→  decays, it may be possible to detect a 

smaller energy withdrawal followed by larger redeposit.  For v v
 

→  decays, it may be possible 

to detect a larger withdrawal followed by a smaller redeposit.  And for the uniquely-situated b t↔  
transitions that do not require jumping the well barrier and have the closest-to1 

0.999105 0.000032tbV ±= , b t→  is simply a withdrawal and t b→  is simply a deposit.  So, 

ironically, b t↔  decays between the  most-massive quarks involve smaller energies than all other 
decays because the requisite energies are determined solely by the mass difference between these 
two quarks and their heights in the v


 well and not by the larger magnitude of the well barrier 

height.  So, it may be possible to detect that there are smaller energy fluctuations in b t↔  than in 
any other type of beta decay event between quarks. 

 
Finally, to be clear, although all forms of beta-decay are mediated by weak W bosons, the 

foregoing discussion applies only to beta decays of quarks, not to leptonic beta decays involving 
charged lepton and neutrinos.  As we shall see in the upcoming development, leptonic beta decays 
have further unique characteristics stemming from the close-to-but-not-quite-zero masses of the 
neutrinos, which, also somewhat ironically, erect extremely high-energy barriers stemming from 
the large ratio of the charged-lepton-to-neutrino masses.  The other aspect of beta decays which 
have been entirely ignored in this discussion because we have not yet developed the supporting 
evidence for this, is the central role that the low-energy, non-relativistic neutrinos in the 
cosmological neutrino background (CvB) play in triggering beta decays.  All we shall preview for 
now, is that the experimental data regarding the CvB background shows that one neutrino flows 
through a one-barn cross section of space approximately every fifteen minutes, which is the same 
as the mean lifetime of a free neutron with an approximate .01 barn cross section; and that the 
weak Z interactions between neutrons and neutrinos enable neutrons to attract these CvB neutrinos 
to trigger beta decays.  This will be reviewed in detail in section 23, after we have learned a great 
deal more about neutrinos in general. 
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Before concluding, let’s take stock of all the reparameterizations we have found to this 
point.  Prior to (16.6) we noted that we had reparameterized the six quark masses as 

( )31 23, , , ,u c t C Cm m m F v θ θ=  and ( )21, , , ,d s b d h Cm m m F m m θ=  with v v


= , leaving only dm  

unconnected to some other known observed empirical energy or mixing angle.  But at (15.7) we 

also made use of the relation ( ) ( )1.5
3 / 2πd u em m m− =  separately discovered by the author in 2013 

[33], [31].  So, having reparameterized the up mass in ( )31 23, , , ,u c t C Cm m m F v θ θ= , and knowing 

the electron mass, this 2013 relation allows us to reparameterize ( )d em F m= , that is, to 

reparameterize the down mass as a function of the electron mass, given that we have also 
reparametrized the up quark mass.  Therefore, we effectively used 
 

( )31 23 21, , , , , , , , , ,u c t d s b C C C h em m m m m m F v m mθ θ θ=  (17.1) 

 
to reparameterize all six quark masses.  Of course, one of these parameters, em , is itself a fermion 

rest mass.  But, it is the mass of a lepton not a quark.  So, by (17.1), we effectively “kick down the 
road” to our study of the charged leptons, the completion of quark mass reparameterization.  With 
this, following a review in the next section of the CKM quark mixing matrix based on all of the 
foregoing, we will be ready to begin our study of the lepton rest masses. 
 

18.  The CKM Quark Mixing Matrix Mass Parameterization, and the Fine-

Tuning of Quark Masses, Mixing Angles and CKM Matrix Components by a 

Global Fitting using CKM Unitarity 
 
 The unitary 3x3 CKM quark-mixing matrix CKMV  can be parametrized in several different 

ways, but has invariant magnitudes for each of its nine components irrespective of the 
parameterization choice.  As reviewed at [53], these include the original parameterization of 
Kobayashi and Maskawa, as well as the “standard” and the Wolfenstein parameterizations.  The 
latter two of these are reviewed in detail along with the latest empirical matrix data in PDG’s 2018 
survey [47].  However, with the advent of the relations (15.12) directly between the quark 

couplings qG  and the three real CKM mixing angles, it is possible to develop a fourth type of 

CKM parametrization which we shall refer to as the “mass parametrization.”  As will be reviewed 
in this section, this can be used to express the CKM matrix directly in terms of the quark masses, 
and to further tighten the numeric data for the quark masses, CKM mixing angles, and CKM matrix 
components themselves. 
 

 We begin by recalling that 2 1

2
m c v G

  
=  and 2 1

2
m c v G

  
=  respectively relate the 

masses of the isospin-up and down quarks to their couplings and to their vev minima as reviewed 
in Figures 6 through 9.  Using these, along with the final expressions in (15.12) and 

2 2sin cos 1θ θ+ = , we can write the cosines and sines of the CKM mixing angles directly in terms 

of the quark masses by: 
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2 2
12 12

2 2
23 23

2 2
13 13

cos ; sin

cos ; sin

cos ; sin

s d
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d s d s

c u
C C

u c u c

t u
C C

u t u t

m m

m m m m

m m

m m m m

m m

m m m m

θ θ

θ θ

θ θ

= =
+ +

= =
+ +

= =
+ +

. (18.1) 

 
Now, let’s turn to the CKM matrix itself.  Given, e.g., in [12.3] of [47], this matrix is: 

 

13 13 12 12

23 23 12 12

23 23 13 13
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1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

i
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i
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i
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V V V c s e c s

V V V V c s s c
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c c s c s e
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s

δ

δ

δ

δ δ

−

−

    
    = = −    

   

 


− −    

−


 
 
 

= − −

12 23 12 23 13 12 23 12 23 13 23 13
i is c c s e c s s c s e c cδ δ

 
 


 − − −



. (18.2) 

 

Clearly, this matrix satisfies the unitarity relation † †
3 3CKM CKM CKM CKMV V V V I ×= = , where 3 3I ×  is a 

3x3 unit (identity) matrix, which relation is true irrespective of the commutation order of CKMV  

and its Hermitian conjugate †
CKMV .  Given the sines and cosines in (18.2) and the connections of 

these to the quark masses in (18.1), this means that (18.2) can be rewritten exclusively in terms of 

the quark masses and the CP-violating phase δ  as: 

 

( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )
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u t
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i
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V

m m m m m m m m m m m m

m m
m m m m m m m m

m m
e

m m m m

m m m m m m m m m m m m

e

δ

δ δ
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 + +
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+

− − −
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−
+

+

−
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−
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. (18.3) 

 
Note that this contains all of the quark masses except for the mass of the bottom quark.  

This is because of the “leftover” angle 31IIθ


 in (15.12) which contains the bottom quark coupling 

but which is not directly associated with any of the CKM angles.  This makes CKMV  independent 
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of the bottom mass.  The above (18.3) is what we shall now refer to as the “mass parameterization” 
of the CKM quark mixing matrix. 
 

It is helpful on an element-by element basis to calculate each element times its own 
conjugate transpose.  From this, in the four lower-left entries we obtain a common term with 

includes 2cos 2i ie ceδ δ
δδ−+ = = .  All told, we find the nine square magnitudes:  

 

( ) ( ) ( ) ( )
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2 2 2 2

2 2 2

* * *

* * *
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2
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. (18.4) 

 
It will be readily seen that the sum of elements in each of the three rows, and in each of the three 
columns, is identically equal to 1.  This is another way of calculating the six relations in 

† †
3 3CKM CKM CKM CKMV V V V I ×= =  which produce the 1s on the diagonal of 3 3I × .  For the three off-

diagonal 0s in 3 3I × , there are three combinations 12, 23 and 31 for pairs of unlike rows, and 

likewise for pairs of unlike columns, that can be used to produce six unitary triangles with identical 
areas equal to ½ of the Jarlskog invariant.  The magnitude of each of the nine CKM elements, 

denoted overall by CKMV , is then obtained by taking the square root of each of the nine elements 

in (18.4), on an element-by element basis.  Now we turn to the empirical data. 
 

 Equation [12.27] of PDG’s [47] reports the magnitudes CKMV  of these nine elements based 

on a global fitting of the empirical data to the theoretically-presumed and experimentally-

uncontradicted unitarity condition † †
3 3CKM CKM CKM CKMV V V V I ×= = .  For the present discussion, to 

facilitate comparison, we shall designate PDG’s [12.27] of [47] as PDGV .  Against this, we will 

then compare data obtained from the mass parameterizations in (18.3) and (18.4).  Moreover, 

because we will be studying both the center value of each element in CKMV  as well as the error 

bars in each, we separate PDGV  into PDGPDG PDGV V ε= + , with PDGV  (overbar) denoting the data 

center and PDGε  denoting the ±  error bars of each element.  Although most of the PDG error bars 

have equal magnitudes above and below, those for csV  and tdV  do not.  For those, 0.00010
0.00011csε +

−=  and 
0.00024
0.00023tdε +

−= .  But because these are fairly close, to keep the calculation simple, we shall use the 
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slightly tighter 0.00010csε = ±  and 0.00023tdε = ± .  In this notation, and with this change, we 

simply transcribe [12.27] of [47] below: 
 

0.97446 0.22452 0.00365 0.00010 0.00044 0.00012

0.22438 0.97359 0.04214 0.00044 0.00010 0.00076

0.00896 0.04133 0.999105 0.00023 0.00074 0.000032

PDGPDG PDGV V ε
± ± ±   

   = + = + ± ± ±   
   ± ± ±   

. (18.5) 

  
Now let use the following data for calculating with the mass parameterization (18.4) to 

independently obtain CKMV  and compare this to PDGV :  For the five quark masses, all in GeV, we 

use the very precise 2 2223790. 24  0 V0 0 Geum c =  and 2 4906470. 03  0 V0 4 Gedm c =  from (15.8), 

which as reviewed, are obtained from the EPN scheme developed by the author in 2013.  The only 
error bars in this data stem from those of the electron mass and the free neutron-minus-proton mass 
difference.  We do not show errors for the moment because they are several orders of magnitude 
finer than those of any of the other data to be used, although shortly, we will look more closely at 

these.  We will also utilize the center values and error bars 2 .0005
.0004.0022 GeVum c +

−=  and 
2 0.0005

0.0003.0047 GeVdm c +
−= from PDG’s [44].  For the strange mass, we know that PDG reports 

2 .009
.003.095  GeVsm c +

−= .  However, at (15.10) we were able to deduce a far-tighter value 
2 9242 0.0. 00 80  GeV03sm c ±=  which we shall use here.  For the top and charm masses PDG 

reports 2 .025
.0351.275 GeVcm c +

−=  and 2 173.0 0.4 GeVtm c = ± .  However, at (14.5) we were able to 

re-center the top mass and also tighten its error bars to inherit those of the charm quark, such that 
0.035
0.026

2 172.826 GeVtm c +
−= , which we shall use here for the top quark along with PDG’s 

2 .025
.0351.275 GeVcm c +

−=  for the charm quark.  It is important to note – so that there are no errors in 

the calculations – that because we used 2 2 2174.1035847 GeVt c um c m c m c= −−  in (14.5) to tighten 

the top mass, any upward variation of the top quark mass from its center must be accompanied by 
a downward variation of the same amount for the charm quark mass, and vice versa.  Again, the 
bottom quark does not appear anywhere in (18.3) and (18.4).  Finally, for the phase angle, we shall 

use 1.995
1.91770.998Cδ δ +

−== °  from (14.12) which, as noted, is deduced from the Wolfenstein 

parameterization reviewed in PDG’s [47]. 
 
For a first calculation (denoted “A”) we substitute the center values (denoted with an 

overbar) of all this data into (18.4).  That is, we use 2 2223790. 24  0 V0 0 Geum c = , 

2 4906470. 03  0 V0 4 Gedm c = , 2 920.0  GeV42sm c = , 2 1.275 GeVcm c = , 2 172.826 GeVtm c =  

and 70.998δ = ° .  Then, we calculate the element-by element square roots.  Finally, comparing to 

(18.5) to obtain the difference PDGA CKM A
V V∆ ≡ − , what we obtain is: 
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0.97446 0.22453 0.00359

0.22438 0.97361 0.04173

0.00887 0.04093 0.999123

0.00000 0.00001 0.00006

0.00000 0.00002 0.00041

0.00009 0.00040 0.000018

CKM A

PDG PDGA

V

V V

 
 =  
 
 

+ + − 
 ≡ + ∆ = + − + − 
 − − + 

. (18.6) 

 

It is also helpful using (18.5) and (18.6) to obtain the ratio /A PDGε∆  on a component-by-

component basis using the positive (absolute) values from PDGε .  This calculation shows that: 

 

( )
0.01536 0.01325 0.52442

by-component 0.00169 0.18164 0.54422

0.39452 0.54004 0.551116

A

PDGε

+ + − 
∆  = − + − 

 − − + 

. (18.7) 

 
A magnitude of 1 for any component in (18.7) would mean that this component is precisely at the 
edge of the error bars, with a + sign indicating above-center and a – sign indicating below-center.  
The + and – signs in front of the two zeros in (18.6) come from (18.7).  That all of these magnitudes 
are less than 1 indicates that the five masses and the one phase used to obtain (18.6) produce a 

CKM A
V  which is entirely within the experimental errors for the magnitudes of all nine CKM 

component.  The tightest fit to the PDG data center PDGV  comes from the three upper-left and the 

center components, while the largest variation comes from the remaining five components in the 
third row and third column, with most of these elements about halfway to the error bars. 

 
 In statistical terms, the reason (18.7) is a helpful measure is that error bars in physics are 

often set at some number of standard deviations from center, and usually, to 3σ , which is a 99.7% 

Gaussian confidence level.  So if the error bars in each of the PDGε  in (18.5) are set to some Xσ , 

then ( )/A PDGX ε σ∆  provides a rough measure of the number of standard deviations from center 

represented by each of the A∆  in (18.6).   For example, if 0.00012PDGubε = ±  in (8.5) is a 3σ  

spread from center, then the corresponding 0.52442−  entry in (18.7) would represent an 

approximate ( )3 0.52442 σ− ×  deviation downward of center, or just larger than 1.5 sigma. 

 
At this point, we now begin a series of calculations using the unitarity of the CKM matrix 

to further tune the center values and error bars of the five quark masses and the phase in (18.3), 
(18.4), and the standard parameterization mixing angles and CKM matrix components.   
 

 Each of the components of CKMV  is influenced in different ways by each of the five quark 

masses as well as the phase in (18.3). And as noted, variations in the top mass are tied to those in 
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the charm mass owing to (14.5).  With this in mind, sample calculations reveal that the least-
centered components in (18.6), (18.7) are most affected by, and can be brought much closer to 
center, by an upward revision of the top and thus a downward revision of the charm quark mass.  
Maintaining three decimal places for the top and charm masses in GeV, it turns out that by adding 

0.025 GeV to 2 172.826 GeVtm c =  and subtracting the same from 2 920.0  GeV42sm c = , while 

maintaining without change all other data used to obtain (18.6), a second (B) calculation reveals: 
 

0.97446 0.22453 0.00359 0.00000 0.00001 0.00006

0.22438 0.97359 0.04214 0.00000 0.00000 0.00000

0.00896 0.04133 0.999105 0.00000 0.00000 0.00000

PDGCKM BB

PDG

V V

V

≡ + ∆

+ + −   
   = = + − + +   
   − + +   

. (18.8) 

 
With all but two of the magnitudes now perfectly-centered to five-digit accuracy, this is the “best 
fit” for the top and charm mass center values.  The ratio calculation akin to (18.7) now reveals: 
 

( )
0.01537 0.01325 0.52658

by-component 0.00950 0.01105 0.00113

0.01877 0.00562 0.007539

B

PDGε

+ + − 
∆  = − + + 

 − + + 

. (18.9) 

 

This is now an extremely-tight fit to PDGV .  In fact, with the exception of ubV  which is 

52.658% of the way from the data center to the error bar edge, every single one of the components 
is less than 2% removed from the center, which means more than 98% from the extremes of the 
error range.  We use this result in (18.8) and (18.9) to re-center the top and charm quark masses, 

for which we shall now use 
2 1.250 GeVcm c =  and 

2 172.851 GeVtm c = .  This 0.025 GeV 

downward adjustment of the charm mass center is within the lower .035 GeV−  bound for 
2 .025

.0351.275 GeVcm c +
−=  from PDG’s [44], which is a bound that was also inherited by the top quark 

at (14.5).  We will also examine how to revise the error bars for the top and charm masses, but 
before we do so, some further calculation with the other quark masses and the phase is warranted. 
 
 As just noted, the only entry in (18.9) which is more than 2% removed from its center 

toward an extreme of its error bar is the upper-right ubV , which is 52.658% removed.  So, we start 

here to see what, if anything, can be done to bridge this gap.  We see from taking the square root 

in (18.4) that the magnitude of this component is /ub u u tV m m m= + .  So, this is determined only 

by the top and up masses and not the phase, because the phase factor in (18.3) is removed via 

1i ie eδ δ− =  when its magnitude is taken.  It can easily be calculated that if we try to bring this 

component closer to center by changing the top (thus charm) quark mass again, any favorable 

impact on ubV  would be very tiny, and greatly outweighed by the negative affect on many other 
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components, especially the lower-right entries.  This is easily seen by observing that the above 
0.025 GeV adjustment of the top and charm masses produced only a very slight change from 

/ 0.52442Aub PDGubε∆ = −  in (18.7) to / 0.52658Bub PDGubε∆ = −  in (18.9), and that the beneficial 

effects of all other CKM matrix magnitudes was far greater. 
 

 So, the only other option for bridging the ubV  gap is to re-center the up-quark mass.  

Testing this possibility, it turns out that ubV  can be made to fit its center in (18.6) if the up-quark 

mass is increased to approximately 2.302837 MeV.  But there are two problem with this:  First, 

this is even outside the broad bar of 2 .5
.42.2 MeVum c +

−=  reported by PDG.   Second, the cost of 

fitting ubV , is that we ruin the fit in (18.8) for most of the other elements in CKM matrix, with the 

entire bottom row and the two right elements in the middle row approaching the outer extremes of 

their error bars.  Our conclusion is that this ubV  gap cannot be remedied, without adverse impacts 

on several of the other very tight fits in (18.8) and (18.9).  And from this, we conclude that the 
problem is not with the top or up quark masses which we leave as is, but rather, that 

0.00365u PDGbV =  in the PDG data is an outlier which itself will need to be re-centered downward, 

which will be confirmed in (18.13) below. 
 
 Now let’s focus closely on the up and down quark masses.  At (15.8) we introduced the 

very precise masses 2 2223790. 24  0 V0 0 Geum c =  and 2 4906470. 03  0 V0 4 Gedm c =  for these 

quarks, based on the author’s earlier-referenced 2013 work [33], [31].  Suppose, however, that 
these results were not known, and that we had to obtain these masses exclusively by a best fit using 
the mass parameterization matrix (18.3).  To do so, we proceed as follows:  Into (18.4), we insert 

2 1.250 GeVcm c =  and 2 172.851 GeVtm c = ,  as adjusted at (18.9).  We continue to use 

2 920.0  GeV42sm c =  and 70.998δ = ° .  Then, we turn to PDG’s 2 .0005
.0004.0022 GeVum c +

−=  and 
2 0.0005

0.0003.0047 GeVdm c +
−=  for guidance.  To get into the ballpark, we start by also inserting 

2 .0022 GeVum c =  from the up-quark mass center value.  Then, we substitute various “test” values 

for the down mass over the range 2 0.0005
0.0003.0047 GeVdm c +

−=  to see where, exactly, a ratio 

calculation akin to (18.7) and (18.9) will cause any one of the CKM magnitudes to hit its outer 

error bar, as detected by an entry / 1PDGε∆ = ± .  One the high side, it turns out that 

2 0.004926476 GeVdm c =  will push / 1us PDGusε∆ → + , and will push the other three upper-left 

elements to also grow very close to their edges as well.  On the low side, it turns out that 
2 0.004888578 GeVdm c =  will push / 1cs PDGcsε∆ → +  and likewise push other upper-left 

components to their error bar bounds as well.  We then simply average this high and low result to 

obtain a center value 2 0.004907527 GeVdm c = , and an overall spread whereby 
2 4.907527 0.018949 MeVdm c = ±  when represented in MeV.   
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Then, to obtain a spread for the up mass, we leave the down mass at the foregoing 
2 0.004907527 GeVdm c =  and sample various values for the up mass until one of the CKM 

components is pushed to its outer error bar.  We find 2 0.002303843 GeVum c =  pushes 

/ 1ts PDGtsε∆ → +  with several other components also approaching their edges, and that 

2 0.002153906 GeVum c =  pushes / 1ub PDGubε∆ → +  and moves several other components to their 

edges.  Averaging high and low, the middle value is 2 0.002228875 GeVum c = .  Accordingly, the 

overall result, represented in MeV, is 2 2.228875 0.074969 MeVum c = ± .  If we repeat the exact 

same calculation but start with 2 .0023 GeVum c =  rather than 2 .0022 GeVum c = , for the down 

quark we obtain 2 4.903723 0.016961 MeVdm c = ± , and then using this center value in the same 

way as before, for the up quark we obtain 2 2.228836 0.074930 MeVum c = ± .  To the first two 

digits in MeV, both of these test calculations coalesce to the common results 
2 2.23 0.07 MeVum c = ±  and  2 4.90 0.02 MeVdm c = ± .   

 
Now let’s take stock of all this:  Starting from the PDG data and working in MeV, we have 

the very broad ranges 2 .5
.42.2 MeVum c +

−=  and 2 0.5
0.34.7 MeVdm c +

−=  which incorporate  hadronic 

scattering experiments and so contain not only experimental errors but scheme-dependent errors.  
Then, in sampling calculations based on the mass parameterization (18.3) and (18.4) of the CKM 

matrix, these are already tightened to 2 2.23 0.07 MeVum c = ±  and  2 4.90 0.02 MeVdm c = ± .  

Compared to PDG’s 2 .5
.42.2 MeVum c +

−=  the former has an error bar which is almost ten times as 

tight and so adds one digit of accuracy, and in this extra digit reveals a new center slightly-elevated 

by .03 MeV.  Compared to PDG’s  2 0.5
0.34.7 MeVdm c +

−= , the latter has a center substantially-

elevated by a full .2 MeV, and an error bar more than ten times as tight.  We may refer to the 
“scheme” for obtaining these tighter up and down masses as the “CKM scheme,” because it is 
based on tying these masses to the observed CKM mixing angles rather than to hadronic scattering 
experiments which depend heavily on the impact scale µ .  In contrast to the scale-dependence of 

hadronic scattering, these CKM mixing angles may be regarded as constants below the weak scale 

at WMµ = , see [47] following [12.6], and so provide scale-independent data for establishing 

quark masses in this CKM scheme.  Note, however, with the quark masses now tied to the CKM 
angles by (18.1), that the µ -dependence of the quark masses and of the CKM elements can no 

longer be regarded independently. 
 

Then, we compare this to the author’s 2013 results 2 2.22379240 MeVum c =  and 
2 4.90647034 MeVdm c =  reproduced in (15.8) and obtained from the EPN (electron-proton-

neutron) scheme represented by (15.7), and find that the foregoing fitting of the CKM mass 
parameterization are confirming of these earlier results.  Specifically, these 2013 numeric results 
were originally derived in atomic mass units, then converted over using 

( )1 u 931.494061 21  MeV=  into less-precise MeV, see note [a] in [54].  Now, in MeV, let’s 
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calculate the error bars from this EPN scheme:  Calculating with (15.7) using PDG’s 2018 data 

[48], the electron rest mass 2 0.5109989461(31) MeVem c =  is known to eight digits in MeV with 

error bars in the ninth and tenth positions, while the free proton and neutron masses are known to 

5 digits in MeV with errors in the sixth position [49].  But it is the neutron minus proton mass 
difference which drives the latter equation (15.7), and this difference is known to six digits in MeV 

with errors in the seventh and eighth digits, namely ( )1.293 332 05 48  MeVn pM M− = , see the 

most recent NIST CODATA at [55].  So, with errors explicit, a recalculation of the up and down 

masses using (15.7) and the latest reported data yields 2 2.22379229(55) MeVum c =  and  
2 4.90647034(55) MeVdm c = , inheriting the seventh-position errors from the n-p mass difference.  

This EPN scheme is similar in nature to the CKM scheme just reviewed, because each of these is 
independent of impact scale µ .  The CKM scheme instead uses the CKM elements which are 

effective constants for 0µ → , and the EPN scheme instead uses 2
em c  and  n pM M−  which 

likewise are effective constants for 0µ → .  

 

So, the CKM mass parameterization calculation above produces 2 2.23(7) MeVum c =  

versus 
2 2.22379229(55) MeVum c =  from an updated EPN calculation based on (15.7).  And, the 

CKM calculation yields 2 4.90(2) MeVdm c =  versus 
2 4.90647034(55) MeVdm c =  from the EPN 

update.  This means that calculation from the CKM mass parameterization provides independent 
validation that the EPN relations (15.7) obtained in 2013 are correct, because the EPN calculation 
falls within the substantially-tightened CKM error bars for both the up and down quark masses, 
and because all of these are well-within the PDG error bars.  Because the EPN calculation is 

accurate to six digits in MeV while the CKM is accurate to only 1 digit in MeV, and because these 
data points are fully concurrent, from here we shall use the foregoing updated EPN values for the 
up and down masses, with error bars included.  A six-digit accuracy in MeV is a nine-digit 
accuracy in GeV, so compared the all the other quark masses, this is an extreme degree of accuracy 
that enables us to effectively use these up and down quark masses without concern for their errors. 
 

Now let’s turn to the CP-violating phase.  So, far, for this we have used 
1.995
1.91770.998Cδ δ +

−== °  calculated from [47].  As seen in (18.4), this phase only affects the 

magnitudes of the four lower-left CKM matrix components cdV , csV , tdV  and tsV .  Moreover, 

close study of (18.4) reveals that this phase term appears in each of these four components in 

identical form, stemming from their commonly-shared term 13
is e δ  in (18.2).  So, because the 

/ PDGε∆  ratios effectively measure statistical standard deviations as noted following (18.7), one 

way to measure a “best fit” for the phase is to simply sum the absolute values of / PDGε∆  ratios 

for each of these components by calculating ( ), , , /cd cs td ts PDGεΣ ∆ , then ascertain a phase 

magnitude which minimizes this sum.  Doing so, we find a minimum sum at 71.066δ = ° .  So, 

we now re-center the phase by 0.068°  to this 71.066δ = ° .  Then, we proceed to determine outside 
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errors in the same way we did above, by finding which values of the phase push one of the CKM 

elements up to a / 1PDGε∆ = ±  value corresponding to the edge of its error bars.  When we do 

this, we find that 3.786
3.77571.066δ +

−= ° , which slightly raises the center and just about doubles the 
1.995
1.917

+
− °  spread from PDG.   

 

Now, finding error bars by calculating mass and phase angles to produce / 1PDGε∆ = ±  

effectively uses CKM errors spreads PDGε  and global unitarity of the CKM matrix to set error bars.  

The fact that the spread obtained using these PDGε  is wider than the spread that PDG reported from 

CP experiments directly detecting δ  simply means that data used to directly determine δ  provides 

more-accurate information than does the global CKM fitting.  As such, we shall keep the re-

centered 71.066δ = °  from here forward, but will also keep the tighter 1.995
1.917

+
− °  spread from PDG.  

Specifically, because we have now raised the center angle by 0.068° , we shall keep the high-end 

error bar at its same absolute angle magnitude, thus subtracting ( )1.995 0.068 1.927+ − ° = + °  to 

establish the upper bound.  For the lower bound we keep 1.985− ° , however, we now pin this to 

the newly-raised center, effectively trimming off 0.068°  from the bottom of the overall spread.  

Based on all this, from here forward we shall employ the revised phase angle 
1.927
1.91771.066δ +

−= ° . 

 

Finally, at (15.10) we were able to re-center and tighten the strange quark mass to
2 92.42 0.38 GeVsm c ±= .  Using the fitting techniques that we just applied for the phase, we see 

if any further refinements are possible for the strange quark.  From (18.3) and (18.4) it is seen that 
the strange quark mass affects the CKM matrix in the leftmost two columns.  Accordingly, using 
all of the foregoing adjustments for the other masses and the phase, we calculate the sum 

( )/ PDGεΣ ∆  over these two columns, then look for where this sum is minimized.  Then, we see 

what values for the strange mass cause one of these elements to reach a / 1PDGε∆ = ±  at its error 

bar extreme.  The mildly-revised result of this calculation is that 
0.376
0.371

2 92.  Me416 Vsm c +
−= .  This 

opens up the third decimal place in MeV, nominally reducing the mass center, and having a very 
tiny impact on the overall error spread. 

 
Now, we return to the top and charm masses which we re-centered at (18.8) and (18.9) to 

2 172.851GeVtm c =  and 2 1.250 GeVcm c = , to see if the subsequent adjustments to the other 

masses and the phase produce any discernable impact, and also, to establish error bars for these 
two masses.  As to the center values, as we did for the phase and the strange mass, we take the sum 

( )/ PDGεΣ ∆  over all of the CKM matrix elements which are affected by the top and charm masses 

(which happen to be all nine elements, see (18.3) and (18.4)), and look for where this sum is 

minimized.  If we try to add an extra decimal point by adding 0.0001 GeV±  respectively to the 

top and charm masses, we find that even this small adjustment increases the ( )/ PDGεΣ ∆  sum.  
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So, we leave these centers exactly where they are.  As to error bars, we again adjust these masses 

up and down to calculate where / 1PDGε∆ = ±  for one of the CKM magnitudes.  This reveals that 

based on global unitarity fitting, 0.044
0.046

2 172.851 GeVtm c +
−=  and 0.046

0.044
2 1.250 GeVcm c +

−= , mindful 

again that a raised top mass correlates to a lowered charm mass and vice versa via (14.5).  However, 

prior to the data adjustments we stared to make at (18.7), we were using 0.035
0.026

2 172.826 GeVtm c +
−=  

and 2 .025
.0351.275 GeVcm c +

−= , which has a tighter error bar than that provided by unitarity fitting.  

This indicates that direct determinations of the charm mass (which now drives the top mass error 

bars) are more accurate than unitarity fittings of these masses, so that we should use the .025
.035 GeV+

−  

range from the direct PDG charm mass data rather than the 0.046
0.044

+
−  charm range just ascertained by 

unitarity fitting.  But, at (18.8), the unitarity fitting required us to raise the top quark and lower the 
charm quark masses by 0.025 GeV.  So, as we just did for the phase, we should maintain the 
absolute upper mass value for the top and absolute lower mass value for the charm, while trimming 
this 0.025 GeV from the opposite ends of the range.  Accordingly, our final center-values and 

ranges for the top and charm masses are 
0.010
0.026

2 172.851 GeVtm c +
−=  and 

2 .025
.0101.250 GeVcm c +

−= . 

 
Accordingly, assembling all of the foregoing results, we have been able to use the mass 

parameterization (18.3), (18.4) of the CKM quark mixing matrix and the unitarity of this matrix, 
along with other PDG mass data and the EPN mass scheme of the author’s [33], [31] to refine five 
of the six quark masses and the CP-violating phase as follows: 
 

2 2 .025 2
.

0.010
0.026

0.376 1.927
0.371

010

2 2
1.917

2.22379229(55) MeV; 172.851 GeV

4.90647034(55) MeV; 9

1.250 GeV

2.416 71.06 M 6

;

eV;

u c t

d s

m c m c m c

m c m c δ

+
−

+ +
−

+
−

−

= = =

= = = °
. (18.10) 

 
Again, the bottom quark mass does not affect the CKM mass parameterization because it does not 
appear in (18.3), (18.4).  Rather, the bottom quark mass is determined from the remaining five 
quark masses plus the Higgs boson mass using (16.5), review also the quark mass 
reparameterization summary at (17.1).  As noted at (16.5), in reality, it is the PDG bottom quark 

mass 0.04
0.03

2 4.18  GeVbm c +
−=  which sets the error bar for the Higgs mass, because at present, the 

bottom mass is more precisely-known than the Higgs mass. 
 
 Having this tightened data in (18.10), we may now also insert this into (18.1) to calculate 
revised CKM mixing angles for the standard parameterization, namely: 
 

0.0000150.010 1.927
0.024 1.9170.000002 1 612 3 312.975 0.025 ; 2.415 ; 0.205510 71.066;C C Cθ δθ θ ++ +

− −−± ° °= = = ° = ° . (18.11) 

 

Compared with the values calculated in (14.12) from PDG’s [47], we see that the previous 

12 12.975 0.026Cθ ±= °  is virtually unchanged, while the previous 23 2.415 0.053Cθ ±= °  retains 

the same center but has its spread cut by about a factor of 3.  However, there is a very substantial 
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change to the previous  0.015
0.0113 30.209Cθ +

−= ° .  First, its center is lowered by about 0.0035°  which is 

substantial (just under one part in 60) in proportion to this already-small angle.  Second, the error 
spread is tightened by a factor of about 1300, which is a precision improvement exceeding three 
orders of magnitude.  Finally, as already reviewed, the foregoing does not alter the precision of 

the phase, other than raising its center by 0.068°  which we also use to trim off the bottom of the 

error range by a like amount.  Note also, importantly, that variations in 23Cθ  and 13Cθ  are 

interdependent, because of the interdependence of the top and charm masses found at (14.5), and 

because as seen in (18.1), 23Cθ  and 13Cθ  have the same form but for the interchange of the top and 

charm masses.  Thus, the high end of 23Cθ  corresponds to the low end of 13Cθ  and vice versa, 

which we denote by 13 23+ −
− +⇔ , just as for the top and charm mases themselves due to (14.5). 

 
 Finally, we are in a position to recalculate the magnitudes of all the components of the 

entire CKM matrix more tightly.  For this, it is simplest to manage the high / low combinations of 
masses and angles by using the standard parameterization of (18.2) together with the angles and 
error bars found in (18.11).  First, we write down the trigonometric content of the magnitude of 
each element in (18.2), in the usual way, as such: 
 

12 13 12 13 13

12 23 12 23 13 12 12 23 23 13 12 23 12 23 13 12 12 23 23 13 23 13

12 23 12 23 13 12 12 23 23 13 12 23 12 23 13 12 12 23

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2
23 13 23 13

2 2

2 2

CKM

c c s c s

V s c c s s c s c s s c c s s s c s c s s s c

s c c s c s c s s c s s c s c s c s

c c

s c cs c c

δ δ

δ δ

 


= ++ + −

− + +



 + 






. (18.12) 

 
Then, we simply insert the sines and cosines of the angles in (18.11) into (18.12) to obtain our 

results.  However, given that 12Cθ , 13Cθ  and δ  can each range over their error bars independently 

of one another but at there is a 13 23+ −
− +⇔  correlation between 13Cθ  and 23Cθ  because of (14.5) 

and (18.1), there are eight high (+) versus low (–) combinations that need to be calculated 
particularly for the four lower-left terms in (18.12), where we define “high” as the high value of 
an angle, and “low” as the low value of an angle.  These correspond to a binary counting sequence 

from 7 downward to 0, namely, 12 13, ,C Cθ θ δ = + + + , 12 13, ,C Cθ θ δ = + + − , 12 13, ,C Cθ θ δ = + − + , 

12 13, ,C Cθ θ δ = + − − , 12 13, ,C Cθ θ δ = − + + , 12 13, ,C Cθ θ δ = − + − , 12 13, ,C Cθ θ δ = − − +  and 

12 13, ,C Cθ θ δ = − − − .  The upper-right entry 13s  has only a single high-low binary choice because it 

has a single angle.  The right column also has a single binary choice because of the 13 23+ −
− +⇔  

correlation.  Because the error bar for 0.0000000004
0.000000001013 0.9999935674c +

−=  does not change its value until 

the ninth digit, for all practical purposes at the five-to-six-digit accuracy of the CKM matrix 
elements the remaining two entries in the top row also effectively have only a single binary choice.   
 

So, carrying out this calculation, we end up below with the final result for the refined CKM 
magnitude matrix, using a ±  convention for error bars with the high-side always on top and the 
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lower-side always on the bottom, along with a * matrix coded to provide further compactly-coded 
details as will be explained below: 
 

0.0000003
0.0000001

0.00012 0.00017
0.00011 0.00041

0.00017
0.00022 0.0004

0.97446 0.00010 0.22453 0.00043 0.0035868

0.22438 0.00044 0.97359 0.04214

0.00896 0.04133

ud us ub

CKM cd cs cb

td ts tb

V V V

V V V V

V V V

+
−

+

−

+

+
− −

−

  ±
 =  




=



±


±

( ) ( )

0.00019 0.000017
3 0.000007

*

12 12 13

* 12 ( ), ( ),13 ( ) 12

0.999105

0.00086 0.00001 0.00001 0.00020 0.00002 0.000( ),13 ( ), ( )00

0.00023 0.00012 0.0

1

0003 0.00

3

( ),13 , 057 012 13 ( ) .0, (

δ δ
δ δ

+

− + +
+ − −

+ − + − + + −
− + − + − − +

+ − + − −
− + − +

+
−

+

 
 
 
 
 

0005 0.0000),12 ( 131)− +
+ −

 
 
 
 
 

. (18.13) 

 

 Comparing this with the usual PDG data reproduced in (18.5), in the top row udV  is 

unchanged to five digits, and usV  is lowered by 1 part per 105 with its error bars substantially 

unchanged.  But ubV  which we identified as an outlier after (18.9) is substantially changed in two 

ways:  First, its precision is enhanced by more than two orders of magnitude, and more precisely, 

by a factor of about 640.  Second, as anticipated, its center is indeed lowered by over 6 parts per 

105.  In the remainder of the right column cbV  and tbV  have identical centers to those of the PDG 

data to five digits, but the error bar for each is tightened by a factor of just over 2.6.   
 

The final point to be noted before we turn to the lower-left components which are functions 
of the phase, is the corresponding data in the * matrix, which is coded to capture additional detail 

about how errors in 12Cθ , 13Cθ  and δ  impact these CKM matrix error bars.  So for udV  and usV , 

the 12 designation in the * matrix indicates that the high and low ranges of the error bar are 

determined entirely by 12Cθ  (which 0.0000000004
0.000000001013 0.9999935674c +

−=  renders an allowable 

approximation, as noted above).  But, the 12−
+  designation for 0.00010

0.000100.97446udV −
+=  indicates that 

when 12 12.975 0.025Cθ −= °  in (18.11) is at the low end of its error bar then 

0.97446 0.00010udV = + is at the high end of its error bar, and vice versa.  In other words, the 

signs attendant to 12−
+  indicated that this angle and the CKM component magnitude are reverse-

correlated.  Likewise, the 12+
−  designation for 0.22453 0.00043usV = ±   means that the error-bar 

directions for 12Cθ  and usV  are forward-correlated.   So for the right column, given that the 

13 23+ −
− +⇔  correlation allows 13Cθ  to serve as a reverse-correlated proxy for 23Cθ  regarding error 

bars, the 13 designation indicates that all three of these error bars are driven solely by 13Cθ .  The 

13+
−  for ubV  and tbV  indicates a forward correlation with 13Cθ  (thus inverse with 23Cθ ), while the 

13−
+  for cbV  indicates an inverse correlation with 13Cθ  (thus forward with 23Cθ ). 
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Turning to the four lower-left components in (18.13), in the main matrix we find that the 
center values for all these components are likewise identical to the PDG data to five digits.  
However, these error bars depend on the eight binary combinations noted earlier as to whether 

each of 12Cθ , 13Cθ  and δ  is at the top or bottom of its error bar.  Moreover, each of these three 

angles has its own distinct effect on the error bars.  Therefore, the forward and reverse correlations 
are coded for each of these angles in the same way as was reviewed in the previous paragraph, 

noting also that the 13 23+ −
− +⇔  correlation always applies as well.  But now, in addition, in 

parenthesis next to each of these angles is a five-decimal number which indicates the magnitude 
of the effect that each angle has on the CKM element magnitude, from one end to the other of that 
angle’s error bars.   Moreover, these are ordered for each CKM element from largest to smallest 

effect.  So, for example, over the entire 0.00088  spread of 0.22438 0.00044cdV = ± , the coded 

sequence 0.00086 0.012 ( ), ( ),130001 0.00001( )δ+ − +
− + −  indicates that the forward-correlated 12Cθ  

accounts for almost all ( 0.00086 ) of this spread, and that δ −
+  and 13Cθ  can each swing this 

component spread by about 0.00001  apiece.  The center component csV  is most affected by the 

reverse-correlated 12Cθ  with 0.00 012 ( )02−
+ , followed by a smaller contribution from swings in 13Cθ  

with 0.00 213 ( )00+
− , and negligible impacts from phase swings with 0.00 00)( 0δ +

− .  Where the CP-

violating phase has its greatest impact is on tdV  with 0.00 3)2( 0δ +
− , followed by a less-impactful 

( )0.0 113 00 2−
+  and a least impactful ( )0.0 012 00 3+

− .  And for tsV  the dominant angle is 

0.00 713 ( )05−
+  followed by 0.00 5)0( 0δ −

+  followed by 0.00 112 ( )00−
+ .  So, with this * matrix it then 

becomes possible to rapidly ascertain how the error bars in each of the CKM standard 
parameterization angles correlates with the error bars in the CKM matrix component magnitudes 
themselves, and the magnitude impact each angle error bar has on each component error bar. 

 

Note also, in comparison to PGS’s 0.97359 0.00010PDGcsV = ±  reproduced in (18.5), that 

0.00012
0.000110.97359csV −

+=  is the only CKM component in (18.13) which has been ended up with a wider 

error bar that that of the PDG data.  As can be discerned from the supplemental data in the * matrix, 

this is because while the usual 0.00010±  is precisely accounted for by the 0.00 012 ( )02−
+  swings 

resulting from 12Cθ , there is an additional possible spread combing from 0.00 213 ( )00+
− , and from 

a negligible 0.00 0)0( 0δ +
−  which only affects the sixth decimal position.  This wider 0.00012

0.00011
+
−  spread 

would only occur, however, if 12Cθ  turned out to be at the low end of its error bar simultaneously 

with 13Cθ  and (nominally) δ  being at the top of their error bars, or vice versa for all.  

 
One final point to note before concluding our quark study and turning to leptons, regards 

the bottom quark mass which, as noted at (18.10), does not affect the CKM matrices or the quark 

mass parameterization summarized at (17.1).  This is because the leftover angle 31IIθ


 at (15.12) 

which is a function of the bottom quark mass, is not connected to any of the three real CKM mixing 
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angles.  In order to characterize the bottom quark mass in terms of the CKM mixing angles without 

using the leftover 31IIθ


, we need instead to use the angle vθ  which was introduced at (16.7), and 

placed the Higgs mass on the hypotenuse of Figure 4 with the isospin-up and isospin-down vevs 
on each of the right triangle legs.  To so-characterize the bottom quark mass, we first start with 

(15.11) which we write as 2 2 21

2b d sm c v m c m c


= − − .  From (16.7) we obtain 21

2
tan vv v θ

 
= .   

From (18.1) we obtain 2 2 2 2
12cscd s d Cm c m c m c θ+ = .  Combining all the foregoing then leads to 

2 2 2 2
12tan cscb v d Cm c v m cθ θ


= − .  Next we use (15.7) which was independently re-validated 

between (18.9) and (18.10) above as part of the global CKM data fitting, which is readily 

restructured into ( )1.51
3 2πd u em m m= + .  Then, using 2 1

2u um c v G


=  along with uG  from (14.15), 

we combine the foregoing to finally obtain: 
 

( ) ( )
2 2 2

1.52 2 23 31
22 2 2

1212 23 31

sin sin1 1
tan 2π

3 sinsin 1 cos cos2
C C e

b v

CC C C

m c
m c v

θ θθ
θθ θ θ

 
 = − −
 − 

. (18.14) 

 
So to reparametrize the bottom quark mass without using the leftover angle, we require all three 

of the real CKM angles as well as the vacuum mixing angle vθ .  The appearance also of the electron 

mass in the final term above directly illustrates how, as reviewed at (17.1), the completion of quark 
mass reparameterization is “kicked down the road” to our study of the charged leptons.  Taking 

the Fermi vev v


 as given, it is easy to see by obtaining 2 21
2 / cosh vm c v θ


=  from (16.7) that the 

angle vθ  and the Higgs mass hm  are interchangeable in the (17.1) parameterization. 

 

 Relatedly, as noted at (16.8), when 0vθ →  we also have 0v


→ .  So, because the isospin-

down quark masses 2 1

2
m c v G

  
=  depend upon nonzero v


, we also have 0m


→  for all of the 

d, s and b quarks.   Additionally, when 31 0Cθ → , we see from (14.15) that 1tG → .  This means 

in view of 1u c tG G G+ + =  from (14.3) that the only isospin-up quark with a non-zero mass is the 

top quark, with 2 1

2
174.1035847 GeVtm c v


= =  sans error bars, see (14.4) and (15.11).  So when 

0vθ →  and 31 0Cθ → , the only quark that exists has a non-zero mass is the top quark, and all other 

quarks approach masslessness.  When the other two 12 0Cθ →  and 23 0Cθ → , these mass zeros are 

further reinforced, because we effectively unwind the bi-unitary rotations developed at (14.9) for 
isospin-up quarks, then copied in section 15 for isospin-down quarks.   
 

Therefore, if we assume that the Fermi constant FG  thus its Fermi vev truly is a constant 

of nature which does not change with varying impact scale µ , it appears possible that at the ultra-

high impact energies of GUT theories, all four of these angles – the three real CKMθ  and the vθ  

Higgs / vacuum rotation angle – are zero.  Then, these bi-unitary mass rotations which connect to 
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CKM rotations, together with a Higgs mass rotation through vθ  as shown in Figure 4 to place some 

non-zero energy into v


, can be viewed as the mechanism by which the quark masses and these 

angles evolve as µ  descends from ultra-high energies to the Fermi vev and below, at which scale 

the six quarks have the known masses that they are observed to have.  Moreover, if the CP-

violating phase δ  also evolves from zero, we can evolve from an equal theoretical balance of 

matter and antimatter to the manifestly-observed imbalance at observable impact.  From this 
viewpoint, in effect all of the mass starts in the top quark with matter and antimatter balance, then 
gets “distributed” amongst all the quarks though a combination of bi-unitary CKM rotations and a 
Higgs / vev rotation, while matter dominance transpires through phase evolution.  Presumably, 
this evolution occurs with the aid of the renormalization group.   

 
However, in view of the mass parameterization (18.1), (18.3), the statement in [47] is no 

longer completely true, that “[w]hile . . . the CKM matrix has a well known scale dependence 

above the weak scale [8], below Wmµ =  the CKM elements can be treated as constants, with all 

µ -dependence contained in the running of quark masses and higher-dimension operators.”  

Specifically, because the mass parameterization ties the quarks masses and CKM angles directly 
together, it no longer appears possible to decouple the running of one from the running of the other.  

Although studying the µ -dependency of the quark masses ( )qm µ   and angles ( )CKMθ µ , ( )δ µ  

and ( )vθ µ  is beyond the scope of this paper, it is nevertheless worth pointing out the possibility 

of using renormalization group theory to go beyond reparameterization, and fully explain the 
observed pattern of quark masses and mixing angles and matter prevalence over antimatter. 
 

The scientific method holds that empirical confirmation is the repeated absence of 
empirical contradiction to the point where the possibility of contradiction is statistically eliminated.  
It is intended that the results in (18.10), (18.11) and (18.13), which clearly refine and tighten 
predictions about the center values and error bars of five of the six quark masses, the CKM standard 
parameterization mixing angles and the invariant CKM matrix component magnitudes, will 
provide a means for experimentally contradicting the results obtained here, with the expectation 

that no contradictions will be uncovered and the statistical possibility of contradiction will 
eventually be ruled out, leading to an empirical confirmation secured by the consistent and 
systematic absence of contradiction.  Having completed our study of quark mases, mixing and 
weak beta decay, we turn now to a similar study of leptons. 
 

PART IIB: LEPTONS 
 

19.  Theory of Fermion Masses and Mixing: Electron, Mu and Tau Charged 

Leptons 
 

Having studied the quark masses and their mixing and beta decay mechanisms in relation 
to Higgs fields and bosons, we now turn to the leptons.  Just like quarks, it is well-known that 
leptons also mix generations albeit via neutrino oscillations, utilizing the Pontecorvo–Maki–
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Nakagawa–Sakata (PMNS) matrix which has an identical mathematical structure to the CKM 
quark mixing matrix.  The existence of a PMNS matrix with non-zero off-diagonal elements 
provides the central empirical indication that neutrinos are not massless as was considered possible 
a generation ago, but rather, have an extremely small rest energy on the order of a fraction of a 
single electron volt (eV).  This is also borne out by cosmological observations of a slight but 
definite time delay between the arrivals of photons and neutrinos from supernova events following 
a transit times of more than 100,000 years, such as reviewed in [56].  However, direct observations 
as to what the masses of these neutrinos actually are, are still wanting as of the present day.  What 
has been established directly, are upper limits on these neutrino masses, on the order of less than 
a single electron volt.  By way of comparison, the electron, which is the lightest charged lepton, 
has a rest energy of just over half a million electron volts (MeV).  In the development following, 
we shall utilize the PMNS matrix and related leptonic mixing angles laid out in the most recent 
January 2018  NuFIT data at [57].  (Note, new data was released in November 2018 with nominal 
changes, but we have not updated the development here to incorporate these.) 
 

Because the leptons are known to parallel the quarks insofar as they are both elementary 
fermions and have identical weak isospin structures – isospin-up and down replicated into three 
generations – we shall begin by seeing the extent to which the results of sections 14 through 18 
for the quarks can be carried over in identical form to the leptons, with the only difference being 
the numeric values of the various mixing angles and fermion masses.  However, now that we will 
attempt to replicate for leptons, everything that was developed for quarks, let us make some 
notational choices which will help avoid confusion between quark parameters and analogous 
lepton parameters.  First, starting at (14.9), we began to utilize three quark mass mixing angles 
denoted 21θ , 32θ , 31θ  which were later connected at (14.13) and (15.6) to the three real CKM quark 

mixing angles denoted 12Cθ , 23Cθ  and 23Cθ .  Here, for leptons, we shall postulate three analogous 

mass mixing angles denoted 21ϑ , 32ϑ  and 31ϑ , and will seek out a connection to the three real 

PMNS angles which we shall denote by 12Pθ , 23Pθ  and 23Pθ .  Second, for the quarks, crystallized 

at (15.11), we found that there are two minima for the vacuum which play a central role, namely, 
the well-known vev 246.2 GeV2v v


= ≅  established by the Fermi constant and a second 

6.05 GeVv


≅ .  Importantly, it was shown at (15.11) that each vevs relates to a sum of quark 

masses by 2 2 21

2 u c tv m c m c m c


= + +  and 2 2 21

2 d s bv m c m c m c


= + + , and moreover, at (16.5), that 

these vevs also relate to the Higgs mass via ( )2 1 1
2 2hm c v v

 
+= .  For leptons, for notational 

distinctness, we shall use u rather than v to denote any similar vacuums.  Now we begin, starting 
with the charged electron, mu and tau leptons, which have isospin-down. 

 
As at (14.8), but now for these three charged leptins, we postulate a 3x3 charged lepton 

mass matrix 2
eM cµτ  and an associated isospin-down lepton vev u


, with all energy concentrated 

in the upper-left component and having a magnitude 1

2
u


.  At the moment, the magnitude of u


 

is yet to be determined.  Then, as at (14.9) we perform a bi-unitary transformation 
2 2 † 2

e e eM c M c U M c Uµτ µτ µτ′→ =  on 2
eM cµτ  using an analogous type I “downward cascade” 

parameterization and the type II “distribution” parameterization.  As a result, we arrive at relations 
analogous to those contained in (14.9): 
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21 322
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c s
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=
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, (19.1a) 
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2 21
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s

s c

II II

II

e II II

m c u

m c u

m c u

τ

µ

  

 

  

=

=

=

. (19.1b) 

 
These sines and cosines now associate with the leptonic mass mixing angles 21ϑ , 32ϑ  and 31ϑ . 

 
 Next, we define a relation amongst each of the charged lepton masses lm , associated 

dimensionless couplings lG  and the new vev u


 in the customary form as follows: 

 
2 1

2l lm c G u


≡ . (19.2) 

 
Using these in (19.1) then yields: 
 

2
32

2 2
32 21

2 2
32 21

c

s c

s s

I

I I

e I I

G

G

G

τ

µ



 

 

=

=

=

, (19.3a) 

 
2 2

32 31

2
32

2 2
32 31

c c

s

c s

II II

II

e II II

G

G

G

τ

µ

 



 

=

=

=

. (19.3b) 

 

From either (19.3a) or (19.3b), we use the trigonometric identity 2 2 1c s+ =   to find that: 
 

1eG G Gτ µ+ + = . (19.4) 

 
Then, using (19.2) in (19.4) we find that: 
 

2 2 21

2
1883.029 0.120 MeVeu m c m c m cτ µ

= + + = ± , (19.5) 

 
thus 2663.005 0.170 GeVu


= ± .  These are identical in form with analogous relations (15.11) 

earlier found for the quarks.  The numeric value of this vev is computed to three decimals using 
empirical data from [48], namely: 
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2

2 2

0.5109989461

105.

0.0000000031 MeV;

0.0000024 MeV; 0.16583745 1776.86 MeV2

em c

m c m cµ τ

= ±

= ± = ±
. (19.6) 

 
 Next, we restructure (19.3) to isolate sines and cosines, analogously to what we did prior 
to (14.11) four isospin-up and to (15.3) for isospin-down quarks, then use (19.4) to obtain: 
 

2
32

2
21 2 2

32 32

2 2
21 32

c

c
s 1 c 1

s s

I

I

I I e

I I e

G

G G G G

G G G

G

τ

µ µ µ µ
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=

= = = =
− − +

=

, (19.7a) 
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. (19.7b) 

 
 Finally, we use (19.3) in (19.7) and combine with (19.4) and (19.5) to obtain: 
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. (19.8b) 

 
 Proceeding from here, we use the mass data in (19.6) and the sum in (19.5) together with 

the relations for 2
32cI

, 2
21cI 

, 2
31cII

 and 2
32sII 

 to calculate that: 
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32

32

21

31

0.23974 0.00001 rad 13.73605 0.00045

0.23915 0.00001 rad 13.70231 0.00045

0.06943 0 rad 3.97816 0

0.01696 0 rad 0.97155 0.00003

I

II

I

II

ϑ
ϑ
ϑ
ϑ









=
=

=

= ± ± °
= ± ± °
= ± ± °
= ± ±= °

. (19.9) 

 
Then we are ready to compare this to the empirical data for the PMNS mixing angles.   
 

The data in [57] lays out a best fit at both a 1σ  and 3σ  range.  These spreads will become 
important momentarily.  Therefore, without having more specific data we also estimate the 2σ  
spread by taking the average of the 1σ  and 3σ  spreads.  We then show the central observed value 
followed by successive ranges also shown for each of 1σ , the estimated 2σ  as just mentioned, 
and 3σ , respectively.  Presented in this way, the four PMNS parameters, in degrees, are: 
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=

=

=

=

°

 . (19.10) 

 
Based on what we saw for the quarks, it is 21 3.97816Iϑ


= °  and 31 0.97155IIϑ


= °  for which we 

would anticipate a match.  But comparing with (19.5) there is nothing close.  So at least one of the 
suppositions we used to obtain a correct data match for the quarks, does not apply to the leptons. 
 
 Taking a close look at final term in each of the six relations (19.8) and referring to (19.5), 
we see that each numerator contains a specific lepton mass, while each denominator contains the 

sum 2 2 21

2
1883.029 0.120 MeVeu m c m c m cτ µ

= + + = ± .  Because u


 is what we are postulating 

is a vev for the charged, isospin-down leptons, and because the angles deduced in (19.9) do not 
come anywhere near the empirical data in (19.10), we conclude that this postulate – although its 
analogue worked for the quarks – is incorrect for leptons.  In other words, we conclude based on 
the failure to obtain an empirical match that u


 as specified in (19.5) is in fact not the correct vev 

to be using when it comes to the charged leptons.  So if u


 is not the correct vev, the question now 

becomes, what is the correct vev?  More precisely there are two questions:   
 

First, denoting an energy difference by δ


, is there some other vev denoted u

′  and defined 

such that: 
 

2 2 21 1

2 2
1883.029 0.120 MeV MeVeu u m c m c m cτ µδ δ δ

    
′ ≡ + = + + + = +± , (19.11) 

  
which does allow at least one of 21Iϑ


 or 31IIϑ


 to fit the empirical data in (19.10), and even better, 

which allows both of these to fit the data?  Second, if there does exist some 1

2
u

′  which fits the 

data, this would initially be an independent, unexplained energy number not based solely on the 
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separately-known data 2 2 2
em c m c m cτ µ+ + , but rather on 2 2 2

em c m c m cτ µ δ


+ + + .  Therefore, can 

this new 1

2
u

′  or its δ


 be connected to other known data of independent origins, for example, 

the Fermi vev once again, so that we will not have added any new unexplained data? 
 
 Because the angles of interest are 21Iϑ


 and 31IIϑ


, let us start with these angles as shown 

in (19.8), but transform the vev terms with 1 1 1

2 2 2
u u u δ
   

′→ = + , via which we likewise 

transform to new angles 21Iϑ


′  and 31IIϑ


′  defined according to: 

 
2 2 2

2
21 2 2 2 21 1

2 2

2 2 2
2

31 2 2 2 21 1

2 2

cos

cos

I

e

II

e

m c m c m c

u m c u m c m c m c

m c m c m c

u m c u m c m c m c

µ µ µ

τ τ µ

τ τ τ

µ µ τ

ϑ
δ δ

ϑ
δ δ



   



   

′ ≡ = =
′ − + − + +

′ ≡ = =
′ − + − + +

. (19.12) 

 
Then, we simply use the known mass data in (19.5) and (19.6), and sample various values for δ


 

using a spreadsheet or the like, until the values deduced for 21Iϑ


 or 31IIϑ


 appear to bear a 

statistically-meaningful relation to the empirical data in (19.10). 
 
 Because error-bars are important in this calculation, let’s us briefly comment on how we 

will approach these.  The u


 in (19.12) is related to the sum of the three charged lepton masses.  

Because the error spread for each of the masses is independent of the other two, there are 3x3x3=27 

different ways of calculating u


 for each individual lepton being high, medium or low on its error 

spread.  But the muon mass is known about 50,000 times as precisely as the tau mass, and the 
electron mass is known just shy of 40 million times as tightly as the tau mass.  Therefore, to keep 
matters simple, we regard the electron and muon masses to be precisely at the center of their error 

spreads, and use the V0.12 Me±  spread in the tau mass as the basis for calculating the spread in 

u


.  This is why there is a 0.120 MeV±  spread shown in (19.11), and also in (19.5), with one 

decimal place added. 
 

 Working from (19.12) and sampling various δ


, we find that when we set 

39.642 MeVδ


=  thus 1

2
1922.671 0.120 MeVu


±′ = , we are able to obtain 

31 8.5490 0.0003IIϑ


±′ = ° , with a center conforming precisely with the center of the empirical 

0.15 0.295 0.44
0.15 0.3 0.13 458.549Pθ + + +

− − −= °  in (19.10).  Simultaneously, with this same 39.642 MeVδ


=  we are 

able to obtain 21 31.65230 0Iϑ


′ ±= ° .  The empirical data in (19.10) tells us that 

0.78 1.605 2.43
0.76 1.48 212 .233.62Pθ + + +

− − −= ° .  Given that the 3σ  error permits an angle as low as 12 31.42Pθ = ° , 

we conclude that 39.642 MeVδ


=  matches 13Pθ  right at the center, and comes in at about 2.8σ  

on the low end of 12Pθ .  This is very important, because this means that in fact we are able to 
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simultaneously match 31 13II Pϑ θ


′ ↔  and 21 12I Pϑ θ


′ ↔  within 3σ  error bars for both items of 

data, and more closely for each if we move 31IIϑ


′  upward somewhat from its center value. 

 

 For a second sample, we find that when we set 46.199 MeVδ


=  thus 

1

2
1929.229 0.120 MeVu


±′ = , we are able to obtain 21 33.62 0Iϑ


= ±′ ° , conforming precisely 

with the center of the empirical 0.78 1.605 2.43
0.76 1.48 212 .233.62Pθ + + +

− − −= °  in (19.10).  Simultaneously, with this 

same 46.199 MeVδ


=  we obtain 31 9.2096 0.0003IIϑ


±′ = ° .  The 3σ  data puts the 

corresponding angle at 13 8.989Pθ = °  on the high side, so this value for δ


 puts us above the 3σ  

data, at what we can estimate to be about 4.5σ .  But now we have a basis for interpolating between 

these two samples. 
 

 Because the first δ


 sample gave us the center of 13Pθ  but produced a low value for 12Pθ , 

while the second sample gave us the center of 12Pθ  but produced a high value for 13Pθ , it appears 

as if the actual 12Pθ  is below the center and the actual 13Pθ  is above the center of what is shown 

in (19.10).  So, for a third sample we take the following approach:  Find a δ


 which places the 

12Pθ  match below center and simultaneously places the 13Pθ  match above center by exactly the 

same statistical spread.  That is, find some δ  for which ( ) ( )13 12P Px xσ θ σ θ=  above and below 

respectively, with 3xσ σ<  and preferably with 2xσ σ< . 

 

 In accordance with this prescription, it turns out that when we set 42.018 MeVδ


=  thus 

1

2
1925.047 0.120 MeVu


±′ = , we simultaneously obtain 31 8.7945 0.0003IIϑ


±′ = °  versus the 

empirical 0.15 0.295 0.44
0.15 0.3 0.13 458.549Pθ + + +

− − −= ° , and 21 32.39 0Iϑ


= ±′ °  versus the empirical 

0.78 1.605 2.43
0.76 1.48 212 .233.62Pθ + + +

− − −= ° .  Estimating linearly between center values and 3σ  values, we find 

that 31IIϑ


′  is about  1.67σ  above the 13Pθ  center and 21Iϑ


′  is about 1.67σ  below the 12Pθ  center.  

Accordingly, we now regard this threading of the needle whereby for a lepton vev of  
1

2
1925.047 0.120 MeVu


±′ =  (19.12) is able to simultaneously connect both 13Pθ  and 12Pθ  within 

about 1.67σ  of their respective experimental centers, as a physically meaningful relation. 

 

 Given that 42.018 MeVδ


=  threads the needle in this way at about 1.67σ  from the center 

of each angle, let us now estimate this to be the correct center for δ


, and then ascertain suitable 

estimates for its error bars.  Given that 39.642 MeVδ


=  hits on center for 13Pθ  but comes in at 

about 2.8σ  on the low end of 12Pθ , and that 46.199 MeVδ


=  hits the center for 12Pθ  but comes 

in at about 4.5σ  on the high end of 13Pθ , to estimate 3σ  spreads we increase the difference from 
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center by a factor of 3/2.8 for the former, and reduce the difference from center by a factor of 3/4.5 

for the latter.  From these estimates, we conclude that δ


 with estimated 3σ  error bars, is: 

 
2.787
2.54642.018  MeVδ +

−
= . (19.13) 

 

Consequently, based on this 2σ<  connection to the experimental angle data, also using (19.5) and 

its error bars, we now establish:  

 
2 2 21 1

2

2.907
2.6662

1925.047  MeVeu u m c m c m cτ µδ δ −  

+


′ = + = + + + ≡  (19.14) 

 

as the empirical value of this transformed vev u

′ .  It will be seen that about 95.7% of the error bar 

contribution in (19.14) comes from (19.13) and its estimated 3σ  errors, and the remaining 4.3% 

(about one part in 23) from the errors on the charged lepton masses, particularly the tau lepton.   
 

Now, we can use (19.12) with (19.13) or (19.14) together with the known masses 
2 105.658374 0.000002 MeV5 4m cµ = ±  and 2 1776.8 0.126 MeVm cτ = ±  to calculate that 

0.86
21

3
0.79532.393Iϑ +

−
′ = °  and 0.29

.31
1

0 2768.794IIϑ +
−

′ = °  at an estimated 3σ  error.  Then, because the 1σ  and 

estimated 2σ  errors in the reported data (19.10) are at approximately 1/3 and 2/3 of the 3σ  errors, 

we simply multiply these calculated 3σ  errors by the same factors to calculate 1σ  and 2σ  errors.  

Also, given as noted that the errors in (19.13) / (19.14) are over 20 times as large as the error in 

mτ , and are over a million times the error in mµ , we simply use the centers of mµ  and mτ  without 

accounting for their errors, and use (19.13) / (19.14) to establish errors in the angles.  Finally, 

because of the clear match within reported 2σ  errors between 12Pθ  and 21Iϑ


′  and between 13Pθ  

and 31IIϑ


′ , we now establish 12 21P Iθ ϑ


′≡  and 13 31P IIθ ϑ


′≡  as formal connections.  The result is: 

 
0.276 0.552 0.828
0.265 0.530 01 .795

0.093 0.186 0.279
0.088 0.176 0.263

2 21

13 31

32.393

8.794

P I

P II

θ ϑ

θ ϑ

+ + +
− − −

+ + +
−



 − −

′≡ = °

′≡ = °
. (19.15) 

 

With 12Pθ  having an error spread that is reduced over the reported 0.78 1.605 2.43
0.76 1.48 212 .233.62Pθ + + +

− − −= °  by 

an improvement factor of about 3, we also have added a third digit after the decimal.  There is also 

a nominal improvement in 13Pθ  by a factor of about 1.65.   

 
 With (19.15), we answer the first of the two questions posed at (19.11):  Yes, the vev in 
(19.14) does allow both of 21Iϑ


 and 31IIϑ


 to fit the empirical data from (19.10), within about 

1.67σ  for each.  But now we have a seemingly-disconnected vev in (19.14), and this brings us to 
the second question whether this can be connected to other known data of independent origins.  

Because 2.907
2.666

1

2
1925.047  MeVu +

−
′ ≡  in (19.14) no longer is set by 2 2 2

em c m c m cτ µ+ +  since it 
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differs from this by 2.787
2.54642.018  MeVδ +

−
= , the most obvious energy of comparison for (19.14) is 

the Fermi vev 246.2196508 0.00006 G V33 ev v


= ±=  given in (15.11).  So, we simply calculate 

the ratio of these, and find that: 
 

0.1774
0.1 2

1

2 9 9127.903/ 2v u
 

+
−′ = , (19.16) 

 
that is, 1

2
127.7103 128.0806/v u

 
′≤ ≤  at 3σ .  This numerical result is extremely pregnant, 

because it is very well known that “at 2 2
WQ M≈   the value [of the electromagnetic running coupling 

α ] is ~1/128,” see note † in PDG’s [21].  The closeness of (19.16) to this other empirical data – 
and the fact that the inverse of this ~1/128 data fits the experimental errors – raises the question 
whether is another connection of genuine physical meaning.  So, let us review the evidence: 
 
 First, the angles (19.15) which refine two of the PMNS angles in (19.10) are distinctively 
related to weak interaction beta decays between the electron and the mu and tau leptons, and their 
respective neutrino partners, and the mixing, via neutrino oscillations, by which neutrinos oscillate 
from one generation into another.  Second, while electroweak interactions are mediated by both 

neutral-current Z bosons and charged W±
 bosons, it is the latter, with a rest energy of 

( )2 80.379 12  GeVWM c =  (again see [21]), which is the sole mediator of these weak interaction 

beta decays between charged leptons and their neutrino partners.  In other words, any time there 
is a weak leptonic beta decay, there is a W boson also present at the decay vertex, which via its 

rest energy, necessarily raises the impact parameter from 2 0Q ≈  to 2 2 4
WQ M c= .  Third, the e, µ  

and τ  leptons are the quintessential units of electrical charge for which with interaction strength 

is set by ( ) ( )2 1/137.035999139 310Qα = =  in the low energy (fine structure constant) limit, 

and in general by the running ( )2Qα .  Fourth, because the e, µ  and τ  leptons and the W±
 boson 

both carry electric charge, ( )2Qα  is in fact distinctly relevant to the strength of the 

electromagnetic interaction which occurs at the beta decay vertex.  Fifth, given that these beta 

decays are all mediated by a W±
 which has a rest energy 2

WM c , the pertinent energy scale at the 

beta decay vertex is not 2 0Q =  but rather 2 2 4
WQ M c= , and so the pertinent electromagnetic 

coupling is ( )2 4 ~ 1 /128WM cα .  Consequently, the unanticipated appearance of the number 

0.1774
0.1929127.9032+

−  in (19.16) does not look to be a simple coincidental appearance of some other 

number that happens to be close to 128.  Rather, this supports the conclusion that this is in fact, 
yet another physically-meaningful connection. 
 
 Therefore, we now connect these two numbers, and conclude that the transformed vev u


′  

which is pertinent to charged leptons is in fact given by: 
 

( )2 2 2.907
2.6660.1774

0.19

2 2

29

1

2
1925.047  MeV

127.9

1

032
e Wu m c m c m c v M vτ µ δ α+

−+ 
−

 
′ = + + + = = ≡ . (19.17) 
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Consequently we tighten our knowledge of this coupling to ( ) ( )0.1774
.

2
0 1929127.90321/WMα +

−= .  This 

result has the extremely beneficial consequence of being able to express δ


 directly from the sum 
2 2 2

em c m c m cτ µ+ +  and Fermi vev and ( )2
WMα , using (19.11), as: 

 

( )2 2 2 2 2 22 2 .787
2. 62 4

1
542.018  MeVe W eu m c m c m c M v m c m c m cτ µ τ µδ α

  

+
−′= − − − = − − − = . (19.18) 

 
Now, δ


 no longer needs to be expressed as the energy difference which allows each of 21Iϑ


 and 

31IIϑ


 to fit the PMNS data in (19.10).  Rather, to answer the second question posed at (5.11):  No, 

this vev difference δ


 does not add any new unexplained data, because it is entirely specified by 

the other known data in (19.18), namely, the charged lepton mass sum em m mτ µ+ + , the Fermi 

vev v


, and the running ( )2
WMα  which is the strength of the electromagnetic interaction at the 

lepton-to-W±
 beta decay event (Feynman diagram vertex).  It is also helpful to write this as: 

 

( )2 2 2 2
e Wm c m c m c M vτ µ α δ

 
+ + = − , (19.19) 

 
wherein the mass sum em m mτ µ+ +  is seen to be a function of the independently-known 

parameters ( )2
WMα  and v


, and also of  δ


 about which we do not yet have independent 

knowledge.   As we shall see in the next section, δ


 is in fact directly driven by the neutrino masses 

and – of all things – the Newton gravitational constant. 
 
 Recalling the importance of the square roots of the various rest energies and vev energies 
reviewed in Figures 2 through 4, we see that (19.18) lends itself to a geometric representation in 

the manner of Figure 4, with ( )2 2 2 21

2 W eu M v m c m c m cτ µα δ
  
′ = = + + +  on the 

hypotenuse, and with δ


 and 2 2 21

2 eu m c m c m cτ µ
= + +  on each of the legs.  Because 

2 /ek e cα = ℏ  where ek  is Coulomb’s constant and e is the charge strength of a single charge 

quantum (such as a charged lepton and such as the W±
 bosons which mediate the beta decay), 

( ) ( )2 2/W e WM Mk c eα = ℏ  is a direct measure of the electric charge strength at the beta decay 

vertex.  Based on the numeric values from (19.14), (19.18) and (19.5), a small angle which we 
refer to as the charged lepton rotation angle and denote as lθ , has a center value of 8.496lθ = ° .  

This may all be illustrated using center values, as shown below:  
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Figure 10: Projection of the Lepton vev onto the Lepton Mass Sum  

 

Viewed in this light, the energy difference taken in its square root form δ


 rotates the 

2 2 21

2 eu m c m c m cτ µ
= + +  vector which is purely a function of the charged lepton masses, 

through an angle 8.496θ


= ° , into 2 2 21

2 eu m c m c m cτ µ δ
 
′ = + + +  which is a function of the 

charged lepton masses as well as δ


.  While it also happens that ( )21

2 Wu M vα
 
′ =  from (19.17), 

it will still be important to acquire independent knowledge about δ


. 

 
It is also very helpful to obtain mass relationships analogous to (14.15) and (15.13) which 

directly relate the charged lepton masses particularly to the two PMNS angles in (19.15).  Solving 
the simultaneous equations which are (19.12), then using (19.15), for the tau and mu leptons: 

 
2 2 2 2

2 213 12 13 12
2 2 2 2

13 12 13 12

cos sin sin cos1 1
;

1 cos cos 1 cos cos2 2
P P P P

P P P P

m c u m c uτ µ
θ θ θ θ

θ θ θ θ 
′ ′= =

− −
. (19.20a) 

 
But because of the rotation (19.18) illustrated in Figure 10, the electron mass is not a direct function 
of thee angles.  For this mass, we need to use (19.3) and (19.2), then (19.20a), to deduce: 
 

2 2 2 2 2
31 21

2 2 2 2
2 213 12 13 12

31 212 2 2 2
13 12 13 12

tan tan

cos sin sin cos1 1
tan tan

1 cos cos 1 cos cos2 2

e II I

P P P P
II I

P P P P

m c m c m c

u u

τ µϑ ϑ

θ θ θ θϑ ϑ
θ θ θ θ

 

   

= =

′ ′= =
− −

. (19.20b) 

 
Note that this contains not only the transformed angles which were connected to the PMNS angles 
via 21 12I Pϑ θ


′ ≡  and 31 13II Pϑ θ


′ ≡  at (19.15), but it also contains the original (unprimed) angles 

21Iϑ


 and 31IIϑ


.  Now let’s review what this adds to what we previously learned from the quarks 

and their mixing.  
 

We noted at the end of section 17 that one of the parameters used to reparameterize the 
quark masses, the electron rest mass em , is effectively “kicked down the road” to our study of the 

charged leptons.  Now, we have an expression for this mass in (19.20b).  So, in this section, we 
started with the three lepton masses , , em m mτ µ .  The latter, em , had been “kicked down the road” 

from the quark mass study.  To connect these with the PMNS angles we were required at (19.11) 
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to postulate a fourth, entirely-new energy number δ


  to be added to the sum of the charged lepton 

rest energies, which we denote by the appending , , , , ,e em m m m m mτ µ τ µ δ


֏  of a “new” 

parameter δ


 to the charged lepton masses.  But we “recover” this “new” data when we find at 

(19.17) that this sum ( )2 2 2 2
e Wm c m c m c M vτ µ δ α

 
+ + + =  can be related within experimental 

errors to the Fermi vev v v


≡  by the strength ( ) ( )0.1774
.

2
0 1929127.90321/WMα +

−=  of the 

electromagnetic running coupling at a probe energy 2 2 4
WQ M c= .  And, we have elaborated the 

clear relevance of this coupling strength to beta decays between charged leptons and neutrinos, 

because these must always be mediated by charged W ±   bosons and so will always have an inherent 
2 2 4

WQ M c=  present at the interaction vertex of the decay to provide an elevated 2Q  and thus an 

elevated running ( )2
WMα .  Thus, the reparameterization of this section is encapsulated by: 

 

( )( )2
12 13, , , , , , , ,e e P P Wm m m m m m F Mτ µ τ µ δ θ θ α δ

 
=֏ . (19.21) 

 
In this way, we have now reparameterized all three charged lepton masses , , em m mτ µ  over to 

( )2
12 13, ,P P WMθ θ α , but only by adding a new energy δ


.  Taken together with (17.1) for the quark 

masses, and seeing in (19.21) how the “kicked down the road” em  is now included in the charged 

lepton mass reparameterization, all told we have now reparameterized: 
 

{ } ( )( )2
31 23 21 12 13, , , , , , , , , , , , , , , , ,u c t d s b e h C C C P P Wm m m m m m m m m F v m Mµ τ δ θ θ θ θ θ α δ

 
= . (19.22) 

 
So at this point, the set of nine elementary fermion masses exclusive of neutrinos plus the 

new parameter δ


, becomes a function of the eight independently-known energies, angles, and 

couplings ( )2
31 23 21 12 13, , , , , , ,h C C C P P Wv m Mθ θ θ θ θ α  plus this new δ


, whereby we now “kick” 

our direct understanding of δ


 “down the road” to the study of neutrinos.  Specifically, what we 

now have left to do, is to reparameterize the data set { }, , ,em m mν νµ ντ δ


 of the three neutrino 

masses plus the extra energy δ


, into whatever parameters are pertinent to this data set.  But 

because the neutrino masses – unlike all the other elementary fermion masses – are not known, we 
will also show how, in the process of reparameterizing the neutrino masses and seeking a direct 
physical understanding of δ


, it is additionally possible to predict the neutrino masses with a 

specificity that has not been possible to date. 
 

20.  Theory of Fermion Masses and Mixing: Prediction of the Neutrino Mass 

Sum and of the Individual Neutrino Masses 
 
 The neutrinos are unique among the elementary fermions.  Not only was it believed for a 
long time that these were massless fermions – which was disproved by neutrino oscillations which 
we will be studying here – but there remains debate to this day as to their fundamental character, 
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that is, whether they are Dirac fermions in the same way as all other fermions, or are Majorana 
fermions with the distinctive property (as regards fermions) of being their own antiparticles.  From 
a practical standpoint, there is one very striking difference which affects how we approach the 
question of neutrino masses: while upper limits have been established for the neutrino masses, we 
have limited empirical data available to tell us what the precise neutrino masses actually are.  This 
means we cannot simply turn to a PDG table of the neutrino masses and plug them into some 
equations in the same way we were able to do for quark and charged leptons masses.  So we have 
to find another approach. 
 
 Additionally, while quarks cannot change generations other than through weak beta decays 
via the CKM quark mixing matrix reviewed closely in section 18, for leptons, generations change  
through neutrino oscillations.  Here, for example, what is detectable as an electron neutrino at one 
time and place may later be detectable as a muon or a tau neutrino at a different time and place.  
This is because unlike any of the other fermions, free neutrinos exist in quantum superpositions of 
mass eigenstates, while all other fermions exist simply in mass eigenstates with no superposition.  

Formally, if we use the three basis state kets iν  with 1,2,3i =  to represent neutrino mass 

eigenstates with associated mass eigenvalues im , and if we represent the observed, free electron, 

mu and tau neutrinos respectively by the flavor state kets eν , µν  and τν , compactly fν  

with , ,f e µ τ= , then the upshot of neutrino oscillations is that the observed free neutrino flavor 

state kets are not the same as the mass eigenstate basis state kets.  Rather, they are related to one 

another by the quantum superposition relation ff iiv U ν= , where f i PU U=  is the unitary 

PMNS matrix which is mathematically entirely analogous to the CKM quark mixing matrix.  This 
is not the case for quarks q in which observed flavor states are one and the same as mass 

eigenstates,  ff iiq qδ=  where f iδ  is a 3x3 unit matrix, and generation mixing only occurs in 

conjunction with weak beta decay.  Nor is it is true for the charged leptons e in which flavor states 

are also one and the same as mass eigenstates, ff iie eδ= .  (It is theoretically possible that the 

charged leptons and perhaps even the quarks oscillate over extremely short ranges before very 
rapidly losing any coherence, see, e.g. [58].  But for purposes of this paper we shall adopt the view 
that insofar as can be feasibly observed, neutrinos are the only fermions which propagate in a 
quantum superposition of mass eigenstates and so have detectable oscillations.) 

 
Moreover, as we now shall start to see, the first data indicating free neutrino oscillations 

already appeared at (19.9) and (19.10), when the mass mixing angles 21 3.9781~ 6Iϑ


°  and 

31 0.97~ 155IIϑ


°  which we originally calculated did not match the observed 12 3 6~ 3. 2Pθ °  and 

13 8 4~ .5 9Pθ °  , and we were forced at (19.11) to introduce an energy difference calculated at 

(19.13) to be 2.787
2.54642.018  MeVδ +

−
=  in order to obtain within-errors PMNS angle matches 

12 21~ 32.393P Iθ ϑ


′≡ °  and 13 31 8.794~P IIθ ϑ


′≡ °  at (19.15).  Specifically, as we shall now start to 

see, by discarding the angles 21Iϑ


 and 31IIϑ


 which were based directly on the charged lepton 

masses via (19.8) in favor of the angles 21Iϑ


′  and 31IIϑ


′  in (19.15) which were derived using this 

extra 2.787
2.54642.018  MeVδ +

−
= , we were in fact unknowingly endowing neutrinos with their widely-
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confirmed oscillations.  This is because as we shall now show, the neutrino mass sum is in fact 
directly proportional to this new δ


.  So because 0δ


≠  (and it would have been zero if (19.9) 

had matched (19.10)), the neutrino are not massless, which is at the root of why neutrinos oscillate.  
This is also because by using 21Iϑ


′  and 31IIϑ


′  rather than 21Iϑ


 and 31IIϑ


 to establish the PMNS 

angles 12 21P Iθ ϑ


′≡  and 13 31P IIθ ϑ


′≡  at (19.15), we were unknowingly defining these PMNS 

angles so as to shift the observed neutrinos out of a mass eigenstate basis and into the quantum 
superposed flavor state basis which also underlies their generation-changing oscillations. 
 

Let us start on page 11 of PDG’s 2018 review [59], where it is stated that “determining, or 
obtaining significant constraints on, the absolute scale of neutrino masses remains a very 
significant research problem at the present time.”  But as noted in [60], “somewhere between 10 
meV and 2eV is our playground.”  And on page 12 of PDG’s [59], it is reported that the sum of 
the neutrino masses is 0.170 eVj jmΣ <  at a 95% confidence level.  So perhaps the most striking 

feature of what we do know about neutrino masses, is that these masses are so immensely-small 
in comparison with other fermion masses.  With the lightest elementary fermion which is not a 
neutrino – the electron – having a mass of just over half a million eV, the largest possible mass for 
a neutrino is over a million times smaller than the electron mass.  And the magnitude of this ratio 
is even greater for other fermions.  For the GeV-scale fermions such as the more-massive quarks 
already reviewed, it is 109 or larger.  As stated also on page 12 of [59], “it is natural to suppose 
that the remarkable smallness of neutrino masses is related to the existence of a new fundamental 
mass scale in particle physics, and thus to new physics beyond that predicted by the Standard 
Model.”  Indeed, the only natural energy ratios which come to mind as able to produce a mass 
scale this small, involve the Fermi vev 246.2196508 0.000063 eV3 Gv v


±= =  relative to 

( )2 191.220 910 29 1 0  GeVPM c = × , which is the Planck energy.  The former of course is a proxy 

for the Fermi constant FG , and the latter for the Newton gravitational constant G which to date 

makes no appearance whatsoever in the standard model. 
 
 In this regard, when we look at (19.22) and take inventory of parameters, we see of course 
that the Fermi v is one of the parameters already used, which means that FG  has already been 

used.  But the Newton constant G and its associated Planck energy 2
PM c  with the Planck mass 

defined by 2
PGM c≡ ℏ  is not yet used.  Given the need for a very small energy ratio to bridge the 

chasm from other fermion masses to neutrino masses, we proceed with an educated guess that the 

dimensionless ratio 2 17 222.016690 1 10/ 0 4.8Pv M c − −× ± ×=  may provide the basis for supplying 

the requisite very small energy ratio.  And in view of the important role that square roots of energy 
numbers appear to play in connecting masses to mixing angles and other parameters – for example, 
see the Pythagorean axes in Figures 2, 3, 4 and 10 and all the prior equations which contain energy 

square roots – we also consider using the ratio 2 09 144.490757 10 5 10/ .4Pv M c − −= × ± × .  Then, 

we need a baseline energy against which to apply this ratio. 
 

 Now, the energy parameter 2.787
2.54642.018  MeVδ +

−
=  deduced in (19.13) to fit the charged 

lepton masses to two of the PMNS mixing angles is brand new.  Aside from its origin as a necessity 
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to fit this empirical data, we still have no independent knowledge about its direct physical meaning, 
which is emphasized by (19.22) showing this as a still-independent parameter.  In contrast, all the 
other parameters in (19.22) do have separate status as physical quantities with well-understood, 
independent meaning.  So, making a further educated guess that δ


 is, perhaps, the baseline energy 

against which to use 2 09 144.490757 10 5 10/ .4Pv M c − −= × ± × , we simply do the exploratory 

calculation: 
 

2.787 09 14 0.01252
2.546 0.011442

42.018  MeV 4.490757 10 5.4 10 0.18869  eV
P

v

M c
δ +


− − +
− −= × × ± × = . (20.1) 

 
This is a bullseye!  Not only is this number at the right order of magnitude to describe the neutrino 
mass sum based on the knowledge we have to date of these masses, but within the correct order of 

magnitude, with 20.17726 eV 0.20121 e/ VPv M cδ


≤≤ , it is at the correct ~.2 eV upper limit 

which empirical data has placed on this sum.  It seems highly unlikely that arriving at an upper-
range number 0.20121 eV  from across nine orders of magnitude when our target energy is near .2 
eV is merely a coincidence.  In fact, this hits the target out to not merely nine, but eleven order of 
magnitude.  As a result, we conclude that this is no coincidence, and regard this as a relation of 
true physical meaning.  So now, we need to make a formal assignment of the result in (20.1) to the 
neutrino masses. 
 
 In (14.4), (15.11) and (19.5), the vevs in relation the respective mass sums are 

( )2 2 22 u c tv m c m c m c


= + + , ( )2 2 22 d s bv m c m c m c


= + +    and ( )2 2 22 eu m c m c m cτ µ
= + + .  

So, for the neutrino sum we likewise define ( )2
2

1 32 m mu m c


+ +≡ , using the mass eigenvalues 

im  associated with the basis state kets iν , and cognizant that under quantum superposition, as 

we shall later see at (24.7), the sums 1 2 3 em m m m m mν νµ ντ+ + = + +  will turn out to be equal.  

The question now is whether the numeric result centered at 0.18869 eV in (20.1) should be 

assigned to this new u


 or to the mass sum ( )1 2
2

3 cm m m+ + .  That is, where do we use the  2  

factor?  Given that for the neutrinos, ( )1 2 3
2 0.170 eVj j cm m m mΣ = + + <  with a 95% 

confidence level, this empirical data suggests that the appropriate assignment should be to the 
neutrino vev, namely:  
 

( ) 2 02
1 2 3

.01252
0.011442 0.18869  eV/ Pm m m v cu c Mδ +

− 
≡ + + = = , (20.2a) 

 
which means that for the neutrino mass sum we have: 
 

( ) 2 0.008851 1
0.0080

2
1 92 2 23 0.133/ 0.170 e43 e V VPu cm m m v M cδ +

  −+ <≡ =+ ≡ , (20.2b) 
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clearly fitting the empirical data in [59] that 0.170 eVj jmΣ <  at a 95% confidence level.  Were 

we to assign ( ) 2 0.01252
0.01141 2 3 40.18869  eVcm m m +

−=+ +  we would be somewhat-outside the 95% 

zone.  It also helps to write the above in terms of δ


 as: 

 

( )2 22 2.787
2.541 2 3 6/ 2 / 42.018  MeVP PM c v m mu M c vcmδ +

 −
= + += = . (20.2c) 

 
Note as reviewed at (19.14), that about 95.7% of the error bar contribution in δ


 is rooted in 3σ  

error bars for 12Pθ  and 13Pθ  in (19.15), while the remaining 4.3% comes from error in the tau lepton 

mass.  Although 2 09 144.490757 10 5 10/ .4Pv M c − −= × ± ×  also has its own error, this is nominal, 

only affecting this already-small ratio by only one part on 105.  So effectively, about 95.7% of the 

error bar in 0.00885 2
0.008091 2 3 0.13343  eV /i m m cm m +

−= + + =Σ  for the neutrino mass sum likewise stems 

from these two PMNS angle errors, while the balance stems from the tau lepton mass errors. 
 
 As we mentioned at the start of this section, had the angles calculated in (19.9) matched 
the empirical data in (19.10), there would have been no need for δ


, which is to say, δ


 would 

have been zero.  What we now know via (20.2c) is that if we had had 0δ


=  because (19.9) and 

(19.10) had matched, then we would also have had 1 2 3 0m m m+ + = .  So, barring negative mass 

neutrinos, the neutrinos would have been massless as still thought possible a few decades ago, and 
there would not have been any neutrino oscillations.  So, from (10.2c) we now learn that expecting 
(19.9) and (19.10) to match was synonymous with expecting neutrinos to be massless and not mix.  
This is why the failure of (19.9) and (19.10) to match was in fact a correct, first theoretical data 
indicator of non-zero neutrino masses and the physical existence of neutrino oscillations. 
 

The above (20.2) provide a theoretical prediction about the true sum of the physical 
neutrino rest masses, and a definition of a new vev u


 for the neutrinos which parallels the 

previous (14.4), (15.11) and (19.5) for quarks and the charged leptons.  And, with (20.2c), we now 

have an independent understanding of ( )2 2
1 2 32 /PM c v m m m cδ


+ += , and see that this is a not 

an disconnected new parameter, but rather is simply a function of the neutrino masses and the 
Newton gravitational constant in 2

PGM c≡ ℏ .  Moreover, we also see via the entry of the 

gravitational constant, that (20.2) for the first time reach beyond the standard model, and inject the 
effects of gravitation into particle physics, and specifically, into the physics of the ultra-light 
neutrino masses, as some have long-suspected might be a possibility. 

 
Using (20.2c) we may update Figure 10 to display this new understanding, as seen below 

(still plotted with center values, now in terms of mass rather than energy): 
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Figure 11:  Charged Lepton and Amplified Neutrino Masses, and Rotation of the Charge 

Lepton Mass Space Vector 

 

Above, the isospin-down and isospin-up leptons are on orthogonal axes, labelled as such with   

and  .  Except for the “neutrino mass amplifier” factor 2 /PM c v , and the hypotenuse aligned 

toward isospin-down rather than up, this is identical in form to Figure 4 for quarks.  This includes 

the 2  factor appearing as a multiplying factor for the isospin-up mass sum and not the isospin 
down mass sum, which shows theoretical consistency in addition to empirical confidence in the 
use of this factor in (20.2).  Note also that the hypotenuse mirrors the Higgs mass relation 

( ) 21

2
2 /hm v v c

 
+=  in (16.5) as well, but for the neutrino mass amplifier.  We see that the 

relation  in (19.11) – which does not have an analogue for quarks – effectively 

causes a rotation of the horizontal leg 1

2
u


 for isospin-down charged leptons, toward the vertical 

leg u


 for isospin-up neutrinos with 2 /PM c v  amplification. 

 

 At this point, having a predicted value 2 0.00885
0.008090.13343  eVim c +

−=Σ  for the sum of the 

neutrino rest mass eigenvalues in neutrino mass eigenstates, we follow the approach previously 
used for quark and charged lepton masses.  Specifically, just as at before we postulate that all of 
the rest mass for the neutrinos starts off in a single neutrino, and then is subjected to a bi-unitary 
transformation leading to relations which mirror (19.1).  However, unlike for the quarks and the 
charged leptons, we do not know the neutrino masses at the outset.  Therefore, we need to first use 

the empirical data for the square mass differences defined by 2 2 2
ij i jm m m∆ ≡ −  with 1 em mν≡ , 

2m mνµ≡ , 3m mντ≡  to get a better handle on ranges of the individual neutrino masses.  Again 

turning to the data in [57], we work from the reasonable hypothesis that the neutrino mass 
eigenvalues have a “normal ordering” in which 1 2 3m m m< < .  We leave it as a reader exercise to 

conduct a similar calculation for non-normal orderings.  And because [57] contains both 1σ  and 
3σ  data, as we did with the PMNS data in (19.10), we interpolate that the 2σ  data is substantially 
equal to the 1σ  and 3σ  average.  Accordingly, with 1,2l = , the normal ordering data in [57] may 

be characterized by: 
 

2 2 2 0.21 0.42 0.62 5 2
21 2 1 0.20 0.40 0.60

2 2 2 0.033 0.066 0.099 3 2
3 3 0.031 0.063 0.095

4

4

7.40 10  eV /

2.494 10  eV /l l

m m m

m m m

c

c

+ + + −
− − −

+ + + −
− − −

∆ − ×

∆ −

= =

= ×=
. (20.3) 

1 1

2 2
u u δ
  
′ ≡ +



Jay R. Yablon, January 9, 2019 

160 
 

 
Given the errors in (20.2b) and in (20.3), we need to be cognizant that potential errors in 

the individual neutrino masses can come from two different sources.  First, there is the error in 
0.00885 2
0.008090.13343  eV /i cm +

−=Σ  in (20.2b) which applies to the entire neutrino mass sum, but does not 

differentiate the masses of the individual neutrinos from one another.  Each neutrino mass will rise 
or fall in unchanged proportion, based on where imΣ  sits with in relation to its error bar.  Second, 

in contrast, (20.3) do differentiate the individual neutrino masses one from the other, but 
independently of the error in the imΣ  mass sum.  So – for reasons which are particularly important 

to ascertaining the remaining PMNS angle 23Pθ  as we shall shortly do – it is important to do three 

sets of error bar calculations.  The first is based on (20.3) applied to the center of the mass sum 
0.00885 2
0.008090.13343  eV /i cm +

−=Σ  .  And the second and third are based on (20.3) applied to the low and 

high ends of this same sum. 
 
With this in mind, we conduct the following calculation:  We start with the top line above 

in the form 2 2
2 1 21m m m+ ∆= .  Given that (20.3) will cause 1m  and 2m  to be much closer to one 

another than either of them is to 3m , we set 2l =  in the bottom line above which we now write as 

2 2
3 2 32m m m+= ∆ , also using 2 2

32 3lm m=∆ ∆ .  In all cases, in addition to of the error spreads in (20.3) 

we also use 0.00885
0.008091 2 3 0.13343  eVm m m +

−+ + =  from (20.2b) as a constraint to be applied in all cases 

to the sum of the three neutrino masses, and we do this three times, once for the center sum, once 
for the low sum, and once for the high sum.  Then, using a spreadsheet or the like, we sample 
various values of 1m  using the center values and each of the 1σ , 2σ , and 3σ  spreads in (20.3), 

and also, the error bars in 0.00885
0.008091 2 3 0.13343  eVm m m +

−+ + = .  Specifically, we use our 1m  samples 

in 2 2
2 1 21m m m+ ∆=  to determine 2m , simultaneously use 2m  in 2 2

3 2 32m m m+= ∆  to determine 

3m , and keep sampling until the sum of all three masses always turns out to be 
0.00885
0.008091 2 3 0.13343  eVm m m +

−+ + =  for the center values and the error spreads.  The analytical 

calculation is 2 2 2 2 2 0.00885
21 1 32 1 21 0.008091 0.13343  eVm mm m m m +

−+ + +∆ + ∆ =+ ∆ , but there is no 

straightforward way to analytically isolate 1m  which is why we use computational sampling. 

 
In this way we can predict neutrino mass eigenvalues and corresponding 1σ , 2σ , and 3σ  

spreads in (20.3), for the high, center and low errors in the mass sum imΣ  (20.2b), as follows: 
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0.00013 0.00026 0.00037
0.00013 0.00027 0.00039

0.00012 0.00024 0.00035
0.00012 0.00025 0.00037

0.00011 0.00023 0.00
0.00011 0.000

2
1

23 0.00035

0.03766  eV (high )   

0.03532  eV (center )

0.03318

i

im c

m

m

+ + +
− − −
+ + +
− − −
+ + +
− − −

Σ
Σ=

033

0.00010 0.00018 0.00028
0.00010 0.00019 0.00029

0.00009 0.00017 0.00026
0.00009 0.00018 0.00027

0.00008
0.00 0

2

008 0

2

.

 eV (low )    

0.03877  eV (high )   

0.03636  eV (center )

0.03415

i

i

i

m

m

mm c

+ + +
− − −
+ + +
− − −
+
− −







=

Σ

Σ
Σ

0.00016 0.00024
0017 0.00025

0.00021 0.00044 0.00066
0.00022 0.00046 0.00068

0.00020 0.00041 0.00062
0.00021 0.00043 0

2
.000643

 eV (low )    

0.06585  eV (high )   

0.06175  eV (center )

0.

i

i

im

m

mc

m+ +
−

− − −
+ + +
− − −
+ + +






Σ



=

Σ

Σ

0.00019 0.00038 0.00058
0.00020 0.00040 0.0006005801  eV (low )   im− − −

+ + +




 Σ

. (20.4) 

 
It is easily calculated from (20.4) that the main source of error in the above is mΣ , with swings 
which are about 12.7% the magnitude of the masses themselves, i.e., which introduce an error of 
about 1 part in 8.  The much smaller source of error comes from the square mass differences (20.3).  
These are only about 2%, i.e., 1 part in 50, relative to the masses themselves.  
 

It will be seen that (20.4) is a normal ordering, because the tau mass eigenvalue is clearly 
greater than the other two masses, and because even at 3σ , for whatever any high, center of low 

mass sum imΣ  or anything in between, with all individual mass numbers rising or falling 

proportionately, the muon mass eigenvalue is always slightly larger than that for the electron rest 

mass.  For example, at the center of the mass sum, the muon has 2
2 0.03609 eVm c >  while the 

electron has 2
1 0.03567 eVm c <  which is smaller by at least 0.00042 eV 42 meV= .  This also 

highlights how irrespective of the mass sum, (20.3) causes the first-and second-generation 
neutrinos to have very close mass eigenvalues, and the third-generation neutrino to have a 
definitively-larger eigenvalue.  Note also that the superscripted spreads for 1m  and 2m  are positive 

and those for  3m  are negative.  This is because the overall constraint 0.00885
0.008090.13343  eVim +

−=Σ  

means that as the masses for the first two generations are increased, the third-generation mass is 
lowered, and vice versa.  Similar calculations can be done for inverted and other possible ordering, 
but we shall leave such an exercise for the reader.   

 
Noting again from [60] that “somewhere between 10 meV and 2eV is our playground,” we 

see that with the lightest possible mass for the lightest neutrino predicted at the low end of all 3σ  

error bars to be 2
1 33.18 meV .35 meV 32.83 meVm c ≅ =−  and the maximum possible mass sum 

predicted to be 0.1422  e8 VimΣ <  versus the empirical constraint 0.170 eVimΣ < , we are 

indeed right where we need to be in the “playground.”  Also, we have obtained (20.4) by regarding 
the neutrinos to be Dirac fermions insofar as we have approached these masses in exactly the same 
way as the quark and charged lepton masses.  So empirical observation of these masses would 
serve to validate that the neutrinos are in fact Dirac fermions, versus the possibility of Majorana 
fermions (which will be able to formally rule out in section 23), as well as the normal ordering that 
we used for these calculations. 
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 From here we follow the precise development that we used to previously reparameterize 
the quark masses in sections 14 and 15 and the charged lepton masses in section 19.  Given the 
postulated normal ordering, we further postulate that all of the rest mass for the neutrinos starts off 
in the tau neutrino, and that a neutrino mass matrix analogous to that in (14.8) is then is subjected 
to a bi-unitary transformation leading to relations which mirror (19.8) for the charged leptons.  
Specifically, borrowing the top two relations for the type I “downward cascade” parameterization 

in (19.8a) and for the type II “distribution” parameterization in (19.8b), and migrating   to   and 
the charged leptons to their neutrino partner mass eigenstates, we write: 
 

2
2 3 3

32 3 1
1 2 32

2
2 2 2 2

21 2 21
32 3 1 22

cos

cos
s

I

I

I

m c m
G

u m m m

G m c m

u m c m m

ϑ

ϑ







 

= = =
+ +

= = =
− +

, (20.5a) 

 
2

2 3 3 3
31 2 21

32 2 1 22

2
2 2 2

32 2 1
1 2 32

cos
c

sin

II

II

II

G m c m

u m c m m

m c m
G

u m m m

ϑ

ϑ



 





= = =
− +

= = =
+ +

. (20.5b) 

 
Then, as in (19.9), we simply use (20.4) to calculate each of these angles.  But now it 

becomes important that in (20.4) the error bars stemming from (20.3) are separated from those 
from (20.2b).  This is because in (20.5) above, all of the angles are based on ratios of one particular 
neutrino mass over a sum of one or more neutrino masses, and because each individual neutrino 
mass rises or falls equally in proportion with any swings in the total mass sum (20.2b).  In other 
words, the four angles in (20.5) above are all independent any error swings in the mass sum 
(20.2b), and inherit their error bars exclusively from the errors in (20.3).  Accordingly, we may 
choose any of the imΣ  data in (20.4) to calculate (20.5) without altering the result at all, so long 

as we do so consistently for all three neutrino flavors.  Doing so with the center data, we obtain: 
 

0.0015 0.0031 0.0047 0.086 0.177 0.267
0.0016 0.0032 0.0048 0.090 0.185 0.275

0.0015 0.0029 0.0043 0.084 0.168 0
0.0015 0.0029 0.0044 0.084 0.

32

21 168 0.253

0.8226    rad 47.131

0.7781  rad 44.584

I

I

ϑ

ϑ

+ + + + +
− − − − − −

+ + + + + +
− − − − − −





= =

= =

°
.248

0.0016 0.0032 0.0048 0.091 0.185 0.275
0.0016 0.0034 0.0050 0.094 0.193 0.287

0.0008 0.0014 0

31

3
.0022 0.043 0.0

0.0008 0.0015 0.0023 0.043 0.0872

0.6475    rad 37.097

0.5492    rad 31.466

II

II

ϑ

ϑ

+ + + + + +
− − − − − −

+ + + + +
− − − − −





= =

=

°

°

= 82 0.125
0.130

+
− °

. (20.6) 

 
 Now, at (19.15) we were able to connect two of the three PMNS angles to the charged 
lepton mass mixing angles, namely, 12 21P Iθ ϑ


′=  and 13 31P IIθ ϑ


′= , while in the process obtaining 

somewhat tighter fits than those known at (19.10).  The remaining real angle from (19.10) still to 

be fitted – presumably using the neutrino masses – is .  This is the least-

tightly known of the three PMNS angles, varying even at 1σ  from 2343.3 49.1Pθ <° < ° .  So, in 

1.9
2

3.1 4.
3

3
3.9 5.4 6.947.2Pθ + + +

− − −= °
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(20.6) there are actually two angles – 32Iϑ


 and 21Iϑ


 – which fit within 1σ  and so can be 

associated with the remaining angle 23Pθ .  So, we need now to discern which is the more suitable.  

 
 For this, we review the connections earlier made for the quarks and charged leptons to see 
which association would be most consistent in relation to the first two angles in (20.6).  First for 
the quarks, among what was calculated leading to (14.11) were what we would now denote as 

2 2
21 32c / sI c IG

 
=  and 2 2

31 32c / cII t IIG
 

= , connecting in (14.13) to two of the three CKM 

angles within experimental errors.   Then, leading to (15.3) we calculated  2 2
21 32c / ssI I

G
 

=  and 
2 2

31 32c / cII b IIG
 

=  which after further analysis led in (15.6) to the connection 

21 12 12.975 0.026I Cθ θ


±≡ = °  within errors, and one “leftover” angle  31 1.921IIθ


= ° .  For the 

charged leptons, at (19.7) the calculations included 2 2
21 32c / sI IGµ 

=  and 2 2
31 32c / cII IIGτ 

= .  

After then  having to introduce an energy difference δ


 at (19.11) which as later shown in (20.1) 

and (20.2) is actually related to an amplified neutrino mass sum, we calculated (19.12) which at 

(19.15) led to 0.288 0.575 0.863
0.2612 21 5 0.530 0.79532.393P Iθ ϑ + + +

− − −
′≡ = °  and 0.097 0.194 0.291

0.0913 3 2 0.184 0.271 68.794P IIθ ϑ + + +
− − −

′≡ = °  

connecting two of the PMNS angles, within errors.  In all cases, the mass mixing angles which 
connected to a CKM or PMNS angle had the form of a second-generation coupling ( cG , sG , Gµ ) 

divided by the sine-squared of a type-I mass mixing angle ( 2
32sin Iθ


, 2

32sin
I

θ


, 2
32sin Iϑ


), or of 

a third-generation coupling ( tG , bG , Gτ ) divided by the cosine-squared of a type-II mass mixing 

angle ( 2
32cos IIθ


, 2

32cos IIθ


, 2
32cos IIϑ


), with leftover angle coming from 2 2

31 32c / cII b IIG
 

= . 

 
 If the pattern which held for isospin-up and isospin-down quarks and charged leptons is to 
also carry through for neutrinos, then using (19.7) and (19.8) for guidance, it appears that 

2 2
21 2 32c / sI IG

 
=  in (20.5a) (second generation, type-I, inverse sine-squared) is what should be 

connected to the final PMNS angle, and that 2 2
31 3 32c / cII IIG

 
=  in (20.5b) (third generation, type 

II, inverse cosine-squared) should be regarded as the lepton “leftover” angle.  Accordingly, we 
now formally connect 21Iϑ


 in (20.6) to the remaining mixing angle 23Pθ , and regard 31IIϑ


 in 

(20.6) as the leftover angle for leptons.  Following a presentation form similar to what was used in 
(15.6) for quarks, we combine this with (19.15) whereby all three real PMNS angles plus the lepton 
leftover are now related to the mass matrix mixing angles by:  
 

0.084 0.168 0.248
0.084 0.168 0.253

0.091 0.185 0.2

23 21

31

12 21

13 3

75
0.094 0.193 0.287

0.276 0.552 0.828
0.265 0.530 0.795

0.093 0.18
0.088 0.1761

44.584

37.097

32.393

8.794

P I

II

P I

P II

θ ϑ

ϑ
θ ϑ

θ ϑ







+ + +
− − −

+ + +
− − −

+ + +
− − −

+


+
− −

≡ =

=

′≡ =

′≡

°

°

°

= 6 0.279
0.263

+
− °

. (20.7) 

 
From the second line of (20.5a), we see that this angle is slightly less than 45 degrees 

because the rest mass of the mu neutrino in a mass eigenvalue basis is slightly greater than that of 
the electron neutrino, thus preserving normal ordering.  With the usual 23Pθ  having a large error 
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range especially on the low side, this new center at 23 44.584Pθ = °  is actually only at about .67σ  

below the usual 23 47.2Pθ = °  center.  This new value 0.084 0.168 0.248
0.084 0.168 0.223 321 544.584P Iθ ϑ + + +

− − −
≡ = °  is 

tighter than the usual 1.9
2

3.1 4.
3

3
3.9 5.4 6.947.2Pθ + + +

− − −= ° from [57] by a factor of just over 20 at 3σ  and about 

35 at 1σ , because it is rooted in the square-mass differences (20.3) which have been measured 

with tighter precision than 23Pθ  directly.  This provides ample opportunity for experimental testing 

as it becomes possible to obtain more precise direct measurements of 23Pθ .  This is why we are 

able to add two digits after the decimal in the new valuation of 23Pθ  in (20.7).  To highlight the 

parallels between quarks and leptons, pulling together all six of the CKM and PMNS mass-mixing 
to flavor-mixing connections from (15.6) and (20.7) which have now been established, as well as 
the leftover angles, what we have now found is that within experimental errors we may associate: 
 

12 12 12 12

23 12 23 12

13 31 13 31

31 31

;

;

;

leftover:  ;

C I P I

C I P I

C II P II

II II

θ θ θ ϑ
θ θ θ ϑ
θ θ θ ϑ

θ ϑ

 

 

 

 

′≡ ≡
≡ ≡

′≡ ≡
. (20.8) 

  
Finally, similarly to what we did at (14.15), (15.13) and (19.20), we may solve the 

simultaneous equations (20.5) and apply (20.7), and define a coupling 2 1

2
/i iG m c u


≡  for each 

neutrino in the mass basis, to obtain: 
 

2 2 2 2
23 31 23 31

3 22 2 2 2
23 31 23 31

2 2
23 312 2

1 2 23 3 31 2 2
23 31

sin cos cos sin
; ;

1 cos cos 1 cos cos

sin sin
tan tan

1 cos cos

P II P II

P II P II

P II
P II

P II

G G

G G G

θ ϑ θ ϑ
θ ϑ θ ϑ

θ ϑ
θ ϑ

θ ϑ

 

 






= =
− −

= = =
−

. (20.9) 

 
 Now let’s review in totality how we have been able to reparameterize all twelve of the 
fermion masses, which will also lead us to predict a second Higgs boson associated with lepton 
masses and beta decays. 
 

21.  Prediction of a Second Leptonic Higgs Boson, and its Mass 
 

Back at (16.5) we showed how the Higgs boson mass can be described within experimental 

errors by ( )2 1

2
/ 2hm c v v

 
+≡  relative to the Fermi vev ( )2 2 22 u c tv v m c m c m c


= = + +  and the 

sum of isospin-down quark masses 2 2 21

2 d s bv m c m c m c


= + + , see (15.11).  And in Figure 4, it 

was shown how 1

2
/ 2 hv v c m

 
+ =  actually specifies the hypotenuse of the orthogonal mass 

spaces for v


 and v


.  Now that we have similar expressions 2 2 21

2 eu m c m c m cτ µ
= + +  in (19.5) 

and ( )2
2

1 32 m mu m c


+ +≡  in (20.2a) for the leptons, we can likewise plot out a lepton analog 
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to Figure 4 in which the larger number / 2u c


 is drawn along the horizontal axis and the 

smaller number and the smaller number /u c


 is drawn vertically.  Such a figure would be similar 

to Figure 11, but it would lack the 2 /PM c v  amplifier, and so the angle corresponding to 

8.496lθ = °  in Figures 10 and 11 would be exceedingly small, amounting in effect to merely 

drawing a horizontal line of length / 2u c


.  To be precise, given the values we have computed 

in (19.5) and (20.2a), the ratio would be 0.188691883.02  eV 99 M 98e / 7V 97.3=  between the 

two axis lengths, with an easily computed angle of 45.7355 10θ −×= °  or 2.0648"θ = .  So, for 

example, if the vertical leg was drawn at about a half an inch in height, the horizontal leg if drawn 
to scale would have to run for about a mile.  And the hypotenuse would have a length of 

1 1

2 2
/u uu c

 
≅+  due to the scant 2” angle just noted. 

 
Taken together with the parallels formulated throughout between the quark and lepton 

masses spaces, and the need – to be explored in the next section – to develop a Lagrangian potential 
for leptons with a second maximum parallel to that for the section 16 quark potential, this is highly 
suggestive that there exists a second leptonic Higgs field denoted 2h  with a second Higgs boson 

having a mass 2hm  defined analogously to (16.5) by 

 

( )
1

2
2

22 22 1 1
941.515 0.060 MeV

22 22
eh

u
u m c m cc m c

u
m τ µ

 


= + ±+ =

+
≡ ≅ . (21.1) 

 
Above, we have used (19.5) to supply the empirical data and used (15.11) to show the explicit 

connection to the charged lepton masses.  Also using (20.2a), because 091

2
/ 1.005 10u u



−


×=  the 

above approximation sets 0u


≅ , since any effects this may have are six digits outside of the 

experimental error range for 1

2
u


.  This new Higgs mass differs from the proton and neutron 

masses 938.272081 0.000006 MeVPM ±=  and 939.565413 0.000006 MeVNM ±=  [49] by only 

a few MeV – in the former case by 3.243 MeV and in the latter by 1.950 MeV. 
 
 Now, in general, there are three types of predictions that can be made for empirical data.  
First, there is retrodiction, in which empirical data which is already known is explained in relation 
to other known data.  This reduces the number of independent data numbers in our physical 
theories, and is often accompanied by better theoretical understanding of the observed physics.  
This is exemplified here, so far, by (17.1) and (19.22), and will be further by (21.15) below.  
Second, there is tuning prediction, in which a prediction is made about how the experimental error 
bars for already-known data will be affected as it becomes possible to obtain tighter measurements 
of this data, owing to better experiments and / or better theory.  This is exemplified here by (14.5) 
and (15.10) for tighter top and strange quark masses, (15.15) for tighter 23Cθ  and very-much tighter 

13Cθ , (16.5) for a tighter Higgs mass, (18.10) and (18.11) for further-tightened quark masses and 

CKM mixing angles based on global unitarity fitting which also substantially tightens the CKM 
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matrix element magnitude ubV  at (18.13), then (19.15) for re-centered and tighter 12Pθ  and 13Pθ  

values, (19.17) for a tighter ( )2
WMα , and (20.7) for a substantially-tighter 23Pθ .  Third, there is 

outright prediction, in which data which is known to exist but has not yet been successfully 
measured is predicted, or in which some data which is not even known to exist is predicted to exist, 
along with a prediction as to how it will be measured.  This is most important, because absent 
theoretical information telling us where to target our detection efforts, experiments to detect such 
data are often carried out “scattershot” over a broad range of possible values. 
 
 Here, (20.2b), (20.4) and (21.1) contain outright predictions of four mass values which at 
present are not known.  In (20.4) we are now told exactly the energies at which to look for the 
three neutrino masses, and in (20.2b) their mass sum.  And in (21.1) we are told not only that a 
new Higgs boson exists, but we are told that to find it, one should be looking in the zone of energies 
just a few MeV higher than the proton and neutron rest energies.  Now, knowing precisely where 
to look, experimental efforts to pinpoint neutrino masses can be focused on confirming the mass 

sum 02 2 2 .00885
0.008091 2 3 0.13343  eVm c m c m c +

−+ + =  and the separate masse eigenvalues in (20.4).  And of 

course, finding a second Higgs boson at 2
2 941.515 0.060 MeVhm c ±= , just above the proton and 

neutron rest energies, would be entirely new, because the very existence of such a new particle – 
much less its mass value – is entirely unanticipated based on present knowledge. 

 
As to retrodiction, we now supplement (19.22) with the neutrino and the leptonic Higgs 

developments, using 5 21.1663787(6) 10 GeVFG − −= ×  and ( ) 39 2 6.708 61 31 10  GeVG − −= ×  [21] 

in natural units as proxies for the Fermi vev and Planck mass, then summarize the complete 
reparameterization of all twelve fermion masses, including “leftover” angles, by: 
 

{ }
( )( )

3 2 1

2
12 23 31 31 12 23 13 31

, , , , , , , , , , ,

, , , , , , , , , , ,

t c u b s d e

F h W C C C II P P P II

m m m m m m m m m m m m

F G G m M

τ µ

α θ θ θ θ θ θ θ ϑ
 

=
. (21.2) 

 
In the above, we use 3 2 1, ,m m m  and not , , em m mντ νµ ν , so that all masses are stated in an eigenvalue 

basis, given that in a flavor basis neutrinos are superposed but for quarks and charged leptons the 
flavor basis is also the mass basis and there is no mass superposition.  We have also momentarily 
included the leftover angles 31IIθ


 of (15.6) and 31IIϑ


 of (20.7) because these explicitly appear in 

(15.13) for isospin-down quarks and in (20.9) for neutrinos (isospin-up leptons).  However, these 
leftover angles are redundant, which we can see specifically via (15.3) and the lower (20.5a) 
together with the upper (20.5b).  The mathematical origin of this redundancy is based on what is 
discussed from [12.114] to [12.116] of [20]:  For an N N×  unitary matrix there are of course N2 
real elements.  But because we can change the phase of each of 2N quark or lepton states 

independently without altering observable physics, such a matrix only contains ( )2 2 1N N− −  real 

parameters.  So, for N=3 there are 4 real parameters, which in the case of the mass mixing matrices 
used in the bi-unitary transformations of sections 14, 15, 19 and 20 can be parameterized into 21Iθ



, 31IIθ


, 21Iθ


, 31IIθ


 which we have used for quarks and 21Iϑ


′ , 31IIϑ


′ , 21Iϑ


 and 31IIϑ


 which we 

have used for leptons.  However, in each case an overall phase can be omitted while the unitary 
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matrix remains invariant.  Thus, we drop from 4 to 3 real parameters for each of the quarks and 
leptons, and this accounts for the leftover angles.  Accordingly, these redundant angles may be 
removed from (21.2) by an overall phase omission, in which case we will have actually 
reparameterized twelve fermion masses with only ten parameters. 
 
 However, we still need an overall energy scale which cannot be independently deduced 
from the parameters in (21.2).  To see this, start with (19.22) which contains δ


 as an added 

parameter.   We of course found in (20.2c) that we can relate this to the neutrino mass sum 
0.00885
0.008090.13343  eVim +

−=Σ  using the vevs associated with G, FG .  So, it is not that we do not know 

the value of this parameter, because now we do.  It is that this parameter is only known because of 
our knowledge, among other things, of the charged lepton rest mass sum.  That is, it is only known 
because of the mass sum in (20.2b) which we may combine with (19.19) to obtain:  
 

( ) ( ) ( )( )2 2 2
1 2 3

2 1

2
/ P W em m m v M c M v m m m cc τ µα


+ + − + += . (21.3) 

 

Knowing  the parameters FG  thereby  v v


= , and ( )2
WMα  in (21.2), we can of course use (19.17) 

and (20.2c) to deduce 2 2 2
em c m c m cτ µ δ


+ + + .  But this gives us neither em m mτ µ+ +  nor  

1 2 3m m m+ +  separately, but only a combination of the two together with G, FG , ( )2
WMα .  

Therefore, with (21.3), we could regard either 1 2 3m m m+ +  or em m mτ µ+ +  as the mass sum still 

not reparameterized in (21.2), and then deduce the other.  But one of these sums must be given at 
the start to be able to infer all of the fermion masses. 
 
 Which of these two mass sums we choose to “seed” an overall energy scale is really an 

aesthetic matter.  But if we use the leptonic Higgs mass 1

22 2

2 941.515 0.060 MeVhm c u


≅ ±=  as 

a proxy for charged lepton mass sum (19.5) because u


 in (21.1) is empirically indiscernible by 

comparison given that the ratio 091

2
/ 1.005 10u u



−


×= , then (21.3) now becomes: 

 

 ( ) ( )( )2 2 2
1

21
2 3 22/ hP Wm m m v M c mMc v cα


+ + −≅ . (21.4) 

 
Therefore, we choose the aesthetics of em m mτ µ+ + , then use the new 2hm  as a proxy for this sum, 

while removing the redundant, phased-away leftover angles from (21.2), to finally write: 
 

{ }
( )( )

1 2 3

2
2 12 23 31 12 23 13

, , , , , , , , , , ,

, , , , , , , , , ,

t c u b s d e

F h h W C C C P P P

m m m m m m m m m m m m

F G G m m M

τ µ

α θ θ θ θ θ θ=
. (21.5) 

 
Consequently, we have finally reparameterized all twelve fermion rest masses into eleven 
previously-disconnected parameters.  But 2hm  is a proxy for em m mτ µ+ +  given that 

091

2
/ 1.005 10u u



−


×= , so u


 can be neglected in (21.1).  And em m mτ µ+ +  is known as soon 
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as we start with all the fermion masses.  Consequently, we have really reduced twenty-two physics 
parameters – twelve masses and the ten parameters other than 2hm  in (21.5) – down to eleven 

parameters, removing eleven independent unknowns from our understanding of the natural world.  
As noted toward the end of section 18, one of the goals of a GUT theory is to try to understand 
how many of the parameters in (21.5) evolve from ultra-high energies down to observable 
energies.  As noted, the author has previously published a GUT in [30] which could possibly be 
used toward that end.  While beyond the scope of this paper, were this to be achieved, then the 
(21.5) could be grown beyond a reparameterization, into a fundamental and complete 
understanding of why the fermions have the masses that we observe them to have. 
 

22.  The Two-Minimum, Two Maximum Lagrangian Potential for Leptons 
 
 Now let us turn to the Lagrangian potential for leptons which, in contrast with the quark 
potential reviewed in section 16, we shall denote by U rather than V, and for which we shall replace 

hφ  by hϕ .  Consequently, because (11.3) contains the symmetry-broken ( )1 1
12 2h h v hφ φ= = + , 

we replace this for leptons with ( )1 1
1 22 2h h u hϕ ϕ= = + .  This is entirely a notational replacement 

intended to clearly distinguish quarks from leptons, and nothing more.  In the above, as with the 
quarks, u will be the larger of the two lepton vevs, namely, 2663.005 0.170 GeVu


= ±  obtained 

from (19.5) for charged leptons, versus the enormously-smaller 0.01252
0.011440.18869  eVu +

−
=  from 

(20.2a) for neutrinos.  For the leptons, plots similar to Figure 1 may be drawn, but with the vevs 
established by one of the two foregoing vevs, not the Fermi vev, see the discussion following 
(15.17) which applies here also.  Then, borrowing from (16.4), and with 1/ hU dU dϕ′ = , the 

Lagrangian potential to be studied for leptons is specified in leading order by: 
 

( ) ( )

( ) ( ) ( )

2 4
2 2 4 2 4 2 4 2 4 2 421 1

1 1 1 2 1 1 2 1 12 4 2 2

2 4
2 2 2 22

1 1 1 1 12

1 1 1 1 1

4 8 4 8

2

h
h l h h h h h h h h

h
h l h h h h

m c
U u m c m c

u u

m c
U u u

u

ϕ λ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ λ ϕ ϕ ϕ ϕ



 

 



 
= − + = − + = − +  

 

′ = − = −

. (22.1) 

 
Continuing with the notational distinctions which are entirely of form, we also use lλ  in the above 

to denote this parameter as it applies to leptons.  The only substantive changes made in (22.1) 
versus (14.1b) which are not merely notational to distinguish quarks from leptons, is to use   

2
2 941.515 0.060 MeV /hm c= ±  for the second leptonic Higgs mass discovered in (19.1) in lieu 

of 2 125.25 0.02 GeVhm c ±=  found in (16.5), and in the use of u


 rather than u


.  The former is 

because the maximum must be between u


 and u


 and so cannot be based on the usual Higgs 

boson mass but rather must utilize the leptonic Higgs mass, while the latter is because for quarks 
v


 is the larger vacuum versus v


, while for leptons u u
 
≫ .  So, in (22.1) we have utilized the 

larger vev, and will develop U to ensure that this vev supplies the global minimum with the 
neutrino vev supplying a second, local minimum. 
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 From here we follow the same path that was taken in section 16 to develop the Lagrangian 

potential for quarks.  We construct ( )1hU ϕ  with higher-order terms so as to require two minima.  

One of these is to be centered at 1 2663.005 MeVh uϕ


= =  the charged leptons, and the other at 

1 0.18876 eVh uϕ


==  for the neutrinos.  We also require the usual maximum at 1 0hϕ =  and a new, 

second maximum that is established using 2hm .  In establishing the second maximum in this way, 

we apply the same rationale for why we used (16.9b) rather than (16.9a) to establish the second 
quark maximum as reviewed in detail following those two equations.  So, starting with 

( )1 1
1 22 2h h u hϕ ϕ= = +  in the preceding paragraph, we set u u


=  to the larger of the two vevs, so 

that 1 2h u hϕ


= + .  Then, as with (16.9b) we establish the maximum at the domain point where: 

 

( ) 2
2 2 941.515 0.060 MeVhh x m cΜ − ±= − = , (22.2) 

 
and therefore, also as in (16.9b), and using the new Higgs mass in (21.1), where: 
 

( ) ( ) ( ) ( )2 1 1 1
1 2 2 22 2 2 2

1721.491 0.1 1 110 MeVh hx u h x u m c u uuϕ Μ Μ
   

= + = − − − ≅ ±− == . (22.3) 

 
 Next, we follow suit from (16.15) to build in these minima and maxima by defining: 
 

( ) ( )( )( )

( ) ( )( )( )
( )( )

2 4
22 2 2 2 2 22

1 1 1 2 12

2 22 2 2 2 2 2 2 2 3
2 4 2 1 2 1

2
2 22 2 2 5 7

2 1 1

2

2

h
h h h h h

h h h h
h

h h h

m c
U B u u m c u

u

u u u m c u u u u u m c
m c

B
u u u u m c

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

  



       


  

′ = − − − −

 − − + + + −
 

=  
 − + + − +
 

. (22.4) 

 
with an overall coefficient B that will be used to match the leading term in the upper (22.1).  As in 

(16.16) we then integrate, and find we must set ( )22 2
21/ hB u u m c

 
= −  for the leading term to 

match (22.1).  And, also to match, we discard the integration constant.  Thus, we obtain: 
 

( )
( )

( ) ( )

2 4 4
1 1 122 2 2

2
2 4

1 2
2 2

6 8
1 12 22 2 2 2 2 22 2

2 2

1 1 1 1 1 1

4 8 8

1 1 1 1 1 1

12 16

h h h

h

h h

h h

h h

u u u m c
U m c

u u

u u u u u uu m c u m c

ϕ ϕ ϕ

ϕ

ϕ ϕ

  

 

      

  
  − + + +
  −  =   +  − + +   − −  

. (22.5) 

 
Then we separate terms as in (16.17) and use the approximations in (21.1) and (22.3), thus: 
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( )

( )

( )

2 2
2 4 2 4 6

1 2 1 1 12 2 2 2

2 22 4
4 6 82

1 1 12 2 2 2 22
2

2 2
2 2 4 6

1 1 12 2 2 2

4
12

1 1 1 1

4 8 12

1 1 1 1

8 12 16

1 1 1 1

4 8 12

1 1

8 121 2 2

1

8

1

h h h h h

h
h h h

h

h h h

h

u u
U m c

u u u u

u um c

u u u uu m c

u u
u

u u u u

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ

 

   

 

   

 


   

 +
= − + −  

 

 +
+ − +  −  

 +
≅ − + −  

 

+ −
−

2 2
6 8

1 12 2 2 2

1 1

16
h h

u u

u u u u
ϕ ϕ 

   

 +
+  

 

. (22.6) 

 

Because 091

2
/ 1.005 10u u



−


×= , see following (21.1), it is possible within experimental errors 

for the charged lepton masses to drop some unobservable terms and further reduce the above to: 
 

( )
( ) ( )

2
2 2 4 6 8

1 1 1 1 12 22 2 2 2

1 1 1 1

64 96 12 1 2

1 1 1

23 1 1 2 22 6
h h h h h

u
U u

u u u u
ϕ ϕ ϕ ϕ ϕ



   

 
 = − + − + + 
 − −
 

. (22.7) 

 
This sort of reduction has no analog for (14.13) because for quarks, the ratio 1

2
/ 57.5635v v


≅ , 

see (13.20), whereby both v


 and v


 make all terms observable over at least some pertinent 

regions of the domain. 
 

Then, as in (16.18), using the numerical values of u


 and u


 obtained from (19.5) and 

(20.2a), with 1hϕ  in both MeV and eV and thus ( )1hU ϕ  in MeV4 and eV4 respectively, we obtain: 

 

( )
( )

4 2 4 6 8
1 1 1 1 1

4 2 4 6 8
1 1 1

5 18 11 4

17 18 1 20
1 1

2.216 10 3.102 10 9.894 10 7.380 10

2.216 10 3.102 10 9.894 10 7.380

Me

eV 10

Vh h h h h

h h h h h

U

U

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ− −

  = − + − + 

  = − + − +

× × × ×

× × × ×

. (22.8) 

 
We show both MeV and eV because given the large chasm between the charged lepton and the 
neutrino vevs, the former is better for studying the charged lepton vev and the latter for studying 

the neutrino vev.  As with (16.18) we may than draw plots of ( )1hU ϕ  similar to Figures 6 and 7, 

and may also draw fourth root plots similar Figures 8 and 9.  The qualitative character of these 
plots is exactly the same as that of Figure 6 through 9.  Quantitatively, however there are two 
significant differences: First, the two vev minima for leptons are widely-separated by the ratio 

1

2

8/ 9.95 10u u
 

= ×  versus the much-closer 1

2
/ 57.5635v v


≅  for quarks.  Second, as a direct 

result of this, the wells in the lepton Lagrangian potential are much deeper and the barrier set by 
(22.2) and (22.3) much higher than their quark potential counterparts. 
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 To see this in detail, we start with Figures 12, 13, 14 and 15 below which analogous and 
qualitatively-similar to Figures 6, 7, 8 and 9, but now for leptons not quarks.  We see the minima 

and maxima of ( )1hU ϕ  at the domain points which were built in via (22.4).  There are two primary 

quantitative contrasts with Figures 6 through 9: First, whereas the vev minima for the quarks have 
a ratio 1

2
/ 57.5635v v


=  and so are somewhat close to one another, for the leptons the analogous 

ratio 1

2

8/ 9.95 10u u
 

= ×  produces an extraordinarily wide gulf between the two minima along 

the horizontal axis.  This of course, is directly reflective of the very tiny masses of the neutrinos.  
Second, as a direct consequence of this wide vev separation, the depths of the two vev minima and 
the height of the intermediate maximum have magnitudes which – in relation to 1hϕ  – are far 

greater than what appears for the quarks in Figures 6 through 9.  This is why the horizontal and 
vertical axes in the wide-view Figures 12 and 14 below are sized in GeV and TeV, while these 
same axes in the magnified center views of Figures 13 and 15 below are sized a billion times 
smaller in eV and KeV, and thus are magnified by a factor of a billion. 

 
Figure 12: Lagrangian Potential for Leptons – Wide View 

 
 In Figure 12 above we see that the minimum at 2663.01 MeVu


≅  has an extremely large 

depth of  ( ) ( )4
56.54 TeVU u


≅ − , and the maximum at  2

2 2 941.52 MeVhh m c −= − ≅  has an 

extremely large height of ( ) ( )2
2 2

4
51.77 TeVhU h m c= − ≅ .  There is no possible way to visually 

represent the neutrino region of this plot, which is why we need the magnified figure below: 
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Figure 13: Lagrangian Potential for Leptons – Magnified Center View 

 
 In Figure 13 above, magnified by a factor of a billion over Figure 12, we see that the 

neutrino-well minimum at 0.18876 eVu


≅  also has – comparatively speaking – the extremely 

large depth ( ) ( )4
7.93 KeVU u


≅ − .  But because ( )1hU ϕ  has dimensions of energy to the fourth 

power, we again take fourth roots as we did in Figure 8 and 9, so that we can compare energy-to-
energy.  Below, we take this fourth root on the vertical axis for Figure 12, as such: 
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Figure 14: Lagrangian Potential for Leptons, Fourth Root – Wide View 

 
 In this Figure 14, even taking the vertical fourth root, the well depths and barrier height are 
so comparatively large, that we cannot draw the two energy axes to scale.  Rather, the vertical axis 
is drawn to the scale of the horizontal axis with a compression factor of 104.  That is, 1 GeV on 
the horizontal axis has the same linear scale as 10 TeV on the vertical axis.  This makes clear that 
if these drawings were to scale both axes at 1:1 as we were able to do for quarks, aside from the 
height of the drawing being close to a mile, the wells and the barrier would be extremely steep, 
with first derivatives far more vertical than even what is depicted.  We also show the energetic 
placements of the three charged leptons in this well based on their versions of Figure 1 (using u


 

rather than v v


=  as the vev, see following (15.17)).  Similarly to the up and charm quarks, the 

electron and the muon nest very close to the vev minima, though the muon is somewhat more 
removed from its vev than is the charm quark from its vev.  And similarly to the top quark, the tau 
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lepton is displaced far to the left of its vev, and to the opposite side of the maximum set by 2hm .  

Now zooming into the center of Figure 14 by a factor of a billion, we arrive at Figure 15 below: 

 
Figure 15: Lagrangian Potential for Leptons, Fourth Root – Magnified Center View 

 
 In this final Figure 15 which is the fourth root of Figure 13, we see the neutrino portion of 

the potential.  The vev minimum is at 0.18876 eVu


≅ which is the energy first found at (17.1), 

and all three neutrinos situate discernably-displaced to the left of this minimum.  This is in 
comparison to the quarks and charged leptons for which the first-generation (and more or less the 
second-generation) fermion does sit substantially right at the bottom of its potential well.  Note 
also as just mentioned, considering both Figures 14 and 15, similarly to the top quark behavior in 
Figures 8 and 9, that the tau lepton nests to the left of the peak set by (22.2) and (22.3), inside the 
neutrino well, albeit well to the right of the neutrino vev minimum by what is still a factor on the 
order of a billion.  Here too, although the two axes compare energy-to-energy, we cannot draw 
these to scale without the drawing approaching a mile in height.  So, we again compress the vertical 
axis by a factor of 104.  Now, 0.1 eV on the horizontal axis scales to 1 KeV on the vertical axis. 
 
 In a sharp contrast to what we saw for quarks, it warrants attention that the neutrinos – 
which via (20.4) have center-valued masses from about 35 meV to 62 meV (milli-electron volts) 
– sit in a well that is close to 8 KeV deep, and that the charged leptons – with masses from about 
.5 MeV to 2 GeV – sit in a well that is over 50 TeV deep.  Moreover, the barrier between the 
charged lepton and the neutrino wells, set by the leptonic Higgs mass, itself peaks at over 50 TeV, 
which means that there is an energy difference of over 100 TeV between this peak and the bottom 
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of the charged lepton well.  This has important implications for how we must understand lepton 
beta decays between charged leptons and neutrinos, as will be explored in the next section. 
 
 We stated earlier that the very large magnitudes of the lepton well depth and barrier height 

are a direct consequence of the very wide chasm by which 1

2

8/ 9.95 10u u
 

= × .  It is good to 

explicitly see how this comes about, by analytically calculating this height and these depths.  
Working from (22.7), using the center values 2663.005 MeVu


=  from (19.5) and 

0.18869 eVu


=  from (20.2a), and applying the very small ratio 091

2
/ 1.005 10u u



−


×=  to set 

comparatively extremely small terms to zero, we may analytically calculate that the neutrino vev 
well depth: 
 

( ) ( )2 21
1 64

4
7925.3 eVh u uU uϕ

  
= = − = − , (22.9a) 

 
that the barrier between the two wells has a height of: 
 

( )( )
( ) ( ) ( ) ( ) ( ) ( )2 2

1
1 2 2

2
4 2 4

41 1 1 1 1 1 1
64 96 22 2 2 2 2

4

212 1 2 2 16 1 2 2
51.77

1

1 1  Te1 V

hU u

u
u

u

ϕ



− −



= −

  = − − + − + − =  
  

, (22.9b) 

 
and that the charged lepton well depth is: 
 

( ) ( ) ( )2

2
41 1

1 192 248 1 2 2

4
56.54 TeVh

u
U u u

u
ϕ 

 −


 = = − = − 
 

. (22.9c) 

 

Again keeping in mind that ( )1hU uϕ


=  is quartic in energy, we see the mix of  vev in 2 2u u
 

 in 

(22.9a) being responsible for the deep well in (22.9a) relative to the neutrino masses which are set 
exclusively by the much-smaller u


.  And in (22.9b) and (9.9c) we see the gigantic ratio 

2 02 21.990/ 3 10u u
 

×=  being responsible for barrier height and charged lepton well depth having 

>50 TeV-scale energies that are huge in relation to the charged lepton masses. 
 

23.  The PMNS Neutrino Oscillation Matrix Mass Parameterization 
 
 In section 18, we reviewed the mass parameterization of the CKM quark mixing matrix.  

Now, having ascertained predicted values for the individual neutrino masses, and having then 
likewise connected the charged lepton and neutrino masses to the PMNS mixing angles, it is 
possible to develop an analogous lepton mass parameterization for the PMNS neutrino oscillation 
matrix.  As will be seen in the next two sections, this will provide the opportunity to express the 
PMNS matrix directly in terms of the charged lepton and neutrino masses, and to further tighten 
the numeric data particularly for the poorly-pinpointed leptonic CP-violating phase. 
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 To begin, we pull together (19.12), the connections 12 21P Iθ ϑ


′≡  and 13 31P IIθ ϑ


′≡  

established at (19.5), the lower (20.5a) and the connection 23 21P Iθ ϑ


≡  established at (20.7), and 

use the notations 22 /PM c vρ ≡  and 1 2 3im m m m+ +Σ ≡   to write the mass sum in (20.2c) in 

consolidated form 2
im cδ ρ


Σ= , together with 2 2sin cos 1θ θ+ = , to write: 

 

0.01317 0.01317
0.01247 0

2 2
1 .01247

0.00149 0.00149
0.00
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13 137 0.0013 3
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ρ ρ

θ
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Σ Σ

Σ

+= = =
+ + + +

+= = = =
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20.00433 0.00433
0.00441 0.

2
004

1
23

1 2 1

41

2

; sin0.50725 0.49275P

m m

m m m m
θ− +

+ −= = = =
+ +

. (23.1) 

 

Above, we have also made use of the re-centered and tightened Pθ  angles in (20.7) to calculate 

each of these squared sines and cosines and retained five digits, with the upper 3σ  error bar entry 

corresponding to a larger angle and the lower entry to the smaller angle, using the same organizing 
convention reviewed after (18.12). 
 

Now, we used charged lepton masses 2 0.5109989461 0.0000000031 MeVem c = ± , 
2 105.658374 0.000002 MeV5 4m cµ = ±  and 2 1776.8 0.126 MeVm cτ = ±  reported by PDG [48], 

along with the amplified mass sum 2 2.787
2.54642.018  MeVm cνδ ρ +

−
Σ ==  from (20.2c) to calculate 12Pθ  

and 13Pθ  (20.7), which were in turn inserted in (23.1) above.  Consequently, it is important to be 

cognizant that there is a low-to-high correlation between these two angles, and that they are not 
entirely-independent.  Specifically, the electron and muon masses have no effective impact on the 
numbers in (23.1), because they are known with such precision relative to the other mass numbers 
that we can merely use their center values.  Moreover, even the tau mass swings only affect the 

angles in (23.1) at the fourth digit after the decimal, whereas because of the wider errors in 2m cνρΣ
these angles can only be meaningfully-calculated in (20.7) to three digits.  So even the tau mass 
does not have any discernable effect, and we can also use its center value for all calculations.  Thus, 

the ~12.9% swing relative to center in 2m cνρΣ  is virtually-entirely responsible for the swings in 

12Pθ  and 13Pθ  in (23.1).  What we can then calculate is that when 2m cνρΣ  swings high, so too do 

both 12Pθ  and 13Pθ , while when 2m cνρΣ  swings low, so do both 12Pθ  and 13Pθ .  The upshot is that 

these two angles are correlated high-to-high and low-to-low.  That is, in the notation developed 

for (18.3), there is a 12 13+ +
− −⇔  correlation.   So, when we use these two angles to calculate the 

components of the PMNS matrix, we can discard any angles which have the (12 ,13 )+ −
− +  or 

(12 ,13 )− +
+ − high / low angle error combinations. 
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Now, let’s turn to the PMNS matrix itself, which we denote in the conventional way by 

PU , which is unitary with † †
3 3P P P PU U U U I ×= =  and which has a standard parameterization form 

expressed in terms of angles and phases that is identical to (18.2).  Starting with this matrix with 

the CP-violating phase denoted by Pδ  to distinguish from the analogous phase for quark mixing, 

and inserting (23.1), we can obtain a lepton mass parameterization similar in form to (18.3).  
Simply to manage the space on the page, we segregate the four lower-left components into a 

separate 2x2 matrix, and designate this as Uδ  because the phase will affect the magnitudes of only 

these four components.  Consequently, we obtain: 
 

( )( )
( )

1 2 3 12 13 12 13 13

1 2 3 12 23 12 23 13 12 23 12 23 13 23 13
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. (23.2a) 
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. (23.2b) 

 
As in (18.4) it is helpful to calculate each element times its own conjugate transpose, thus: 
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( )( )
( )

( )( )
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( ) 12 12 23 23 1322e
e e

e

m
m m m m c c

m

m
m c s c

m
s s

m
µ ν νµ δ δ

τ

ν
ν

ν

ρρ
ρ

Σ+∆ ≡ + =
+ +

Σ
Σ

. (23.3c) 

 
Above, the lower-left phase-dependent components are again separated to manage page space.  We 
also define ∆  in (23.3c) to denote the contribution of the phase to the four terms (23.3b).  As with 
(18.4), in (23.3) the sum of elements in each of the three rows, and in each of the three columns, 

is identically equal to 1, owing to the unitarity of PU .  Likewise, using pairs of unlike columns 

from the unitarity relation one can produce six unitary triangles with identical areas equal to ½ of 
the Jarlskog invariant.  The magnitude of each of the nine PMNS elements, denoted overall by 

PU  is similarly-obtained by merely taking the square root of each of the nine elements in (23.3) 

on an element-by element basis.  Now we turn to the empirical data. 
 
 First, we turn to the January 2018 leptonic mixing matrix data reported in NuFIT v3.2 at 
[57] where each of the nine PMNS matrix magnitudes is presented over their high-to-low error 

ranges with 3σ  accuracy.  To match the presentation format of (18.5) for the CKM data from 

PDG, below we have taken this NuFIT v3.2 data and copied it over by first estimating a center 

value from simply averaging low and high and placing these averages into a center value matrix 

3.2NuFIT
U , then adding an error matrix 3.2NuFITε  containing plus or minus data the for the 3σ  errors.  
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Due to this averaging which sometimes produces a .0005 .001/ 2=  in the fourth digit, we have 

also added a fourth digit.  Thus, merely in an alternative representation, the NuFIT v3.2 data is: 
 

NuFIT3.2NuFIT3.2 NuFIT3.2

0.8215 0.5490 0.1485 0.0225 0.0330 0.0075

0.3680 0.5725 0.7065 0.1260 0.1055 0.0675

0.4025 0.5925 0.6845 0.1185 0.1025 0.0695

U U ε
± ± ±   

   = + = + ± ± ±   
   ± ± ±   

. (23.4) 

 
 To apply the unitarity of the mass parameterization (23.3) to predict this matrix (23.4) 
directly from the lepton masses under a variety of circumstances, let us first take a closer look at 

the leptonic phase 43 91.5 140
31 60.5 90234Pδ + + +

− − −= °  also reported in January 2018 by [57], and shown here in 

(19.10).  Using these to calculate cos Pcδ δ=  in (23.2c) which in turn enters into the phase-

dependent terms in (23.3b) and (23.3c), with a center value 0.5878cδ = − .  Additionally, we find 

that 0.9205 0.1219cδ ≤ +− ≤  at 1σ ,  that 1 0.8241cδ≤ ≤ +−  at 2σ , and that 1 1cδ− ≤ ≤ +  at 3σ .  

The updated November 2018 normal ordering data from NuFIT v4.0 at [61] including  Super-

Kamiokande atmospheric data reports that 40
28217Pδ +

−= °  at 1σ .  This lowers the center from v3.2 

by 17°  but maintains a 1σ  spread of about 70° .  At this later-reported center, 0.7986cδ = −  with 

a spread of 0.98769 0.22495cδ −≤− ≤ .  But this latest data reporting with 135 366Pδ° ≤ ≤ °  still 

produces 1 1cδ− ≤ ≤ +  at 3σ .  So, clearly there remains a great deal of error in the empirical data 

for the leptonic phase, to such a degree that with 1 1cδ− ≤ ≤ +  the 3σ , 99.7% confidence level, we 

must regard cδ  to be effectively indeterminate, possibly having any value between –1 and 1. 

 
Therefore, to obtain ∆  in (23.3c), we shall carry out three calculations using the three 

values 0, 1cδ = ±  which are all within the 3σ  error range.  However, also recognizing that the 

center values and the 1σ spreads are suggestive that 0cδ < , we also note that the January and 

November 2018 phase angles from NuFIT average out to 225.5° .  So, to account for this, we 

approximate this average to be 225° , and in a fourth calculation will thereby approximate 
1

2
cδ = − .  Thus, for purposes of calculation we shall examine each of the four possibilities 

1

2
0, 1,cδ = ± − , and so calculate (23.3) using the following four values for (23.3c): 
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m c s c s s
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ν
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µ ν νµ
τ

ρρ
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+∆ = ± − ⋅ + = ±Σ − ⋅
Σ+ +

Σ
. (23.4) 

 
 As in (18.12), we organize the presentation of error bars with superscripted numbers 
corresponding to larger angles and subscripted numbers corresponding to smaller angles.  It is 
again simplest to manage the high / low combinations of masses and angles by using (18.12), now 
simply renamed to apply to the lepton angles as such: 
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12 23 12 23 13 12 12 23 23 13 12 23 12 23 13 12 12 23 23 13 23 13

12 23 12 23 13 12 12 23 23 13 12 23 12 23 13 12 1

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2
2 23 23 1

2 2 2
3 23 13

2 2

2 2

P

c c s c s

U s c c s s c s c s s c c s s s c s c s s s c
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. (23.5) 

 
Then, similarly to what we did at (18.13), we simply insert the sines and cosines of these angles, 
the squares of which have already been calculated in (23.1).  As just reviewed, we shall do separate 

calculations for each of 1

2
0, 1,cδ = ± − .  For each one of these four calculations, each of 12Pθ , 23Pθ  

and 13Pθ  can range over the error bars shown in (23.1).  However, as noted following (23.1), when 

12Pθ  is at the top of its error bar, so too is 13Pθ , and vice versa.  Similarly to what we did for (18.13), 

with this 12 13+ +
− −⇔  correspondence rooted in the mass parameterization, we can organize the 

calculation using the downward binary counting sequence 12,23 = + + , 12,23 = + − , 12,23 = − +  

and 12,23 = − − , knowing that the 13 signs will always be the same as the 12 signs.    

 

So, we carry out a first calculation using 0cδ =  in (23.4), which we denote by the subscript 

0δ , to obtain the following refined PMNS lepton mixing matrix: 

 
0.0079 0.0116 0.0048

1 2 3 0.0084 0.0113 0.0045

0.0155 0.0075 0.0035
1 2 3 0.0050 0.0078 0.00360

01 2 3 0
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−
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0.0103 0.0074 0.0036
.0100 0.0077 0.0035

*
+ + +

− −

 
 
 
 
 

; (23.6a) 

 
0.0150 0.0012 0.0237 0.0008

0.0162 0.0030 0.0013 0.0105 0.00

12 ( ),13 ( ) 12 ( ),13 ( ) 13

* 12 ( ), 23 ( ),13 ( ) 12 ( ), 23 ( ),51 0.0003 0.0061 0.0010

0.0159 0.0031 0.0013

13 ( ) 23 ( ),13 ( )

12 ( ), 23 ( ),13 ( ) 12

− − + + +
+ + − − −

+ − + − − − + −
− + − + + + − +
+ + + −
− − − +

−
−

( ), 23 ( ),13 ( ) 20.0103 0.0052 0.0004 0.00613 ( ), 0.00113 ( )0+ − − −
− + + +

 
 
 
 − 

. (23.6b) 

 
We have also included an associated * matrix, coded in the manner described following (18.13) to 

show how large an impact each angle has on the total magnitude of each matrix component.  

Although there is a 12 13+ +
− −⇔  correspondence, it is important to note that in some instances, when 

both 12Pθ  and 13Pθ  start high, and are then both correlatedly-dropped to the low end of their errors, 

for some of the matrix entries the drop in a first one of these angles will reduce the matrix entry 
while the drop in the second angle will simultaneously increase that same entry, partially offsetting 
in the reduction from the first angle drop.  This is why there is a minus sign associated with some 

of the 13Pθ  entries, in this instance where 0cδ = , in the second column of the * matrix. 

 

 The exact same calculation, only with 1cδ = +  (subscript δ + ) produces: 
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0.0079 0.0116 0.0048
0.0084 0.0113 0.0045

0.0119 0.0110 0.0035
0.0115 0.0115 0.0036

0.0086 0.0046 0.0036
0.0083 0.0047 0.0035

0.8345 0.5294 0.1529

0.4722 0.5439 0.6937

0.2841 0.6511 0.7038
PU δ

+ + +
− − −
+ + +
− − −+
+ + +
− − −

 
 = +  
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; (23.7a) 
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12 ( ),13 ( ) 12 ( ),13 ( ) 13

* 12 ( ),13 ( ), 23 ( ) 12 ( ), 23 ( ),57 0.0035 0.006113 ( ) 23 ( ),13 (0.0010)

12 0.0185 0.0057 0.0041( ),13 ( ), 23 ( ) 12

− − + + +
+ + − − −

+ + − − − − + −
− − + + + + − +

+ + + −
− − − +−

−

( ), 23 ( ),13 ( ) 20.0081 0.0048 0.0036 0.00613 ( ), 0.00113 ( )0+ − − −
− + + +

 
 
 
 − 

. (23.7b) 

 

The same calculation with 1cδ = −  (subscript δ − ) produces: 

 
0.0079 0.0116 0.0048
0.0084 0.0113 0.0045

0.0088 0.0047 0.0035
0.0084 0.0047 0.0036

0.0118 0.0110 0.0036
0.0115 0.0116 0.0035

0.8345 0.5294 0.1529

0.2909 0.6589 0.6937

0.4680 0.5344 0.7038
PU δ

+ + +
− − −
+ + +
− − −−
+ + +
− − −

 
 = +  

 
  

*





 


; (23.8a) 

 
0.0150 0.0012 0.0237 0.0008

0.0187 0.0056 0.0041 0

12 ( ),13 ( ) 12 ( ),13 ( ) 13

* 12 ( ),13 ( ), 23 ( ) 12 ( ), 23 ( ),1.0083 0.0046 0.0035 0.0061 0.0013 ( ) 23 ( ),13 ( )0

0.012 ( ),13 ( ), 23 ( ) 1152 0.0056 0.0025 2

− − + + +
+ + − − −

+ − + − − − + −
− + − + + + − +
+ + +
− − − +

−
− −

( ), 23 ( ),13 ( ) 20.0133 0.0057 0.0036 0.00613 ( ),1 0.0013 ( )0− + − − −
− + + +

 
 
 
 
 

. (23.8b) 

 

And the final calculation with 1

2
cδ = − (subscript 225δ ° ) yields: 

 
0.0079 0.0116 0.0048
0.0084 0.0113 0.0045

0.0093 0.0055 0.0035
0.0089 0.0055 0.0036225
0.0114 0.0099 0.0036
0.0111 0.0104 0.0035

0.8345 0.5294 0.1529

0.3239 0.6433 0.6937

0.4458 0.5530 0.7038
PU δ

+ + +
− − −
+ + +
− − −°
+ + +
− − −

 
 = + 
 
 

*


 
 
 
 

; (23.9a) 

 
0.0150 0.0012 0.0237 0.0008

0.0177 0.0036 0.0031 0

12 ( ),13 ( ) 12 ( ),13 ( ) 13

* 12 ( ), 23 ( ),13 ( ) 12 ( ), 23 ( ),1.0089 0.0048 0.0027 0.0061 0.0013 ( ) 23 ( ),13 ( )0

0.0153 0.0045 0.002712 ( ),13 ( ), 23 ( ) 12

− − + + +
+ + − − −

+ − + − − − + −
− + − + + + − +
+ + +
− − − +

−
− −

( ), 23 ( ),13 ( ) 20.0123 0.0056 0.0024 0.00613 ( ),1 0.0013 ( )0− + − − −
− + + +

 
 
 
 
 

. (23.9b) 

 

 We can also combine all of (23.6) through (23.8) to establish outside 3σ  boundaries for 

all the matrix components, including swings in the phase.  For this, we use the center values for 

the 0cδ =  solution (23.6), and use the highest and lowest 3σ  values of each matrix element from 

the 1cδ = ±  results.  For the top row and the right column, the data is the same irrespective of 

phase.  But the four lower-left components are greatly affected by the phase, as shown below: 
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0.0079 0.0116 0.0048
1 2 3 0.0084 0.0113 0.0045

0.0919 0.0594 0.0035
1 2 3 0.1097 0.0718 0.00363

0.1111 2 3 3

0.8345 0.5294 0.1529

0.3922 0.6041 0.6937

0.3871 0.5956 0.7038

e e e

P

U U U

U U U U

U U U

µ µ µσ

τ τ τ σ

+ + +
− − −
+ + +
− − −

−

   
   = = +   
   

  
0.0927 0.0600 0.0036

4 0.0728 0.0035

12 ( ),13 ( ) 12 ( ),13 ( ) 13

*

0.0150 0.0012 0.0237 0.0008

0.18* 12 ,23 ,13 , ( ) 12 ,23 ,1312 0.1150, ( ) 23 ( ),13 ( )

1

0.0061 0.0010

02 ,23 ,13 , (

δ δ
δ

− − + + +
+ + − − −
+ − + + − − − − + −
− + − − +

+ + +

+ + + − +
+

− −

+ + −
− − − +

 
 
 
 
 

−

) 12 ,23 ,13 , ( ) 23.1839 0.1167 0.0061 0.0010( ),13 ( )δ− + − + − −
+ − + − + +

 
 
 
 
 

. (23.10) 

 
In the * matrix, we have shown the + and – correspondences for the three real angles, but 

suppressed the swing magnitudes in the four lower-left components because as seen in (23.6) 
through (23.10) these are highly-dependent on the particular value of the phase.  Rather, by taking 

the difference between center values from the δ +  and δ −  solutions (23.7) and (23.8), we can 

determine the overall magnitude of the swing induced by varying cosδ  all the way from +1 to –

1, which is the source of the number indicated in the * matrix in parenthesis next to the phase.  In 
other words: If, as a control, we maintain each of the three real PMNS angles and therefore the 

neutrino mass sum and individual neutrino mass eigenvalues at their (20.2b) and (20.4) centers, 

but swing the phase over its entirely-possible 3σ  range of 1 cos 1δ− ≤ ≤ + , we can segregate out 

the impact of phase variations from the impact of varying the three real angles and the neutrino 
mass eigenvalues, which is how the parenthetical numbers nest to the phase in * are calculated.  
Then, comparing to the entire error range matrix on the top line of (23.10) – which accounts for 
swings from all four angles – we find that the phase contributes to about 89.90%, 87.63%, 90.12% 

and 87.83% of the entire 3σ  swing, respectively, in 1Uµ , 2U µ , 1Uτ  and 2Uτ .  Conversely, this 

means that only about 10% of the swing in these four matrix magnitudes can be accounted for by 
errors in the real mixing angles (23.1).  So unsurprisingly, the still-limited empirical knowledge 

that we have about the precise magnitude of the phase is responsible for a very large percentage 

of the overall error swing in these phase-dependent components in 
3PU σ  

 
 It is also useful to place (23.10) as predicted by theoretical global unitarity fitting of the 
mass parametrization (23.2) of the PMNS matrix, into the same form as the NuFIT matrix at [57], 
then drop this back to three digits, to facilitate very direct comparison.  We then also obtain a 
percentage number associated with each component, which shows the breadth of the range in 

3 PredictedPU σ  over the breadth of 
3 NuFITPU σ , indicating the degree to which the predicted range 

based on the mass parameterization (23.2) tightens the reported NuFIT range.  Doing so we obtain: 
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3 Predicted

%

3 NuFIT

0.826 0.842 0.518 0.541 0.148 0.158

0.283 0.484 0.532 0.664 0.690 0.697

0.276 0.480 0.523 0.656 0.700 0.707

                                                         versus

0.7

P

P

U

U

σ

σ

→ → → 
 = → → → 
 → → → 

=
99 0.844 0.516 0.582 0.141 0.156 35.56% 34.85% 66.67%

0.242 0.494 0.467 0.678 0.639 0.774 ; % 79.76% 62.56% 5.19%

0.284 0.521 0.490 0.695 0.615 0.754 86.08% 64.88% 5.04%

→ → → 
 → → → 

 
 
 
 
→ →  

 →

. (23.11) 

 
 We see that the first two elements in the top row are tightened to about 1/3 of their original 
range and the upper right element is tightened to just over 2/3 of its range, owing to the tightening 

of 12Pθ  and 13Pθ  reviewed at (19.15).  A very large improvement by a factor of about 20, down to 

about 5% of the original range, stems from the very-substantial tightening of 23Pθ  by a similar 

factor, as reviewed at (20.7).  The phase-dependent elements are also narrowed somewhat, at best 

to 62.56% for the 2U µ  element in the center, but the wide uncertainty in our knowledge of the 

CP-violating phase, as also highlighted by (23.10), still keeps these ranges fairly wide.  Indeed, 
the primary sources of error in the PMNS magnitudes – and thus the best opportunities for 
tightening the wider-elements in the above – are the amplified neutron mass sum 

2 2.787
2.54642.018  MeVm cνρ +

−Σ =  with a ~12.7% swing which via (23.1) affects 12Pθ  and 13Pθ , and the 

phase for which we can have the entirely-indeterminate 1 cos 1δ− ≤ ≤ +  at 3σ .   

 
However, the results in (23.6) to (23.10), combined with our now having some definitive 

numbers in (20.4) for the neutrino mass eigenvalues, provide an approach for possibly pinning this 
phase down much better than it is known presently.  We now also have the basis to better 
understand the theoretical roots of neutrino oscillations.  These will be reviewed in the next section.  
 

24.  The Theoretical Roots of Neutrino Oscillations, and an Experimental 

Approach to Tighten the Empirical Data for the Leptonic Phase 
 
 The Lagrangian density for the mass of a fermion wavefunction ψ  generally takes the form 

mψψ=L , which we denote this specifically for neutrino masses by  mνν=L .  But as reviewed 

near the start of section 20, neutrinos come in one of three flavor states represented by the 3-

dimensional ket vector fv  with , ,f e µ τ= .  Neutrino oscillations provide evidence that each of 

these three neutrino flavors, in turn, is a quantum superposition of the three neutrino mass 

eigenstates represented by the ket vector iν  with 1,2,3i = , which have the respective mass 

eigenvalues earlier deduced in (20.4).  With the unitary PMNS matrix in (23.2a) denoted by 

P f iU U= , this mass eigenstate superposition is expressed by the relation ff iiv U ν= , with f iU  

acting as a quantum mechanical rotation / mixing / probability operator. 
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 Recognizing that each of fv  and iν  are three-dimensional kets, it is also clear that the 

mass m in the Lagrangian density will need to be represented as a 3x3 mass matrix M, with the 

mass eigenvalues (20.4) contained along the diagonal of a first 3x3 matrix ijM , and with masses 

related to flavor eigenstates is contained in the components – including off-diagonal – of a second 

3x3 flavor-state matrix fgM , with , ,g e µ τ=  as well.  The mass-eigenstate Lagrangian mass term 

will then be mass i ij jMν ν=L , and for the superposed flavor-states it will be 

flavor f fg gMν ν=L .  By symmetry, we require this Lagrangian mass term to be invariant whether 

represented in a mass basis or a flavor basis, which is to say, we require that mass flavor=L L .  So, 

given ff iiv U ν=  and the Hermitian conjugate relation †
f i f iv Uν= , and given the unitarity 

†
fi fj ijU U δ=  of the PMNS matrix, we can achieve this invariance by requiring that: 

 
† † †

flavor

mass

f fg g f j jk g k f i f j jk g k g l

ij jk kl ij

f g i l

i l i j

M U M U U U M U U

M M

ν ν ν νν ν

δν ν ν νδ

= = =

= = =

L

L

. (24.1) 

 
(It is best to review the above progressing lower-right to upper-left.)  From this, we easily deduce 
that to realize this symmetry, the mass matrices must be related by: 
 

† †
mass flavorfg f j jk g k P PM U M U U M U M= = = . (24.2) 

 

This, of course, is simply a bi-unitary transformation on the mass eigenstate matrix jkM , 

akin to the bi-unitary transformations used starting at (14.9) for isospin-up quarks, and reapplied 
thereafter for the isospin-down quarks, charged leptons, and neutrinos, to connect all twelve 
fermion mass eigenvalues with the real CKM and PMNS mixing angles.  In the final two 
expressions of (24.2), we drop the express appearance of indexes, to write this as 

†
flavor massP PM U M U=  in terms of the PMNS matrix PU , the mass eigenvalue matrix massM , and 

the flavor mass matrix flavorM . 

 
With these formalities completed, let us start with a diagonalized neutrino mass matrix 

( ) ( )mass 1 2 3diag M m m m=  which contains the three mass eigenvalues deduced in (20.4) along 

its diagonal.  The trace i imΣ  of this diagonal matrix will of course be equal to the neutrino mass 

sum found in (20.2b).  Then, applying (24.2), we obtain: 
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1 2 3 1 1 1 1

†
mass 1 2 3 2 2 2 2

1 2 3 3 3 3 3

2

f

2

lavor

2

* * *

* * *

* * *

* *

* *

*

0 0

0 0

0 0

*

e e e e

P P e

e

i ei i ei i i ei i

i i ei i i i i i

i i ei i i i i i

U U U m U U U

U M U U U U m U U U

U U U m U U U

m U mU U mU U

M mU U m U mU U

mU U mU U m U

µ τ

µ µ µ µ τ

τ τ τ µ τ

µ τ

µ µ µ τ

τ τ µ τ

   
   =    

   
   




= =



1,2,3i=




 
 
 





. (24.3) 

 
Now, for mathematical context, note that if all three mass eigenvalues were to be equal, 

1 2 3m m m m= = = , as a consequence of unitarity, †UU I= ,  (24.3) would reduce to:  

 
2

†
flavor mass1,2,3

2

2

* *

* *

*

1 0 0

0 1 0

0 0
*

1

ei ei i ei i

P P i ei i i ii

i ei i i i

U U U U U

M mU U m U U U U U m M

U U U U U

µ τ

µ µ µ τ

τ τ µ τ

=

 
  
  = = = =    

   
 

 , (24.4) 

 

and all of the off-diagonal elements in flavorM  would become zero.  The fact that each of: 

 
2 2 2 2

1 2 3 1 1 2 2 3 3

1 2 3 1 1 2 2 3 3

1 2 3 1 1 2 2 3

2 2 2 2

2

3

2 2 2

* * * 1

* * * 1

* * * 1

i ei e e e e e e e e e

i i

i i

U U U U U U U U U U

U U U U U U U U U U

U U U U U U U U U U

µ µ µ µ µ µ µ µ µ µ

τ τ τ τ τ τ τ τ τ τ

Σ = + + =

Σ

+ + =

= + + = + + =

= + + + +Σ = =

 (24.5) 

 
in (24.4) is what enables the three separate terms which sum to each of the three 1s to be regarded 
as a probability for a neutrino flavor to be detected in a particular mass eigenstate.  And each of 
the six 0s in (24.4) is associated with one of the six equal-area unitarity triangles.  
 

 Therefore, in view of (24.5), each of the diagonal components of (24.3) represents an 
expected value for the neutrino mass associated with each flavor state, that is: 
 

2 2 2 2

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

2 2 2 2

2 2 2 2

e i i ei e e e

i i i

i i i

m m U m U m U m U

m m U m U m U m U

m m U m U m U m U

ν

νµ µ µ µ µ

ντ τ τ τ τ

= + +

= + +

≡ Σ = + +

≡ Σ

≡ Σ

, (24.6) 

 

with each of the three mass eigenvalues im  from (20.4) weighted by the nine 
2

f iU  square 

magnitude components.  We also see from the unitarity of PU  that: 
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2 2 2

1 1 2 2 3 3 1 2 3f f e f f f f f f i im m m m m U m U m U m m m mν νµ ντΣ = + + = Σ + Σ + Σ = + + = Σ , (24.7) 

 
as anticipated prior to (20.2a).  So, everything that we have established about the mass eigenvalue 

sum i imΣ  applies equally to the flavor state expected mass sum f fmΣ .   

 
Above, and in view of (24.5), these square magnitudes specify the probability for a 

particular flavor of neutrino to be observed with a particular mass eigenvalue, which is why we 
are able to interpret the diagonal components of (24.4) as expected values for the observed masses 

of the three flavors of neutrino.  Moreover, when the three mass eigenstate masses for neutrinos 
are not equal – and (20.4) tells us that they are not equal – the off-diagonal components in (24.3) 
are also non-zero, which is the mathematical reflection of the existence of neutrino oscillations 
with a hybrid of three harmonic states.  That is, the off-diagonal components in (24.3) provide a 
mathematical way of indicating that neutrino oscillations are integrally tied to the neutrinos 
having different masses.  And, of course, this mass difference provides the harmonic mode self-
interference which is a fundamental characteristic of neutrino oscillations. 
 
 Because (24.6) can now be used to calculate the expected values for the masses of each of 
the three neutrino flavors (as distinct from the definite mass eigenvalues in (20.4)), and because 

neutrinos are physically observed in their quantum-superposed flavor states (in contrast to quarks 
and charged leptons which have distinct, unchanging mass eigenvalues and are observed in mass 
eigenstates), we now have a new way to experimentally pinpoint the size of the CP-violating phase 
for leptons.  This is how we do so: 
 

First, referring to (23.10), we again obverse that possible swings in the phase over its 

indeterminate 3σ  range covering 1 cos 1δ− ≤ ≤ +  are responsible for about 90% of the possible 

swings in 1Uµ , 2U µ , 1Uτ  and 2Uτ .  And because the square magnitudes of these four elements 

play a central role in establishing the expected values emν , mνµ   and mνµ  of the quantum-

superposed expected neutrino flavor masses in (24.6), we can use (24.6) together with the 

calculations for each of 1

2
0, 1,cδ = ± −  in (23.6) through (23.9) to determine the effect of the phase 

on the expected mass values of the neutrino flavor states.  This in turn provides a point of contact 
for empirical testing via neutrino oscillation, and perhaps direct mass detection, experiments. 
 
 Next, let us posit for purposes of calculation that the neutrino mass eigenstates have the 

center values in (20.4), both for swings in imΣ , and for the finer swings at center imΣ  between 

which stem from the empirical square mass differences neutrino mass eigenvalues reported in [57] 
and copied into (20.3).  Again, we do so recognizing that these swings can contribute at most to 

about 10% of the swings in 1Uµ , 2U µ  and 1Uτ , with the phase swings dominating the other 

90%.  Therefore, we start by positing that 2
1 0.03532 eVm c = , 2

2 0.03636 eVm c = , and  
2

3 0.06175 eVm c = , therefore  0.13343 eVimΣ = , all at center.  Accordingly, this places each of 
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(23.1) their centers, which in turn places each of (23.6) through (23.9) at their centers.  Then, 
because the square magnitudes in (24.6) establish probabilities summing to 1 as all probabilities 
must, let us calculate these probabilities by squaring each matrix element in the (23.6) through 
(23.9) center, and keeping five decimal places, to respectively obtain: 
 

2 2 2

1 2 3

2 2 22

1 2 30

2 2 2

1 2 3

0.69634 0.28029 0.02338

0.15379 0.36498 0.48123

0.14987 0.35473 0.49540

e e e

P

U U U

U U U U

U U U

µ µ µδ

τ τ τ

 
  
 = =
 
 


 
 



 




. (24.8a) 

 
2 2 2

1 2 3

2 2 22

1 2 3

2 2 2

1 2 3

0.69634 0.28029 0.02338

0.22295 0.29583 0.48123

0.08072 0.42389 0.49540

e e e

P

U U U

U U U U

U U U

µ µ µδ

τ τ τ

+

 
 
 = =
 

 
 


 



 






. (24.8b) 

 
2 2 2

1 2 3

2 2 22

1 2 3

2 2 2

1 2 3

0.69634 0.28029 0.02338

0.08464 0.43413 0.48123

0.21902 0.28558 0.49540

e e e

P

U U U

U U U U

U U U

µ µ µδ

τ τ τ

−

 
 
 = =
 

 
 


 



 






. (24.8c) 

 
2 2 2

1 2 3

2 2 22

1 2 3225

2 2 2

1 2 3

0.69634 0.28029 0.02338

0.10489 0.41388 0.48123

0.19877 0.30584 0.49540

e e e

P

U U U

U U U U

U U U

µ µ µδ

τ τ τ

°

 
 
 = =
 

 
 



 


 




. (24.8d) 

 
The top rows and the right columns are identical across all four of the above, because the 

phase only affects the four magnitudes on the lower left.  And, it can easily be ascertained that 
each row and each column in each of the above sums to 1, which is rooted in the unitarity relation 

† †
3 3P P P PU U U U I ×= = .  Now, we insert each of (24.8) together with 2

1 0.03532 eVm c = , 
2

2 0.03636 eVm c = , and  2
3 0.06175 eVm c =  into (24.6), to obtain the following expected values 

for the masses of the neutrino flavor states, which may be colloquially thought of as “Schrödinger’s 
Cat” relations for neutrino masses, as follows: 
 

2

0

2

0

2

0

0.69634 0.03532 eV 0.28029 0.03636 eV 0.28029 0.06175 eV=0.03623 eV

0.15379 0.03532 eV 0.36498 0.03636 eV 0.48123 0.06175 eV=0.04842 eV

0.14987 0.03532 eV 0.35473 0.03636 eV 0.35

em c

m c

m c

ν δ

νµ δ

ντ δ

=

= × + × + ×

× ×

×

+

= +

×+

× + 473 0.06175 eV=0.04878 eV×

. (24.9a) 

 



Jay R. Yablon, January 9, 2019 

188 
 

2

2

2

0.69634 0.03532 eV 0.28029 0.03636 eV 0.02338 0.06175 eV 0.03623 eV

0.22295 0.03532 eV 0.29583 0.03636 eV 0.48123 0.06175 eV 0.04835 eV

0.08072 0.03532 eV 0.42389 0.03636 eV 0.49

em c

m c

m c

ν δ

νµ δ

ντ δ

+

+

+

= × + × + × =

× + × + × =

× + × +

=

= 540 0.06175 eV=0.04885 eV×

. (24.9b) 

 
2

2

2

0.69634 0.03532 eV 0.28029 0.03636 eV 0.02338 0.06175 eV 0.03623 eV

0.08464 0.03532 eV 0.43413 0.03636 eV 0.48123 0.06175 eV 0.04849 eV

0.21902 0.03532 eV 0.28558 0.03636 eV 0.49

em c

m c

m c

ν δ

νµ δ

ντ δ

−

−

−

× + × + × =

× + × + × =

× + × +

=

=

= 540 0.06175 eV 0.04871 eV× =

. (24.9c) 

 
2

225

2

225

2

225

0.69634 0.03532 eV 0.28029 0.03636 eV 0.02338 0.06175 eV 0.03623 eV

0.10489 0.03532 eV 0.41388 0.03636 eV 0.48123 0.06175 eV 0.04847 eV

0.19877 0.03532 eV 0.30584 0.0363

em c

m c

m c

ν δ

νµ δ

ντ δ

°

°

°

= × + × + × =

= × + × + × =

= × + × 6 eV 0.49540 0.06175 eV 0.04873 eV+ × =

. (24.9d) 

 
It will be seen that the normal ordering of (20.4) is preserved at any value of the phase.  

While it is to be anticipated that the mass expected values for the electron neutrino flavor will rise 
and those for the tau neutrino flavor will fall somewhat because of the quantum superposition of 
mass eigenvalues, it is of interest that the mass expected value for the muon neutrino flavor is now 
much closer to that for the tau neutrino flavor than it is to that for the electron neutrino flavor.   
Note also that the mass expected value for the electron flavor does not change at all based on the 
phase, because none of the magnitudes in the top row of the PMNS matrix is affected by the phase.  
The effects of the phase do, however, have a clear effect on the mass expected values mu and tau 

neutrino flavors.  As a result, any data we can directly obtain about emν , mντ  and mντ  based 

on random observations of neutrino masses in sample sizes that are large enough to provide reliable 
statistical data can in turn be used to narrow down the phase.  But to date, direct detection of 
neutrino masses has not yet been achieved. 
 

Rather, what we know about neutrino masses arises from understanding a propagating 

neutrino in the superposed flavor state ff iiv U ν=  with three distinct mass eigenvalues im  and 

thus three distinct matter wave frequencies / wavelengths as a type of harmonic oscillator in which 
the waves cycle into and out of various harmonic synchronizations.  What is then most-readily 
observable from freely-propagating neutrinos are harmonic cycles related to these swings, which 
are captured in square-mass differences between pairs of neutrino mass eigenvalues.  Thus, it helps 
to calculate these square mass differences for each of the four phase samplings in (24.9), 

analogously to (20.3), but now using expectation values.  That is, we now calculate 
2 2 2

e em m mµ µ∆ ≡ − ,  
2 2 2

e em m mτ τ∆ ≡ −  and 
2 22

m m mτµ τ µ∆ ≡ −  from all of 

(24.9).  From this calculation, in natural 1c =  units, we obtain: 
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2 223 3 5
0

2 223 3 5

2 223 3 5

225

2 2 2

2 2 2

2 2 2

1.032 eV 1.067 eV 3.536 eV
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So, if experiments were to be conducted on the harmonic cycling behavior large random samples 
of neutrinos in such a way as to arrive at the square mass differences in (24.10), and if some range 

of these (24.10) results could then be ruled out at the 3σ  level, this would in turn rule out the 

corresponding 3σ  possibilities for the leptonic phase. 

 

In this regard, is illustrative to consolidate the top three samplings of the above with 0δ  at 

the center, and write this in terms of error bars with δ +  at the top and δ −  at the bottom, as such: 
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. (24.11) 

 

Comparing to 2 0.62 5 2
2 0

4
1 0.67.40 10  eV / cm + −

−∆ ×=  and 2 0.099 3 2
3 0.0 5

4
92.494 10  eV /lm c+ −

−∆ ×=   which are the 

empirical 3σ  spreads reported by [57] and reproduced in (20.3), the spreads in (24.11) appear to 

be within range of what might be detectable if one focuses on the expected values of the neutrino 
flavor masses, which is to say, on the average mass observed for each neutrino flavor over a sample 

size of random detections large enough to provide results of statistical significance.  The 
2 4310.007 / eV c−×∓  spread in the first two lines of (24.11) is just under 70% as wide as the 

0.099 3 2
0.0 5

4
9 10  eV / c+ −

− ×  spread in the reported 2
3lm∆ .  Although this is smaller, it is generally easier to 

come upon electron and muon neutrinos than to happen upon tau neutrinos.  In contrast, the 
2 4511.39 08 / eV c−± ×  spread for 

2
mτµ  in the final line is more than twice as wide as the 

40.62 5 2
0.60 10  eV / c+ −

− ×  spread in 2
21m∆ .  However, again, it is generally more difficult to come upon 

tau neutrinos.  So, weighing challenges and advantages, 
2

emµ∆  is easier to detect because it is 

based only on electron and muon neutrinos, but harder because its range is only 70% of that in 
2
3lm∆ ; while 

2
mτµ∆  is easier to detect because its range is over twice as wide as that of 2

21m∆ , 

but harder because it requires large samples of tau neutrinos.   Because the numeric data in (24.10) 

and (24.11) is based on sampling various possibilities for δ  and particularly cosδ , the more finely 

the numbers in (24.11) can be established, the more finely we can tighten the lepton phase. 
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 As to tightening out knowledge of PU  generally, it should be clear that the widest source 

of error by far is the indeterminate size of the phase, and especially that 1 cos 1δ− ≤ ≤ +  at 3σ .  

This, as well as other errors seen in (20.4) which also affect PU  via the mass parameterization 

(23.1), all stem from our very limited knowledge to date of the neutrino mass eigenvalues.  And 

as noted after (20.4), the mass sum imΣ  which cannot be discerned from square mass differences 

contributes substantially more error than the square mass differences (20.3).  Of course, obtaining 
square mass differences from neutrino oscillation harmonics is the best of the tested tools we have 
to date.  But a timeless observational principle – whether applied to discovering the planet Neptune 
by noticing anomalies in the orbit of Uranus, finding a ship lost on the high seas, or in the present 
case pinpointing individual neutrino masses – is that it is much easier to find something if we have 
advance information that tells us where to look.  In the present case, having fairly tight predictions 

in (20.4) for the neutrino mass eigenvalues tells us where to look.  And so, the best opportunity to 

tighten our knowledge of PU  is to look for neutrino mass eigenvalues using (20.4), and to finally 

succeed in the direct detection of neutrino masses eigenvalues with good precision.   
 

Finally, we are now able to pinpoint and trace the theoretical roots of neutrino oscillations 
in relation to all of the other data for leptons and PMNS mixing.  As summarized near the start of 
section 20 and also following (20.2c), the fact that the angles calculated in (19.9) did not fit the 

PMNS angles in (19.10) forced us to introduce an extra energy δ


 which did fit this data with the 

range of values found in (19.13).  Then, crucially, at (20.2c) this δ


 was found to be related to the 

neutrino mass eigenvalue sum imΣ  multiplied by the dimensionless factor 22 /PM c vρ =  which 

introduces the gravitational constant because /PM c G= ℏ .  So, as pointed out after (20.2c), 

requiring that 0δ


≠  in order achieve the PMNS angle fit at (19.15) is then understood as being 

synonymous with requiring the neutrinos to have a non-zero mass which is a prerequisite for 
neutrino oscillations.  Simultaneously, the PMNS angles themselves were being substantially 

raised, from 21 3.9781~ 6Iϑ


°  and 31 0.97~ 155IIϑ


°  at (19.9) to 12 32~ .393Pθ °  and 13 8 9~ .7 4Pθ °  

at (19.15), which is to say, the magnitudes of these two PMNS angles also became inherently-

based on the neutrinos having mass.  And the mass parameterization for 23Pθ  in (23.1) also, quite 

explicitly, requires non-zero neutrino mass eigenvalues of it is to be determinate and non-zero.  
But it also means that the mass-parameterized PMNS angles (23.1) which go into the mass 

eigenstate superposition via ff iiv U ν=   and into the bi-unitary transformation by which 

†
flavor massP PM U M U=  in (24.3), must already have the non-zero neutrino masses “baked in.” 

 
So, from here, all that is needed to fully provide for the observed neutrino oscillations, is 

that each of the three mass eigenvalues be different.  This is obvious from the well-known 
viewpoint of harmonic analysis of superposed waves.  But as to the mass parameterization, while 
the top two lines of (23.1) do embed non-zero neutrino masses, they do not require these masses 

to be different form one another.  However, as soon as 23Pθ  in the final line of (23.1) is given a 
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value 23 exactly 45Pθ ≠ ° , that is as soon ( )2 1
23 1 1 2 2sin /P m m mθ = + ≠ , thus 1 2m m≠ , the flavorM  

matrix in (24.3) immediately acquires non-zero off-diagonal elements, and thereby gives rise to 
the observed physics phenomenon of neutrino oscillations. 
 

PART IIC: COMPLETE THEORY OF WEAK BETA DECAY 
 

25.  How Weak Beta Decays are Triggered by Cosmological Neutrinos and 

Antineutrinos Interacting with Electrons, Neutrons and Protons via the Z 

Boson-Mediated Weak Neutral Current, with “Chiral Polarization” of 

Electrons 
 
 In section 17 we studied the mechanics of weak beta decays between quarks.  Specifically 
(with the exception of beta decays between top and bottom quarks because of how the top quark 
“visits” the isospin-down well), we showed using Figure 8 how it is necessary for any quark 
undergoing weak beta decay to cross the barrier at the domain point 

2
1 120.9712 0.0002 GeVh hv m cφ


±= − = , and how this requires sufficient energy to clear the 

( )4
1 240.37 GeVhV φ ≅  peak at this domain point.  Moreover, if an up or charm quark is to decay 

into any of the isospin-down quarks, it also needs additional energy to emerge out of the well at 

1 246.22 GeVh vφ


= ≅  which bottoms out at a depth of ( )4
1 514.89 GeVhV φ− − ≅ − .  At (14.4) 

we tightened the Higgs boson mass to 2 125.2485 0.0002 GeVhm c ±= .  We thereafter came 

understand how a small number of Higgs bosons may be involved in providing the energies needed 
to: a) facilitate excitation out of a well and clearance of the barrier between the wells, b) provide 
the mass also needed to excite a W boson with a mass of about 80 GeV out of the vacuum, and c) 
also to supply the mass, if needed, for any beta decay where the fermion needs to gain rest mass 
after the decay.  And, we came to understand this activity as a form of vacuum fluctuation wherein 
energy is briefly withdrawn from the vacuum to facilitate beta decay, then returned to the vacuum 
after the decay event has completed, with all of this occurring inside a baryon containing very 
large internal energies arising from strong interactions between quarks.  
 

Now, as if these high barriers and deep wells for quark beta decays are not large enough, 
the >100 TeV difference shown in Figure 14 between the well depth in (22.9c) and the barrier 
height in (22.9b) is in a whole other league, because this energy difference is on the order of 865 
Higgs boson masses.  This means that any time there is to be a beta decay between a neutrino and 
a charged lepton (with the exception of the tau lepton which “visits” the neutrino well analogously 
to the behavior of the top quark), it is necessary to raise over 50 TeV of energy to decay from a 
neutrino to a charged lepton.  And it is necessary to raise over 100 TeV for the reverse-decay from 
a charged lepton to a neutrino.  Moreover, importantly, we know that charged leptons can and do 
beta decay into neutrinos and vice versa all the time, and especially, that they apparently do so 
spontaneously.  But, if it is necessary to amass over 50 TeV of energy for a neutrino to decay into 
a charged lepton, and over 100 TeV for the reverse reaction, then this clearly raises the question: 
From where is all this >50 TeV of energy acquired?  And especially, where does this energy come 
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from for spontaneous beta decays where we are not using particle accelerators, or nuclear reactors 
or weapons, or other human technology, to facilitate these decays? 
 

Related to this, we know very well – dating all the way back to the late-19th century work 
of Henri Becquerel and Marie and Pierre Curie – that weak beta decays occur all the time in the 
natural world, without human technologies having to precipitate these decays.  Most notably, as 
just stated, these decays appear to occur spontaneously, without apparent cause.  So, for example, 
if we have a free neutron, we know that on average, this neutron will last for about 15 minutes 
before it decays into a proton.  But we also know that this 15-minute period is a mean time period, 
and that there is a probabilistic spread about this 15-minute mean.  Any given neutron might decay 
after 8 minutes, or 20 minutes, or any other period of time t in accordance with a temporal 
probability distribution for such decay.  But the causal question as to why any particular decay 
takes 8 or 15 or 20 minutes or any other time to occur, has never been satisfactorily answered in 
the 120+ years since Becquerel and Curie’s discovery.  This leads us to pose two related questions:  
First, when a particular neutron or proton or atomic isotype of an atom has beta-decayed after some 
elapsed time t, what was the cause of why that decay happened exactly when it did?  Second, what 
it is, exactly, that determines the 15-minute half-life of a free neutron, and the half-lives of various 
atomic isotopes which undergo beta decay?  We begin here with the latter questions about 
lifetimes.  Then, we later return to the questions about the >50 TeV energies. 

 
 For reasons that will momentarily become apparent, we start by considering the natural 
background flux of neutrinos observed in the physical world.  For this, we refer to Figure 1 from 
[62], which is reproduced below: 
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Figure 16: Measured and expected fluxes of natural and reactor neutrinos, reproduced 

from Figure 1 of [62] 

 
The vertical axis above represents the number flux of neutrinos of various energies measured in 
neutrinos per cm2 per second.  This is plotted against the horizontal axis for neutrino kinetic energy.  
That the vertical axis represents a number flux is discerned from the MeV-1 in the vertical axis 
dimensionality which divides neutrino energy flux by energy to obtain number flux.  In short, this 
is a plot for neutrino number flux as a function of neutrino kinetic energy.  So, for example, for 
solar neutrinos, the vertical axis informs us that there is a peak of about 1011 solar neutrinos per 
cm2 per second, while the horizontal axis informs us that these solar neutrinos have kinetic energies 
on the order of 105 to 106 eV.  Of course, implicit in the above is that these measurements are taken 
at a particular locale in the universe, in this instance, at the surface of the earth.  There is no reason 
to suppose that the exact same plot would be observed if measurements were taken say, on the 
surface of the planet mercury where the solar neutrino flux would certainly be greatly increased. 
 

Of particular interest for the present discussion, however, are the much-more abundant 
cosmological neutrinos, often referred to as the cosmic neutrino background (CvB).  For these, we 
are informed from Figure 16 that there is a peak flux of about 1021 neutrinos per cm2 per second, 
and that these neutrinos have kinetic energies on the order of 10-3 eV = 1 meV or less.  Given the 
individual neutrino rest masses ranging deduced in (17.4), namely 35.33 meV, 36.37 meV and 
61.78 meV for the electron, mu and tau neutrinos respectively, we see that these cosmological 
neutrinos have kinetic energies which are on the order of a few percent or less, of their rest masses.  
Thus, these are low energy, comparatively-nonrelativistic, neutrinos, travelling also at only a few 
percent of the speed of light, but which is still fast enough to cross the United States from east to 
west in under a second.  Clearly, these CvB neutrinos comprise the vast abundance of neutrinos 
flowing through our everyday environment, by a factor of 1010 or more versus any of the other 
types of much-higher-energy neutrino shown. 
 

From this, let us do a rough “back of the envelope” calculation.  To start, recognizing that 

the charge radii of the proton and neutron are roughly 151 f 10  m−= , let us regard 1 barn defined 

by ( ) ( )2 2141 b 10 m 10 f−= =  to be a very rough measure of the cross-sectional area for any stray 

particle to interact with a nucleus, being non-specific at the outset as to the particular particle or 
the particular nucleus.  So, if we use barns rather than cm2, the data just reviewed from Figure 16 
tells us that there is a peak flux of about 10-3 CvB neutrinos per barn per second, or about 1 neutrino 
per barn per thousand seconds.  And we may approximate 1000 seconds to fifteen minutes.  So, as 
a rough calculation, we can say that in our day-to-day existence, one CvB neutrino flows through 
any one-barn cross sectional area approximately every 15 minutes. 
 

Against this we also consider from, e.g. [49], that the mean lifetime of a free neutron is 
880.2 ± 1.0 s, which is also about 15 minutes.  So, the objective data tells us that every fifteen 
minutes, on average, one CvB neutrino basses through a 1 barn cross sectional area, and also, on 
average, a free neutron beta decays into a free proton.  So, the question now presents itself: are 
these two seemingly-independent fifteen-minute natural episodes concurrent by sheer 
coincidence?  Or, given the indispensable role of neutrinos in weak beta decay, is this no 
coincidence at all, but rather, a deep, heretofore unrecognized physical connection?  In view of the 
fact that beta-decay appears to be spontaneous, and that the question of why a particular neutron 
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happens to decay at any particular moment has never been explained since the days of Becquerel 
and Curie, we should at least consider the possibility that these two fifteen-minute natural episodes 
of free neutron decay and the passing of a neutrino through the “side of a barn” are in fact no 
coincidence at all.  Doing so, we then we have the basis to introduce the following fundamental 
hypothesis as to why individual beta decay events occur when they do: 

 
Neutrino Trigger Hypothesis: Semi-leptonic beta decays, such as that of a free 
neutron into a free proton with the concurrent decay of a neutrino into an electron, 
are in fact triggered when a stray neutrino – every fifteen minutes or so according 
to observed empirical data – randomly flows through an approximately 1 barn 
surface which contains the neutron, and thereby precipitates the latter’s beta decay 
into a proton, with the triggering neutrino concurrently decaying into an electron. 

 
With this, the question of why a specific neutron decayed after a particular elapsed time t 

has a very intuitive and causal answer: With neutrinos randomly flying through space all the time 
and having the fluxes shown in Figure 16, the answer is that it took an elapsed time t for one of 
the CvB neutrinos permeating our natural environment to actually arrive and pass through the 1 
barn cross section in which that neutron was centered, and accordingly, this is why it took the same 

time t for that neutron to decay.  Recognizing that the n e pν −→  decay really takes place via the 

quark decay d e uν −→ , the Feynman diagram for this hypothesized neutrino-triggered beta decay 
is then shown in Figure 17 below: 

 
Figure 17: Free neutron beta decay with neutrino trigger 

 
As is seen, this entails a CvB neutrino randomly entering the ~ 1 barn cross-sectional zone of the 
neutron following an average elapsed time of about 15 minutes, and getting close enough to the 
neutron to induce a W boson decay.  It is possible for this decay to proceed in either direction, as 

illustrated.  That is, left-to-right the decay can start with e Wν − +→  then finish with W d u+ → .  
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Or, right-to-left, it can start with d W u−→  then finish with W eν− −→ .  The W boson which is 
the mediator of this interaction, has a very brief mean lifetime of about 3 x 10-25 s [63].  The net 
result following this very brief time period of 3 x 10-25 s, in either direction, is the beta decay 

n e pν −→  of the neutron and neutrino into an electron and a proton. 

 

 Now, Figure 17 uses the β −  decay reaction n e pν −→  as one very important example of 

our hypothesized neutrino-triggered beta decay.  And it is based on observing from Figure 16 that 
one neutrino flows through 1 barn every 15 minutes or so, closely corresponding to the mean life 
of a free neutron.  But if neutrinos are the trigger for free-neutron beta decays, then they should 
likewise be the trigger for other beta decays occurring in complex nuclides and atoms which 
contain multiple protons and neutrons and have numerous isotopes.  And, of course, these other 
beta decays have mean lifetimes which are not 15 minutes apart, but which are variable depending 
on the specific isotopes being considered.  For this neutrino trigger hypothesis to stand up, 

therefore, we must tackle the further question whether these other β −  decays can be explained in 

this way, and what additional factors may come into play.  Moreover, we need to tackle the 

question whether and how β +  decays are triggered, suspecting based on similar principles that we 

would have to utilize antineutrinos as the trigger.  
 
 Because all atoms contain at least one proton, any beta decays of any atom from hydrogen 
on up will occur inside the nucleus of an atom containing at least one electron.  Of course, electrons 
in an atom do not “orbit” in the sense of the early atomic models of a planet traversing the sun, but 
rather, they form a “probability density cloud” about the nucleus.  The Bohr radius of a hydrogen 
atom is on the order of 5.29 x 10-11 m, which we roughly approximate to an atomic diameter of 

10-10 m.  So, whereas a barn with ( )2141 b 10 m−=  defines a measurement standard for nuclear 

cross sections, let us now define a “Bohr barn,” abbreviated bb, such that ( )2101 bb 10 m−= .  This 

may be thought of as a measurement standard for atomic cross sections, and it is larger than an 
ordinary barn by a factor of 108.  So, because one neutrino passes through a nuclear barn every 103 
seconds (approximately 15 minutes) as found earlier, one neutrino will bass through an atomic 
Bohr barn every 10-5 seconds, which is .01 milliseconds (ms). 
 
 As against this bb measure, let us review the half-lives of various isotopes which decay 

through pure β −  or β +  decay, and not by α  or γ  decay or by merely jettisoning neutrons or 

protons.  We start from the very-valuable Wikipedia Table of Nuclides [64] and use this to link 
over to the isotopes for various atoms through the Z atomic number listed above the symbolic name 

of each atom.  In this way we find the following sampling of β −  decay data (without error bars), 

for the light nuclides from hydrogen (atomic number Z=1) through sodium (Z=11):  For 3H, i.e. 
tritium, the half-life is about 12.32 y.  For helium, for 6He the half-life is about 806.7 ms, while 
for 8He it is about 119.0 ms.  For lithium, for 8Li, 9Li and 11Li, the half-lives are 840.3 ms.  178.3 
ms and 8.75 ms respectively.  For beryllium, for 10Be, 11Be, 12Be and 14Be, the half-lives are 
1.39×106 y, 13.81 s, 21.49 ms and 4.84 ms respectively.  For boron, the range is from a high of 
20.20 ms for 12B, down to 2.92 ms for 19B, with consistent serial descent.  For carbon, we of course 

have 5,730 years for 14C used in radioactive dating.  Thereafter, the β −  half-lives range serially 

downward from a high of 2.449 s for 15C to 6.2 ms for 16C.  For oxygen, there is a serial reduction 
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from 26.464 s to 65 ms from 19O to 24O.  For Fluorine, the range is serially-downward from 11.163 
s to 2.6 ms from 20F to 29F, with very-mild exception at 21F and 22F which may be attributed simply 
to the growing complexity of the nuclide.  For neon there is serial descent from 37.24 s for 23Ne to 
3.5 ms for 32Ne, with a single exception at 24Ne.  And going from the n=2 shell to the n=3 shell 
(principal quantum umber, second to third row in the periodic table) to ensure the pattern holds, 
for sodium we again see a range serially diminishing from 14.9590 h for 24Na, down to 1.5 ms for 
35Na, with mild exceptions attributable to nuclide complexity. 
 

 The same review for β +  decay evidences the following: for hydrogen there is no β +  decay 

channel.  Fer helium there is a β +  decay channel for 2He, but the greatly-favored channel by 

>99.99% is to jettison a proton, with a half-life under 10-9 s.  The half-life for the <0.01% β +  

decay channel is not clearly shown in this data, or any other data that the author could uncover.  

Likewise, neither lithium nor beryllium have any β +  channels.  So, we begin with boron, which 

is the first nucleus with a clear β +  channel, namely, 8B with a half-life of 770 ms.  Turning to 

carbon, for 11C, 10C and 9C, the respective β +  decay half-lives are 20.334 min, 19.290 s and 126.5 

ms, respectively.  For nitrogen, we have 13N and 12N with the respective half-lives of 9.965 min 
and 11.000 ms.  For oxygen we have 15O, 14O and 13O with respective half-lives of 122.24 s, 70.598 
s and 8.58 ms.  For fluorine the two channels are for 18F and 17F with respective 109.771 min and 

64.49 s half-lives.  For neon the three isotopes with β +  channels are 19Ne, 18Ne and 17Ne with 

17.296 s, 1.672 s and 109.2 ms in series.  Finally, moving to the next shell, for sodium there are 

three isotopes with β +  channels, namely, 22Na, 21Na and 20Na with respective 2.6027 y, 22.49 s 

and 447.9 ms half-lives.  Note that 22Na is the first isotope with a half-life measured in times as 
long as years. 
 
 There are three very striking and consistent patterns revealed by the above light nuclide 
data.  First, while the beta-decay half lives in a few cases run as high as years, in most cases they 
run in minutes or seconds and at bottom, milliseconds.  The very shortest half-life in the data above 

was 1.5 ms for the β −  decay of 35Na.  And, studying higher up the periodic table, there does not 

appear to be any beta decay with a half-life less than 1 ms, for any isotope of any atom.  Of course, 
there are many decays with half-lives shorter than 1 ms, see [65].  But none of these are beta 
decays, which informs us that beta decay lifetimes are comparatively long relative to other types 

of decays such as alpha decays and neutron or proton emission.  Second, for β −  decay, for the 

light nuclides, there is a consistent and unbroken correlation whereby whenever the number of 

neutrons is increased for an atom of a given atomic number, the β −  half-life is decreased.  Third, 

for β +  decay, there is a likewise consistent and unbroken correlation whereby whenever the 

number of neutrons is decreased for an atom of a given atomic number, the β +  half-life is 

decreased.  That is, working from stable atoms in the middle of neutron-rich or neutron-poor 
isotopes, the more an isotope is either neutron-rich or neutron-poor, the shorter will be its half-life 
for beta decay.   
 

Now, to be sure, as was already seen starting with fluorine, these correlations do get 

partially-broken for heavier nuclides.  For example, the β −  correlation is broken by Z=12 
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magnesium, wherein 27Mg, 28Mg and 29Mg have respective half-lives of 9.458 min, then a longer 

20.915 h, then 1.30 s which is shorter and returns to pattern.  And, the β + correlation is first broken 

by Z=17 chlorine, wherein 34Cl, 33Cl and 32Cl have respective half-lives of 1.5264 s, then a longer 
2.511 s, then 298 ms, which is shorter and returns to pattern.  Given that this the correlation 
between isotopes becoming either more neutron-rich or neutron-poor and a diminishment of half-
life is an unbroken pattern for light nuclides up to magnesium, it is fair to regard breaks in this 
pattern for the heavier nuclides as being less a break in pattern, and more as a masking of pattern 
by the more-complex atomic and nuclear shell structures.  The factors involved in this will become 
clearer momentarily. 
 

Now we come to the key question:  In view of this data, how do we apply the hypothesis 

that neutrinos are the trigger for the β −  decay of a free neutron into a free proton with the trigger 

neutrino also decaying into an electron, to any and all beta decays, both β −  and β + , in any and 

all atoms and atomic isotopes?  In short, is it possible to understand all beta decay events – which 
randomly occur with known half-lives – as occurring at precise particular times t when a CvB 
neutrino (or an antineutrino) passes close enough to a neutron (or a proton) in an atomic nucleus 
to become the triggering cause of that decay event? 
 
 We have reviewed that the observed half-lives for beta decay are greater than 1 ms for all 
nuclides in the periodic table.  As reviewed, 1 ms corresponds to a cross section of .01 bb or less 
using our new Bohr barn yardstick, i.e., a cross section that is less than 1% of the cross section for 
a hydrogen atom.  But even so, a 1 ms half-life corresponding to 10-2 bb thus a 106 b cross section 
for nuclear events is much closer to atomic shell rather than to nuclear cross sections.  And yet, it 
is a neutron or a proton inside the nucleus which decays in all of the nuclear isotope data just 
reviewed.  Therefore, for short-lived beta-decays closer to 1 ms than to seconds or years to be 
triggered by a neutrino or antineutrino, there must be some mechanism which ensnares a neutrino 
or antineutrino entering the atomic shells at 10-2 bb a.k.a. 106 b and so still at some distance from 
the nucleus, and nevertheless guides that neutrino or antineutrino through the atomic shells to find 

a neutron or proton within the nucleus and trigger that neutron or proton to β −  or β +  decay. 

 
 This brings us to the Z boson for the weak neutral current, which, aside from gravitation, 
is the only means by which a neutrino can interact with an electron or a quark while each maintains 
its identity.  Specifically, if a low-energy CvB neutrino is going to enter the electron shells of an 
atom inside a 106 b cross section about the nucleus and end up beta-decaying with that nucleus 
sitting within a 1 b-or-less cross section, then the neutrino will need to be attracted to the nucleus 
through the weak neutral current Z boson, analogously to how electrons are attracted to the up and 
down quarks inside of protons via electromagnetic interactions mediated by photons.  But there 
are two important differences: First, electromagnetism is an inverse-square interaction because the 
mediating photos are massless and so have unlimited range, which the electroweak neutral current 
integration has a very short range because of the very short lifetime on the order of 3 x 10-25 s for 
the Z boson.  Even if travelling close to the speed of light 299792458 m/sc = , exactly [21], the 
mean range of this boson is in the order of 10-16 m = .1 f, which, squared, corresponds to a .01 b 
cross section.  Second, electromagnetism is a chiral-symmetric interaction for which the left- and 
right-chiral components of fermions each have the same charge strength Q, whereas V-A weak 
interactions are distinctly non-chiral.   Specifically, the third component of the weak isospin 
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( )3 0RI f =  for the right-chiral projections ( )51
2 1Rf fγ= +  of all fermions f.  Indeed, a very central 

finding in Part I of this paper as reviewed in section 9 is that the Dirac 5γ  used to project left-and 

right-chiral components out of a fermion is the generator of the fifth Kaluza-Klein dimension in 

exactly the same way that the first four µγ  generate the one time and the three space dimensions 

of ordinary spacetime, all with a fifth dimension that is timelike not spacelike, via the five-

dimensional relation { }1
2 ,γ γηΜΝ Μ Ν=  for the flat spacetime Minkowski metric tensor ηΜΝ .  

 
 Because our interest is in the attraction of a neutrino into a nucleus (and of course, any 
offsetting repulsive forces), let us start by considering electromagnetic attraction and repulsion 
which does not introduce the complexities of either limited range or chiral non-symmetry.  The 

charges of an electron and proton, respectively, are ( ) 1Q e = −  and ( ) 1Q p = + , so that when an 

electron interacts with another electron we have ( ) ( ) 1Q e Q e = +  which is repulsive while when 

an electron interacts with a proton we have ( ) ( ) 1Q e Q p = − , with repulsion versus attraction 

determined by the sign.  A slightly-more complicated way of saying the same thing – which 
provides a baseline for considering attraction and repulsion under the weak neutral current 
interaction – is to say the following:  When two electrons interact, the invariant amplitude is 

proportional ( ∝  ) to  ( ) ( )( ) ( )( ) ( )( )em ee ee Q e e e Q e e e e e e eµ µ
µ µγ γ γ γ→ ∝ = +M , while when an 

electron and a proton interact, ( ) ( ) ( ) ( )( ) ( )( )em ep ep Q e Q p e e p p e e p pµ µ
µ µγ γ γ γ→ ∝ = −M .  The 

overall positive sign for ( )em ee ee→M  indicates repulsion and the overall negative sign for 

( )em ep ep→M  indicates attraction.  Now let’s turn to neutral currents mediated by Z bosons.   

 

 The weak neutral current, of course, has the form 2
3 sinNC em WJ J Jµ µ µ θ= − , where 

( )2 0.2si 3 5n 1 5 4Wθ =  is the effective weak mixing angle [21].  As with any other “charge,” this 

means that the “Z charge” of a particle is 2
3 sin WZ I Q θ= − , where 3I  is the third component of 

the weak isospin and Q is the electrical charge of that particle.  Weak interactions, however, are 

not chiral symmetric.  For a given fermion state, ( )51
2 1Rf fγ= +  and ( )51

2 1Lf fγ= − , thus 

L Rf f f= + .  Also, ( )3 0RI f =  for all fermions.  So, separating left- and right-chiral projections, 

and using the center-value 2 0.sin 23155Wθ = , the pertinent electroweak charge quantum numbers 

for each lepton chiral projection, which apply to all three generations, are as follows: 
 

1 1
3 2 2

3

21 1
3 2 2

2
3

, 0,

0, 0,

0.26845

0

, 1, sin

0, 1, si 0.23155n

L

R

L W

R W

I Q Z

I Q Z

e I Q Z

e I Q Z

ν
ν

θ

θ

= = + = = +

= = = =

= = − = − = − + =

= = = =

−

− = +

 . (25.2a) 

 
Likewise, for the quarks, also for all generations, the chiral charge quantum numbers are: 
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21 2 1 2

3 2 3 2 3

22 2
3 3 3

21 1 1 1
3 2 3 2 3

21 1
3 3 3

, , sin

0, , sin

, , sin

0, ,

0.34563

0.15437

0.42282

0.07718sin

L W

R W

L W

R W

u I Q Z

u I Q Z

d I Q Z

d I Q Z

θ

θ

θ

θ

= = + = + = + − = +

= = = + = − =

= = − = − = − + =

= = = − = + = +

−

−
 . (25.2b) 

 
 For the Z charge, it is then customary to define separate vertex and axial couplings 

according to ( )V L Rc f Z Z≡ +   and ( )A L Rc f Z Z≡ − , that is, the sum and difference of the charge 

contributions from each of the chiral parts of the fermion.   Given that ( )3 0RI f =  for all fermions, 

and that 2
3 sin WZ I Q θ= −  generally so that 2

3 sinL L WZ I Q θ= −  and 
2 2

3 sin sinR R W WZ I Q Qθ θ= − = − , this means: 

 

( )
( )

2
3

3

2 sinV L R L W

A L R L

c f Z Z I Q

c f Z Z I

θ≡ + = −

≡ − =
, (25.3) 

 
as is well-known.  Therefore, from (25.2) we may deduce that: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 1 1
3 32 2

2 21 1
3 32 2

2 21 4 1
3 32 3 2

2 sin ;                                            

2 sin 0.03690;2sin

2 sin sin

        

0.19127;         

V L W A L

V L W W A L

V L W W A L

c I Q c I

c e I e Q e c e I e

c u I u Q u c u I u

c

ν ν ν θ ν ν

θ θ

θ θ

= − = + = = +

= − = − + = = = −

= − = + − = + = =

−

+

( ) ( ) ( ) ( ) ( )2 21 2 1
3 32 3 2

0.34563;   2 s    in  n s  iV L W W A Ld I d Q d c d I dθ θ= − = − + = = −−=

, (25.4) 

 
Finally, a neutron contains two down and one up quarks, while a proton contains two up 

quarks and one down quark.  If we use the couplings in (25.4) to determine the couplings for the 
proton and neutron, then by simple addition we obtain: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

21 1
2 2

1 1
2 2

0.03690         

                                          

2 n

   

siV V W A A

V V A A

c p c uud c p c uud

c n c udd c n c udd

θ= = + − = + = = +

= = − = = −
 . (25.5) 

 
It will be noted that the protons couplings are equal in magnitude and opposite in sign to those of 
the electron, and the neutron couplings are likely opposite the neutrino couplings. 
 

 Now, it is customary to also define ( ) ( ) ( )R V Ac f c f c f≡ −  and ( ) ( ) ( )L V Ac f c f c f≡ +  

for couplings of the right- and left-chiral projections of a fermion.  Thus, for elementary fermions: 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2

2 24 4
3 3

22 2
3 3

0.46310;           0

0;                                          1

2sin 1 2sin

sin

.53690

0.30873;        0.69127

0.15437;       

1 sin

sin 1 

R L

R W L W

R W L W

R W L

c c

c e c e

c u c u

c d c d

ν ν

θ θ

θ θ

θ

= = +

= = + = − + =

= − = = + − = +

= + = + = − +

−

−
2 0.84563sin Wθ −=

 , (25.6) 

 
and for the proton and neutron: 
 

( ) ( )
( ) ( )

2 22sin 1 2sin

0;                                  

0.46310;     

 

  0.53

      1

690R W L W

R L

c p c p

c n c n

θ θ= − = − = + − = +

= = −
 . (25.7) 

 
 Now let’s return to how the neutrino is attracted to or repelled by other fermions.  In 

general, ( ) ( ) ( )( ) ( ) ( )( )5 5
Z V A V Af f c c f c f c f fµ

µν ν νγ ν ν γ ν γ γ   → ∝ − −   M  represents the 

invariant amplitude for a neutrino ν  interacting with a second fermion f via the weak neutral 
current Z boson, where we neglect the fermion masses in the propagators and use a proportionality 
because all we are interested in is the overall sign.  First, we may construct the identity: 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )5 5 51 1
2 21 1V A V A V Ac f c f c f c f c f c fγ γ γ− = − + + + − , (25.8) 

 
see [13.59] in [20].  Then, Using R V Ac c c≡ −  and L V Ac c c≡ +  as laid out above, as well as the 

well-known relations ( )51
2 1Rf fγ= + , ( )51

2 1Rf f γ= −  for right- and ( )51
2 1Lf fγ= − , 

( )51
2 1Lf f γ= +   for left-chiral projections, together with 5 5µ µγ γ γ γ= −  and the identities 

( ) ( ) ( )5 5 51 1 1
2 2 21 1 1γ γ γ+ = + +  and ( ) ( ) ( )5 5 51 1 1

2 2 21 1 1γ γ γ− = − − , we may use (25.8) to rewrite the 

foregoing invariant amplitude as: 
 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

5 5

                        

Z V A V A

R LR R L L R R L LR L

f f c c f c f c f f

c c c f f f c f f f

µ
µ

µ µ
µ µ

ν ν νγ ν ν γ ν γ γ

ν ν γ ν ν ν γ ν γ γ

   → ∝ − −   

   = + +   

M

, (25.9) 

 

Using ( ) 0Rc ν =  and ( ) 1Lc ν = +  from (25.6) then distributing L L
µν γ ν , this further simplifies to: 

 

( ) ( ) ( )( ) ( ) ( )( )L LZ L R R L L LR Lf f c f f f c f f fµ µ
µ µν ν ν γ ν γ ν γ ν γ→ ∝ +M . (25.10) 

 

Note: the reason R R
µν γ ν  drops out leaving only L L

µν γ ν  is not because the neutrino is massless 

(which is isn’t) and not because the neutrino is only left-chiral (which it also is not because it has 

a mass), but merely because ( ) 0Rc ν =  as a consequence of the V-A character of weak interactions 

which entirely eliminates the R R
µν γ ν  from any amplitudes containing the neutrino. 
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 For a neutrino interacting with an electron, and also with another neutrino, we use (25.6) 
in (25.10) to obtain: 
 

( ) ( )( ) ( )( )
( ) ( )( )

0.46310 0.53690L R L LZ L R L L

L LZ L L

e e e e e eµ µ
µ µ

µ
µ

ν ν ν γ ν γ ν γ ν γ

νν νν ν γ ν ν γ ν

→ ∝ +

→ ∝ +

−M

M

. (25.11) 

 
For a neutrino interacting with up and down quarks we likewise obtain: 
 

 
( ) ( )( ) ( ) ( )
( ) ( )( ) ( )( )

0.30873 0.69127

0.15437 0.84563

L R L LZ L R L L

L R L LZ L R L L

u u u u u u

d d d d d d

µ µ
µ µ

µ µ
µ µ

ν ν ν γ ν γ ν γ ν γ

ν ν ν γ ν γ ν γ ν γ

→ ∝ +

→ ∝ −+

−M

M

. (25.12) 

 
Finally, for a neutrino interacting with a proton and neutron we use (25.7) in (25.10) to find: 
 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

0.46310 0.53690NC
L LL R L L LR L

NC
L LL L

p p p p c p p p

n n n n

µ µ
µ µ

µ
µ

ν ν ν γ ν γ ν γ ν γ

ν ν ν γ ν γ

→ ∝ − +

→ ∝ −

M

M

. (25.13) 

 
 Now, in all of (25.11) through (25.13), a plus sign is indicative of neutral current repulsion 
and a minus sign is indicative of neutral current attraction.  Again, this is just as how 

( ) ( )( )em ee ee e e e eµ
µγ γ→ ∝ +M  and ( ) ( )( )em ep ep e e p pµ

µγ γ→ ∝ −M  tell us that for 

electromagnetic interactions, electrons repel other electrons but attract protons.  But what we see 
above for Z-mediated interactions is that the neutrino will have different interactions with the 
superposed chiral spinors in L Rf f f= + .  In (25.11), owing to the plus sign in 

( ) ( )0.46310 L RL Re eµ
µν γ ν γ+  and the minus sign in ( )( )0.53690 L LL Le eµ

µν γ ν γ− , we learn that the 

neutrino repels with the right-chiral protections in R Re eµγ  and attracts with the left-chiral 

projections in L Le eµγ .  In other words, one consequence of the chiral asymmetry of weak 

interactions is that when a neutrino and electron get close-enough to interact via a limited-range Z 
boson, the neutrino will attract the left-chiral components and repel the right-chiral components 
of the electron.  Overall, there is a small weighting favoring attraction over repulsion by 0.53690  
versus  0.46310 , so the net interaction is attractive.  Note the origin of these numbers in (25.6).  
We also see in (25.11) that neutrinos will repel other neutrinos. 
 

From (25.12) we have a similar chiral interaction asymmetry:  For neutrino / up quark 
interactions, there is a 0.30873−  factor for right-chiral attraction weighted against a 0.69127+  
factor for left-chiral repulsion, so that in net, neutrinos and up quarks repel.  For the down quark 
interaction, there is 0.15437+  for right-component repulsion versus 0.84563−  for left-component 
attraction, with the net result being that neutrinos and down quarks attract.  And from (25.13) we 
see that the neutrino mildly repels with the proton by an amount similarly weighted by 0.53690  
versus  0.46310 , with behavior opposite that of neutrino / electron interaction.  Finally, from 
(25.13), the interaction between the neutrino and the neutron is exclusively, strongly-attractive. 
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 Given ( ) 0Rc ν =  and ( ) 1Lc ν = +  from (25.6), if neutrinos are Dirac not Majorana 

fermions, then we expect the charge quantum numbers of the antineutrinos to be opposite those of 

neutrinos.  Thus, specifically, we expect that ( ) 0Rc ν =  and ( ) 1Lc ν = − .  (To be formally-precise 

with notation, rather than as the oft-employed v , we will hereafter designate the antineutrino as 
T

Cv Cν=  using the Dirac conjugation operator 2 0C iγ γ= .)  This means that antineutrinos will 

attract and repel other fermions via the weak neutral current in a manner opposite what is shown 
in (25.11) through (25.13) for neutrinos.  This also all means that neutrinos strongly repel other 
neutrinos, and strongly attract antineutrinos.  The latter can pull in-range neutrinos and 
antineutrinos together for annihilation.  The same applies for other fermions as well. 
 

 All of this provides the basis for understanding how β −  decay is triggered by CvB 

neutrinos as shown in Figure 17, not only for free neutrons, but for all atomic isotopes in the 

periodic table which undergo β −  decay.  And it also provides the basis for understanding how β +  

decay is triggered by CvB antineutrinos (presumed to have a similar number flux to neutrinos) for 

all isotopes which undergo β +  decay.  First, let’s return to free-neutron decay. 

 
In our earlier “back of the envelope” calculation, we found that one CvB neutrino flows 

through a ( ) ( )2 2141 b 10 m 10 f−= =  cross section every fifteen minutes or so, which happens to 

correspond to the mean lifetime of a free neutron, and which caused us to suspect a non-
coincidental tie between these two seemingly-independent pieces of data.  However, the radii of 
the neutron and the proton – irrespective of the precise details of how these are determined – are 
approximately 1 f, and thus their diameters are about 2 f.  And so, their cross sections based on 

their diameters are about ( )2
2 f .04 b= .  So, the 1 b cross section that we used to arrive at a fifteen-

minute mean life is about 25 times as large as the actual cross of a physical neutrino.  Thus, as we 
fine tune this rough calculation, the question arises how to account for this factor of 25 discrepancy. 

 
Now, having reviewed Z boson-mediated attraction and repulsion, this is accounted for by 

the minus sign in ( ) ( )( )NC
L LL Ln n n nµ

µν ν ν γ ν γ→ ∝ −M   in (25.13):  If a CvB neutrino flows into 

the 1 b cross section centered about the neutrino, it is now close enough to be strongly-attracted to 
the neutrino via a sufficiently long-lived Z boson, or, given the 3 x 10-25 s mean life thus .1 f range 

of even an extreme-relativistic Z boson, more-likely through a ...Z f f Z f f Z→ → → →   chain 

of Z bosons with intermediate f f  pairs extending the range of the Z boson.  In short, the Z boson 

exchanges, likely with intermediate virtual f f  pairs to extend range, operate as a “trap” to 

“ensnare” this non-relativistic neutrino and attract it toward the nucleus, until it is finally close 

enough to β −  decay via d W ed euν +→ →  thus an overall decay n W en epν +→ → . 

 
Next, let’s proceed to beta decays of atomic isotopes.  Here, any stray CvB neutrino which 

passes into the atomic shell structure of an atom – even through a cross section of 106 b which 
corresponds to the shortest 1 ms half-lives in the periodic table – will be attracted by the electrons 
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in that atom, as a whole, albeit mildly, toward the center of that atom, by the electroweak neutral 

current force, via the overall negative sign in ( )Z e eν ν→M  from (25.11), with left-chiral 

attraction outweighing right-chiral repulsion as regards the spinors in L Re e e= + .  So, for example, 

when a neutrino enters the atomic shells to the “left” of the nucleus, the preponderance of the 
electron cloud will be to the “right” of the neutrino, the preponderance of probabilities for the 
electron locations will thereby also be to the right of the neutrino, and by the weak neutral current 
attraction of the neutrino to the electrons as a whole, the neutrino will be attracted to the right, 
toward the nucleus.  This is further made possible by the very fact that these CvB neutrinos have 
such low kinetic energies.  As with the free neutron interactions just reviewed, the range of the Z 

boson can be extended through a ...Z f f Z f f Z→ → → →  chain with virtual fermion pairs.   

 
In this way, the electron cloud interacting with the neutrino via the Z boson interactions 

acts as a sort of a “spider’s web,” snaring the neutrino into the atom and attracting it toward the 
nucleus at the center of the atom.  This works, in part, because the cosmological neutrinos in Figure 
16 have kinetic energies on the order of 1 meV and rest mass energy equivalents from about 35 
meV to 62 meV, which means that these neutrinos are travelling slowly enough to have their 
trajectories changed by the neutral current attractions of the electrons.  Moreover, this initial 
“snaring” of the neutrino is not done by the neutron, but rather, is done by the electrons.  So as 
long as the neutrino and one of the electrons are in a close-enough range to one another, they can 

interact without changing flavor via a neutral Z boson or a ...Z f f Z f f Z→ → → →  chain.   

 
Then, after the neutrino finally draws close to the nucleus through this web of Z interactions 

with the electrons, the nucleons themselves finally come into play.  For a nucleus with a rough 
balance of protons and neutrons, (25.13) makes clear that neutrinos will be attracted toward 
neutrons much-more-strongly than they will be repelled by protons.  That is, overall, neutrinos are 
net attracted toward nuclei via the weak neutral current interaction.  The end result, following very 
large numbers of Z boson for boson chain exchanges, will find the neutrino drawn closely-enough 
within range of one of the neutrons (and specifically within range of a down quark inside one of 

the neutrons), so that the neutrino may undergo a e Wν − +→  decay, followed about 3 x 10-25 s later 

by a W d u+ →  decay.  The net result is that the β −  decay reaction n e pν −→  is now complete, 

and has been triggered by the low-energy neutrino that was initially ensnared by the electron shells 
from a much-larger atomic-scale cross section of about 10-2 bb = 106 b.   

 
Very importantly, the foregoing fully explains the data reviewed earlier, whereby there is 

a consistent and unbroken correlation for light nuclides such that whenever the number of neutrons 

is increased for an atom of a given atomic number, the β −  half-life is decreased:  When we add 

neutrons to a nucleus, we increase the attraction of electron-ensnared neutrinos toward the nucleus.  
This enable neutrinos from a larger cross section to reach the nucleus, which means that there are 
more neutrinos per unit of time available to decay a neutron into a proton, which means that the 

lifetime between beta decays is reduced.  So, the very short β −  half-lives of the neutron-rich 

isotopes of any atom are directly reflective of the fact that these atoms have more neutrons 
available to attract snared neutrinos without them exiting the atomic shells, casting a wider net in 

the nearby space, and thereby reducing the elapsed time until a β − decay event occurs. 
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Now we come to β +  decays of neutron-poor isotopes, where a proton gets decayed into a 

neutron.  Here too, with the half-lives being no less than milliseconds but ranging up to seconds 
and hours and years, we also anticipate a triggering mechanism.  But given the quantum numbers 
that need to be conserved here, we postulate that antineutrinos comprise the trigger mechanism, 
and adopt the prevailing view (e.g., [66]) that the density and flux of CvB antineutrinos is virtually 
the same as that of neutrinos, which means based on Figure 16 that 1 CvB antineutrino will also 
pass through a 1 b cross section approximately every fifteen minutes.  If these antineutrinos are 

the trigger for β +  decay, then once an antineutrino gets in range of a proton, the reaction is either 

C e Wν + −→  followed momentarily thereafter by W p n− → , or the reverse-ordered p nW +→  

followed by CW eν + +→ .  The positron can then annihilate one of the electrons.  The next result 

in either case is C p e nν +→ , with the original electron included, C pe nν − → .  Just as with β −  

decay, we expect that the electrons in the atomic shells will first use Z boson interactions to ensnare 
the antineutrino to draw it toward the nucleus, until it gets close enough for beta decay.  But here, 
we encounter a bit of difficulty that we must sort out: 
 

 In (25.11) we obtained the neutral current cross section ( )Z e eν ν→M  for 

neutrino/electron interactions, and found that on balance this interaction is slightly-weighted 
toward attraction, with a coefficient 0.53690−  for attraction of the neutrino to left-chiral electron 
components weighted against the mildly-smaller coefficient  0.46310+  for repulsion of the 
neutrino from the right-chiral electron components.  In general, Dirac fermions ψ  are related to 

their antifermion counterparts Cψ  by T
C Cψ ψ= .  With 2 0C iγ γ=  and † 0ψ ψ γ=  this means  

2 *C iψ γ ψ= .  When we separate this into the chiral parts of  L Rψ ψ ψ= +  and apply 5 2 2 5γ γ γ γ= −  

we obtain 2 *C L Riψ γ ψ=  and 2 *C R Liψ γ ψ= .  So, comparing these to 2 *C iψ γ ψ=  for the entire 

fermion is how we know that right-chiral antifermions are the antiparticles of left-chiral fermions 
and left-chiral antifermions are the antiparticles of right-chiral fermions.  And because for any 
Dirac fermion the interaction charges of antifermions are opposite those of fermions, starting with 

( ) 0Rc ν =  and ( ) 1Lc ν = +  in (25.6), we know that ( ) 0L Cc ν =  and ( ) 1R Cc ν = − .  So, applying 

(25.9) to antineutrinos interacting with other fermions, we obtain a counterpart to (25.10), namely: 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )                           

C R C LZ C C R C C R L C C L R R L LR L

C R C RC R R R C R L LR L

f f c c c f f f c f f f

c f f f c f f f

µ µ
µ µ

µ µ
µ µ

ν ν ν ν γ ν ν ν γ ν γ γ

ν γ ν γ ν γ ν γ

   → ∝ + +   

= − −

M
. (25.14) 

 
 Using (25.6) and (25.7), the antineutrino counterparts to (25.11) through (25.13) are then: 
 

( ) ( )( ) ( )( )
( ) ( )( )

0.46310 0.53690C R R C R LZ C C C R R C R L

C R LZ C C C R L

e e e e e eµ µ
µ µ

µ
µ

ν ν ν γ ν γ ν γ ν γ

ν ν ν ν ν γ ν ν γ ν

→ = − +

→ = −

M

M

, (25.15) 
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( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )

0.30873 0.69127

0.15437 0.84563

C R R C R LZ C C C R R C R L

C R R C R LZ C C C R R C R L L

u u u u u u

d d d d c d d d

µ µ
µ µ

µ µ
µ µ

ν ν ν γ ν γ ν γ ν γ

ν ν ν γ ν γ ν γ ν γ

→ = + −

→ = − +

M

M

, (25.16) 

 

( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

0.46310 0.53690C R C RZ C C C R R C R LR L

C R LZ C C C R L L

p p p p p p

n n c n n n

µ µ
µ µ

µ
µ

ν ν ν γ ν γ ν γ ν γ

ν ν ν γ ν γ

→ = + −

→ = +

M

M

. (25.17) 

 
So, as we expect, whatever is attractive to neutrinos is repulsive to antineutrinos, and vice versa.  

Most significantly, from ( )Z C Ce eν ν→M , we see that on the balance of the factor 0.53690+  

versus 0.46310− , antineutrinos and electrons will repel.  So, if we wish to use Z bosons to ensnare 

an antineutrino and draw it toward the nucleus as the trigger for β +  decay we have a problem, 

because at least on a superficial first impression, the electrons in atomic shells will repel the 
antineutrino.  To solve this problem, we must dig into the physical relation between the L and R 
chiral states of fermions, and introduce a physical process of “chiral polarization.” 
 
 Fermion chirality has long been a somewhat murky subject.  As developed in detail in Part 

I and reviewed in section 9 of this paper, the 5γ  axial operator is the flat spacetime generator of 

the Dirac-Kaluza-Klein timelike fifth dimension.  And of course, the chiral operators ( )51
2 1R γ= +  

and ( )51
2 1L γ= −  are built using this fifth-dimension generator.  Now, if a massless fermion were 

to exist in nature which was thought possible for neutrinos until their oscillations were discovered, 
then the massless fermion would be entirely-chiral, either left- or right.  For fermions with mass 
which is all that we appear to have in nature, when these fermions are highly-relativistic so that 
their propagation direction is not easily overtaken, the chirality operator is synonymous with the 
helicity operator, which is why chirality is often likened to spin.  But for low-velocity fermions 
this is not so, and chirality has to be approached independently of any other physics concept, and 
thought of merely as one very important consequence of the fifth dimension.  In fact, the existence 
of chiral fermions and axial vectors, pseudo-vectors, etc., as reviewed in section 9, provides clear 
physical evidence of this timelike fifth dimension – and certainly is infinitely superior to the 
complete lack of evidence of a spacelike fifth dimension curled-up into compactified strings.   
 

Now, we know that because all fermions have mass, they are all four-component spinors, 
with the only question being whether neutrinos are Dirac or Majorana fermions.  These four-
component spinors contain a superposition R Lψ ψ ψ= +  of a right- and a left-chiral spinor, and in 

the Weyl representation of the Dirac matrices each of these two chiral spinors can be written as a 
two-component spinor.  Because of the fermions having mass, Rψ  and Lψ  are not separate and 

distinct fermions.  Rather they are simply superposed into the single massive fermion via 

R Lψ ψ ψ= + .  But, because right-chiral and left-chiral spinors do interact differently under Z boson 

exchange as clearly manifest in (25.11) through (25.13) and (25.15) through (25.17), with R 
repelling and L attracting or vice versa, we now pose the question:  is it possible for the R and L 
components of a single R Lψ ψ ψ= +  fermion to become physically-separated as a consequence of 

their having different weak neutral Z-mediated current charges?  This is not to suggest that R and 
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L chiral spinors would physically decouple into separate fermions because this cannot happen for 
any fermion with rest mass.  Rather – similarly to what happens when a charged body moves into 
the middle of an electrically-neutral assemblage of positive and negative electrical charges – the 
question is this: Can the R and L projections of a single fermion with mass, move into physically-
separate spatial positions when they are each having different interactions with another fermion?  
And, in particular, is it possible for the R and L parts of a single fermion to become physically 
polarized whereby the chiral component which is attracting the other fermion moves closer to that 
fermion and the chiral component which is repelling the other fermion moves farther from that 
fermion?  This is what we are introducing as the physical process of “chiral polarization.” 

 
 To set a baseline, let us consider each elementary fermion with R Lψ ψ ψ= +  when that 

fermion it is not interacting with any other fermion.  Referring to (25.6), for the electron, up quark 

and down quark, respectively, we can calculate ( ) ( ) 0.24864R Lc e c e −= , ( ) ( ) 0.21342R Lc u c u −=  

and  ( ) ( ) 0.13054R Lc d c d −= .  Because the sign of all three of these interactions measures between 

he left-chiral components is negative, this means the R and L chiral components of each of these 
fermions are attracted to one another by the weak neutral current interaction, so long as they are 
within about .1 f of one another given that this is the maximum range for Z bosons.  As noted, with 

a ...Z f f Z f f Z→ → → → chain, this range can be extended.  Therefore, the L and R chiral 

parts of fermions can be and likely are held together by the neutral current Z bosons of the very 
same interaction which is responsible for the absence of weak interaction symmetry between these 

left- and right-chiral components.  For a neutrino, ( ) ( ) 0R Lc cν ν = , which means there is nothing 

to hold the Rν  spinor close to the Lν  spinor.  This is why all we ever observe is Lν  seemingly-

decoupled from its Rν  counterpart.  It is not that Rν  and Lν  are separate fermions, because having 

a mass all we have is a single R Lν ν ν= + .  Rather, it is that there is nothing other than gravitation 

to bind these together, which enables Rν  to stray widely from its counterpart Lν .  Indeed, the right-

chiral Rν  is a true “ghost,” having no interactions except for gravitational interaction with any 

other particle, and given tiny masses of the neutrinos, even this interaction is extraordinarily weak.  
 
Now, let us presuppose that the L and R chiral parts of a fermion are held together by the 

weak neutral current except for neutrinos because Rν  has checked out from all interactions except 

gravitation, and that neutral current interactions with another fermion can cause a separation and 
polarization of the L and R components.  Then, let’s move a CvB trigger neutrino within Z-range 
of the electron.  From (25.11), the amplitude contains a 0.53690−  coefficient for attraction with 

Le  and a 0.46310+  coefficient for repulsion with Re , each of which has a larger magnitude than 

( ) ( ) 0.24864R Lc e c e −=  which attracts the two components of R Le e e= +  to one another.  As a 

result, Re  and Le  physically separate, with the former moving further from and the latter moving 

closer to the neutrino.  By way of contrast, suppose we instead move a CvB antineutrino arriving 

within Z-range of an electron.  From (25.15), the ( )Z C Ce eν ν→M  contains a 0.46310−  coefficient 

for attraction with Re  and a 0.53690+  coefficient for repulsion from Le , each of which are still 

larger numbers than ( ) ( ) 0.24864R Lc e c e −=  which attracts the two components of R Le e e= +  to 
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one another.  The overall result in either case is that the superposed chiral projections of the 
electron with rest mass will separate and become polarized, with Re  closer and Le  further away.  

Then, the interaction of the antineutrino with the further Le  will be substantially weaker than the 

interaction with the closer Re , not because of the charge magnitude, but because of the very-limited 

range of the Z boson.  At some later time once the neutrino or antineutrino is removed, the 

( ) ( ) 0.24864R Lc e c e −=  attraction will pull the two chiral projections back together through Z or 

Z-chain interaction, into its non-interacting default.  This is the mechanism for chiral polarization. 
 
 So, for neutrinos entering the electron shell cloud of an atom, the electrons within Z range 

or Z-chain range will polarize, with the ( )( )0.53690 L LL Le eµ
µν γ ν γ−  term in (25.11) drawing the 

neutrino toward the nucleus and the repulsive ( ) ( )0.46310 L RL Re eµ
µν γ ν γ+  term polarized farther 

away and so having a greatly-diminished effect.  For antineutrinos entering the same electron 

cloud, the electrons in range will again polarize, but now with ( )( )0.46310 C R RC R Re eµ
µν γ ν γ−  from 

(25.15) having the dominant effect and ( )( )0.53690 C R LC R Le eµ
µν γ ν γ+  polarized further away 

with consequent diminished effect.  So, because of this chiral polarization, the electron cloud can 
still ensnare antineutrinos toward the nucleus, but with somewhat less strength than it ensnares 
neutrinos.  Specifically, in a polarized setting where the repulsive chiral spinors have been shunted 
far-enough away to have minimal effect, the neutrino draw is stronger than the antineutrino draw 
by a factor of 0.53690  to 0.46310 .  This means that during any period of time, even if there are 
similar number flux rates for CvB neutrino and antineutrinos, more neutrinos than antineutrinos 
will be attracted into the nucleus by the electrons surrounding the nucleus.  And this in turn means 
that as a general trend subject to the vagaries of the shell structures of more complex nuclei, for a 

given atom which exhibits both β −  and β +  decay for some of its isotopes, the β −  half-lives ought 

to be shorter than the β +  half-lives for comparable nuclides.  In other words, if there was no chiral 

polarization, then antineutrino triggers would never make it to the nucleus and we would only 

observe β −  decays.  But because of chiral polarization, both neutrino and antineutrinos can make 

it to the nucleus and we do observe both β −  and β +  decay.  But because there is a modestly-

stronger polarized attraction of neutrinos over antineutrinos, the general empirical trend – with all 

other things being equal – should be toward shorter β −  than β +  decay half-lives.   

 
 Finally, every element in the periodic table from hydrogen (Z=1) through lead (Z=82) has 
at least one stable isotope.  Thereafter, all isotopes of all elements are unstable.  Of course, if 

neutrinos and antineutrinos are the triggers for both β −  and β +  decay, then even these stable 

elements will have CvB neutrinos and antineutrinos passing nearby.  So the question here is how 
and why these stable nuclides are absolutely shielded from beta decay.  And this reduces to the 
question of how CvB neutrinos and antineutrinos – even after they are drawn toward the nucleus 
through atomic electron shell structures that are substantially identical for any given atomic 
number Z – are entirely blocked from penetrating the nuclei of these stable nuclei to precipitate a 
beta decay, even as they are able to penetrate the nuclei of other isotopes. 
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 For elements are stable or near stable (beta decay half-lives in years or in many years) or 
are unstable but decay through channels through other-than weak beta decay, we cannot consider 
CvB neutrinos and antineutrinos as triggers in isolation.  We must also consider the nuclides 
themselves, and specifically, the energetic characteristics of each nuclide as relates to nuclear 
binding energies, and shells structures characterized by the principal, azimuthal, magnetic and spin 
quantum numbers n, l, m and s and the fermion Exclusion Principle that they reflect.  And we must 
also consider Figures 8 and 9 which show that the up quark nests in a global minimum of the 
Lagrangian potential well while the down quark only nests in a local minimum, and Figures 14 
and 15 which show that an electron nests in a global but the neutrinos only in a local minimum.  
Thus, we must expect that the proton and neutron balance in a given nuclide will cause that nuclide 
to stay stable, as is, even if a neutrino or antineutrino closely approaches, simply because a beta 
decay into a different state would lead to a nuclide that is very energetically-disfavored based on 
these binding energies and shell structures and Lagrangian potentials.  Put simply: the arrival of a 
trigger neutrino or antineutrino is a necessary condition to trigger beta decay, but it is not sufficient.  
For sufficiency, the nuclear shell and energy conditions must also be favorable. 
 

As to binding energies, we note that in an earlier publication [31], the author found in [10.6] 
and [10.7] that the rest energy of every free nucleon includes a latent binding energy given by 

P 0 008200606481 7.640679 MeVB . u= =  and 0 010531999771 9.812358 MeVNB . u= =  for the 

proton and neutron respectively.  This latent energy “see-saws” whereby some of this energy is 
always retained to confine quarks, while some is released in the form of fusion energy to bind 
nucleons together into nuclides.  For example, 56Fe with 26 protons and 30 neutrons – which has 
the distinction of having the highest average binding energy-per-nucleon than any other nuclide 

[67] – has available ( )56B Fe 26 7.640679 MeV 30 9.812358 MeV 493.028394 MeV= × + × =  of 

latent binding energy available be released for nucleon binding.  This contrasts remarkably with 
the observed 56Fe binding energy of 492.253892 MeV, and shows that 99.8429093% of the latent 
binding energy goes into binding together the 56Fe nucleus, with a small 0.1570907% balance 
reserved for confining quarks within each nucleon.  As such, this constitutes an energy-based 
explanation of why quarks always remain confined even in this most-tightly-bound of nuclides.  
But the key point is that with each neutron containing about 9.81 MeV and each proton only about 
7.64 MeV of energy that can be used for inter-nucleon binding, as a nuclide grows larger in its 
nucleon number, neutrons will be better-able to bind than protons, which explains the manifest 
excess of neutrons over protons as atomic number grows.  So even if this particular research result 
in [31] is not considered, this does not obviate the fact that larger stable nuclides are neutron-rich, 
as are most isotopes of larger nuclides in general. 
 

With all this in mind, let’s again return to the periodic table and see how the foregoing 
might be use to explain the observed data trends, working from the nuclide table [64] and isotope 
listings it links to.  It is important to keep in mind at the outset that for any given element with the 
atomic number Z and thus Z protons, there will also be Z electrons, and that the atomic shell 
structure of these electrons will be substantially identical regardless of the particular isotope under 
consideration.  This means that the initial step of ensnaring a CvB neutrino toward the nucleus 
will proceed in essentially the same way for all isotopes of a given element with Z, with the same 
flux of CvB fermions drawn close to the nucleus irrespective of isotope.  Therefore, the half-life 
of any particular isotope and the question of which are stable and which are not, will depend 
virtually exclusively upon the particular nuclide under review. 
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Hydrogen 
 

We begin with Hydrogen, with one proton and one electron, and specifically with 1H 

protium which does not contain any neutrons.  This of course, is the output of the β −  decay process 

n e pν −→  decay process illustrated in Figure 17, because 1H e p−= .  So now, we wish to consider 

the β +  inverse of this process, which has never been observed and for which the data rules out a 

half-life below 1034 years.  So, suppose that we now have a 1H atom and a CvB antineutrino 
approaches, which by random statistical good fortune happens to be aimed dead-on toward the 
proton so that chiral polarization of the electron is not even needed to ensnare the antineutrino 
toward the nucleus.  From (25.16) and (25.17) this antineutrino will be attracted, on balance, 
toward the proton and toward an up quark in the proton.  Once they grow close enough for a 

C W eν − +→  or p W n+→  emission, a β +  decay would proceed by the channel  

Ce p e e n nν γγ− + −→ →  including electron / positron annihilation into photons, or into other bosons 

or mesons at higher energies.  To explain this we turn to Figures 8, 9, 14 and 15 which make clear 
that with all other things being equal – and here they are equal because all we have is a proton and 

an electron in isolation of any other nucleons – the state with pe−  thus ue−  for its distinguishing 

quark content, is energetically favored over the state with nν  thus dν  for its distinguishing quark 
content, because each of u and e- nest at the global minimum while each of d and ν only nest at 

the local minimum of the Lagrangian potential.  This explains why this β +  is not observed for an 

isolated proton and electron constituting 1H. 
 
Next let’s proceed to 2H deuterium and to 3H tritium.  The former also is stable, but now 

contains a neutron which via (25.17) will strongly repel an incoming antineutrino.  This makes it 

even harder for a β +  decay to occur because in addition to the energy considerations of the 

preceding paragraph, there is also repulsion to ward off the incoming antineutrino.  In the opposite 

direction, a β −  decay of 2 2H He→  would produce a helium atom with no neutrons, which is 

energetically barred based on considerations we will momentarily consider regarding helium.  The 

latter, 3H, has one proton (1p) and two neutrons (2n).  This does undergo β −  decay into 3He with 

one neutron becoming a proton, but with a comparatively-large 12.32 y lifetime that is about half 
a million times longer than the 15-minute lifetime of a free neutron into a proton.  The 2 neutrons 
in this instance fill a complete 1s shell ( 1n = , 0l = ) while the 1 proton occupies a 1s shell with 
an open proton position.  As we shall see when we get to some heavier nuclides, the relative 
stability of 3H with 2n appears to be part of a general trend wherein all of the monoisotopic 
elements except for beryllium contain an even number of neutrons, i.e., complete neutron shells as 
regards the spin quantum number s. 
 
Helium 
 
 Now we turn to helium.  It is best to start at 4He for which the nucleus is an alpha particle.  
This is something of a paradigm for atomic stability, because there are numerous decay channels 
in which an entire α  particle is emitted or absorbed whole hog.  This extreme stability, we ascribe 
to 4He having a complete 1s shell for both the protons and the neutrons, which is energetically 
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stable enough to ward off any incoming CvB neutrinos or antineutrinos from precipitating either 

a β −  or a β +  decay channel.  The next-lower isotope, 3He, is also stable.  Being poor by 1 neutron, 

were it to decay, the reaction would be β +  from 3 3He H→ .  As between these two options, the 

nuclear bending energies render the neutron-poor 3He more stable that the neutron-rich 3H because 
these elements are still too light to require extra neutrons for effective binding, and relatedly, for 

the same reasons just reviewed as to why with all other things being equal, a e p−  state is 

energetically favored over a nν  state.  The lightest isotope, 2He has two protons and no neutrons.  

Here, the alternative state is 2H which can be arrived at through a β +  decay.  Here, with the two 

protons in 2He attract an incoming CvB antineutrino with no neutrons to repel, while the 1p and 
1n in 2H provide a better attractive / repulsive balance.  So, between the two options of 2He versus 
2H, the latter is the stable option. 
 

 As to helium β −  decay, the isotopes 6He and 8He have two and four excess neutrons 

respectively.  These excess neutrons – especially because they form complete spin pairs – are 
highly attractive to incoming neutrinos.  If we regard 6He as an alpha plus two neutrons denoted  

2nα + , and 8He as 4nα + , then with the α  having its neutrons and protons in n=1 shells, the 
additional neutrons in an n=2 shell with complete spins provide a great deal of additional attraction 

to CvB neutrinos via ( )NC n nν ν→M  in (25.13), because there are no n=2 protons at all to offset 

this attraction.  Thus, after the electron shells have ensnared passing CvB neutrinos and drawn 
them toward the nucleus, the 6He nucleus will beta decay with an 806.7 ms half-life, and 8He which 
will attract the neutrinos even more strongly, will decay with an even-shorter 119.0 ms half-life.  
In these two data points, we see a clear empirical correlation whereby as we increase the number 
of neutrons, we attract more neutrinos from a wider cross section, reduce the time required for one 

of these neutrinos to reach a neutron to decay, and thus reduce the half-life.  Moreover, with 610  b  
corresponding to 1 ms, a half-life on the order of 1 s corresponds to 103 b and 100 ms corresponds 
to 104 b.  So, the nuclides in these helium isotopes have enough attractive juice to decay with 
neutrinos ensnared by the two helium electrons from within about 103 b for 6He and 104 b for 8He.  
Note also that 7He with 5 neutrons and 9He with 7 neutrons do not beta decay.  Rather, they favor 
shedding the odd neutron which is not spin-paired, then beta decaying from the lighter isotope.   
 
Lithium 
 
 When we now turn to lithium, which has the stable isotopes 6Li and 7Li, for the first time 
we open an n=2 proton shell.  And at the same time, we cross a natural nuclear physics threshold 
where “all other things” are “no longer equal,” and neutron-rich nuclides begin to provide more 
stability than those which have more protons.  In terms of the latent binding energies of about 9.81 
MeV per neutron and about 7.64 MeV per proton, this is the threshold at which more energy is 
required for stable binding, and thus, more neutrons are needed.  This is seen in 7Li with 3p and 
4n, which could in theory beta decay to 7Be with 4p and 3n.  But the latter 7Be has a half-life of 
53.22 d and the neutron-rich former 7Li is the one that is stable.  Likewise, 6Li is stable.  The 
alternatives would be 6Be with 4p and 2n which is neutron poor and so cannot sustain binding (and 
actually decays by releasing 2p), or 6He already reviewed which, with 2nα + , will readily attract 

ensnared neutrinos and so is readily susceptible to 6 6He Li→  decay.  The lighter isotopes 5Li and 
4Li could in theory undergo β +  decay to 5He and 4He respectively, but apparently, nature follows 
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a path in which simply discarding a proton is energetically-preferred.  For β −  decay, 8Li, 9Li and 
11Li with 5, 6 and 8 neutrons respectively are respectively more-attractive to ensnared neutrinos.  
And, correlating fully with the neutrino trigger viewpoint, these have respective half-lives of 840.3 
ms, 178.3 ms and 8.75 ms. with CvB neutrinos harvested the electron shells over cross sections 
ranging from about 104 b for 8Li down to a little under 106 b for 11Li. 
 
Beryllium 
 
 One might suppose that 8Be ought to be stable, but it is not.  This is because this is already 
in the domain where extra neutrons are required for stability, and also because if we write is as 

2p 2nα + + , the alpha both of its proton and neutrons in an n=1 s-shell, whereas the extra 2p and 

2n must be in an n=2 p-shell.  And it is more-favored to break this 8Be into 2α  each with s-shells, 
than to maintain the p-shell.  So, 9Be with 4p and 5n is the only stable isotope, making beryllium 
the first monoisotopic element, and the only one with an even number of protons and an odd 
number of neutrons.  All others have odd proton and even neutron numbers.  Moreover, 10Be with 
4p and 6n, in a pattern that will be repeated for heavier elements, is nearly stable, but does undergo 

β −  decay into 10B with a very long half-life of 1.39x106 y.  And of course, 10B is a stable isotope 

of boron.  For the lighter isotopes, 7Be does decay into the stable 7Li via electron capture, which 

is a form of β +  decay, with a comparatively-long 53.22 d.  Were 6Be to beta decay it would 

become 6Li which is stable, but nature takes the route of ejecting 2p to arrive at 4He, apparently 

once again because of the extreme stability of alpha particles.  For β −  decay, following the long-

lived 10Be already discussed, we have 11Be, 12Be and 14be with respective half-lives of 13.81 s, 
21.49 ms and 4.84 ms, once again correlating fully a neutrino trigger where excess neutrons greatly 
enhance the neutral current attraction of triggering neutrinos.  We note that 13Be with 4p and 9n 
does not beta decay.  This would seem to be because the ninth neutron is exposed by itself in an 
incomplete-spin 2p shell, instead is rapidly shed to drop down to 12Be which is the isotope that 
undergoes beta decay.  This is similar to what happens when 7He drops to 6He before the latter 
undergoes beta decay, and it begins to establish a pattern wherein heavy isotope with an even 
number of neutrons (complete spins) will beta decay while those with an odd number of neutrons 
(incomplete spins) prefer to first very quickly drop a neutron and then beta decay. 
 
Boron 
 
 Boron is stable in its 10B and 11B isotopes.  The latter is rich by one neutron as is part of 

the pattern for elements heavier than helium.   For light isotopes, 9B could in theory β +  decay into 

stable 9Be with 4p and 5n.  But instead, again because of the extreme stability of the alpha, the 
much-more rapid decay in lieu of waiting around for a CvB neutrino, is to drop a proton down to 
8Be which in turn immediately decays into two alpha particles.  Next, 8B with 5p and 3n does 

indeed β +  decay into 8Be which in turn immediately decays into two alpha particles in 4He.  All 

lighter isotopes also find a way to quickly decay toward the stability of 4He.  As to heavier isotopes, 
12B, 13B, 14B, 15B, 17B and 19B all exhibit β −  decay, with respective half-lives of 20.20 ms, 17.33 

ms, 12.5 ms, 9.87 ms 5.08 ms and 2.92 ms.  This is a particularly striking validation of the 
correlation in which beta decay is precipitated by a neutrino trigger, with larger numbers of 
neutrons causing greater neutrino attraction and thus a decreased half-life.  Reinforcing the pattern 
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from Helium and Beryllium, we see that 16B and 18B with 11n and 13n respectively do not beta 
decay but instead much-more quickly shed a neutron, then beta decay from the lighter isotope.    
 
Carbon 
 

 Carbon is the first nuclide which has multiple isotopes that undergo β +  decay, and which 

as a result provides data that can be used to confirm the view that CvB antineutrinos trigger these 

types of beta decays just as CvB neutrinos trigger β −  decays.  The stable nuclides as 12C and 13C 

and at a half-life of 5730 y, 14C with 6p and 8n, well-known for its use in archeological dating, is 
almost but not quite stable.  With its even number of neutrons, 14C is the second element to repeat 

the pattern that stated with 10Be, 4p and 6n, and its 1.39x106 y half-life.  The shorter-lived β −  

decays begin in earnest with 15C through 22C with the exception of 21C with 6p and 15n which 
instead drops a neutron to 20C before it beta decays into 20N.  Completely validating the neutrino 
trigger viewpoint, the respective half-lives of 15C through 20C are the successively-diminishing 
2.449 s, 0.747 s, 193 ms, 92 ms, 46.2, ms and 16 ms, and for 22C, 6.2 ms, owing to the successively-
increasing neutral current attraction of neutrino to the added neutrons. 
 
 But as just noted, carbon exhibits a half-life pattern that also validates the antineutrino 

viewpoint for β +  decays.  At the lightest isotope, 8C with 6p and 2n does not beta decay, but rather 

is alpha-driven.  It sheds 2p down to 6Be, which in turn immediate sheds 2 more protons to an 

alpha particle.  However, 11C, 10C and 9C – all of which are proton-rich – do exhibit β +  decay, 

and their respective half-lives are the successively-diminishing 20.334 m, 19.290 s and 126.5 ms.  

There are two features of this data which are striking.  First, if β +  decay is triggered by CvB 

antineutrinos being attracted to protons via ( )Z C Cp pν ν→M  in (25.17), then as the number of 

neutrons which also by (25.17) would repel antineutrinos is reduced, the overall attraction balance 

over repulsion is increased.  Thus, more antineutrinos will reach a proton to start a β +  decay.  

Second, because the ( )Z C Cp pν ν→M  attraction of antineutrinos to protons in (25.17) is actually 

an attraction-weighted mix as between the two chiral sates, while the ( )NC n nν ν→M  attraction 

of neutrinos to neutrons in (25.13) is purely attractive and thus stronger, this means that with all 

else equal, more neutrinos will be harvested per unit of time for β −  decay than will antineutrinos 

be harvested for β +  decay, with the result that the β +  half-lives ought to be longer, in general, 

than the β −  half-lives.  Here, beyond the long 14C lifetime that occur for reasons of nuclear 

structure and stability not neutrino availability, the β −  half-lives run from 2.449 s down to 6.2 ms, 

while the β +  half-lives run from 20.334 m to 19.290 s to 126.5 ms.  These are consistently longer 

than the β −  half-lives, and directly exhibit how the Z-mediated neutral current neutron-neutrino 

attraction is definitively stronger than the antineutrino-proton attraction, and how this directly 
impacts the observed beta-decay half-lives. 
 

Nitrogen  
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 The same pattern just reviewed for carbon remains intact for all of N, O, Li and Ne, but 

with some interesting details for the lightest-isotope β +  decays.  For nitrogen, 14N and 15N are 

stable.  For 16N through 22N the β −  half-lives correlated to increased neutron number are the 

consistently-diminishing 7.13 s, 4.173 s, 622 ms, 271 ms, 130 ms, 87 ms, and 13.9 ms., supporting 
neutrino triggering with weak neutral current attraction to neutrons.  For 13N and 12N which are 

the only two isotopes with β + , the half-lives of 9.965 min and 11.000 ms are also consistently 

diminishing.  However, the latter for 12N decay does appear for the first time to buck the trend of 

β +  half-lives being longer in general than β −  half-lives.  But on closer inspection we find that 

there are two channels for this decay.  The dominant channel (96.5%) is for 12 12N C→ .  The less-

frequent channel (3.5%) starts with 12N but includes both an alpha decay and a β +  decay.  

However, the β +  decay and the proton loss do not happen absolutely simultaneously.  If the β +  

occurs first, then we have 12 12N C→ , and with 12C being stable, nothing more will happen.  This 

just repeats the first channel.  So, the α  drop must occur before the β +   to distinguish this channel, 

which means that the detailed sequence is 12 8 8N B Be→ → .  The 8Be then further alpha decays 
toward stable helium.  Now, alpha-driven decays, or drops of individual protons or neutrons, are 
typically shorter than beta-decays by many orders of magnitude.  For example, many neutron drops 

take nanoseconds, the paradigmatic alpha decay 8 4Be 2 He→  has a half-life of 6.7x10-17s, and 
many proton drops are even shorter.  Therefore, it is to be expected that the less-frequent 
12 8 8N B Be→ →  channel will actually be very-much much faster and the dominant 12 12N C→  
somewhat slower, with 11.000 ms half-life being a statistical averaging of these two channels.  If 

that is the case, it may well be – and likely is the case – that the 12 12N C→  channel for a pure β +  

decay, when segregated out, would indeed sustain the neutrino- and antineutrino-trigger trend of 

β +  decays having generally longer half-lives than β −  decays. 

 
Oxygen 
 
 Oxygen is stable at 16O, 17O and 18O, continuing the neutron-rich stability for nucleons 

heavier than that of helium.  The β −  decays from 19O through 25O maintain the steadily-decreasing 

half-life sequence of 26.464 s, 13.51 s, 3.42 s, 2.25 s, 82 ms and 65 ms for increasing attraction 
between neutrinos and neutrons.  Beta decays from 15O to 13O are 122.24 s, 70.598 s and 8.58 ms 
likewise maintaining the pattern for decreasing repulsion between neutrinos and antineutrinos.  

The first two β +  half-lives are longer than all of the β −  times consistent with greater attraction 

between neutrinos and neutrons than between antineutrinos and protons.  The 13O half-life again 
bucks the trend.  But this mixes two channels, namely, the dominant channel (about 89.1%) with 

two serial β +  decays from 13 13 13O N C→ → , and a less-frequent channel (10.9%) with both a 

β +  decay and a proton emission from 13 12O C→ .  Similarly to what was reviewed for nitrogen, 

the β +  decay and the proton loss do not happen absolutely simultaneously.  If the β +  occurs first 

then the detailed sequence is 13 13 12O N C→ → .  But if the proton drop occurs first then the 

sequence is 13 12 12O N C→ → .  But as just reviewed, 12N itself has two modes of proceeding, with 

the less-frequent (3.5%) mode being 12 8 8N B Be→ → .  So as with nitrogen, we expect that 8.58 
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ms for 13O actually averages the two decay channels, that the not-pure β + , p decay 13 12O C→  

actually occurs much faster, particularly when it makes brief passage through 12N.  So as with 

nitrogen above, when the dominant and pure 13 13 13O N C→ →  decay is segregated out, we 

anticipate a longer lifetime consistent with β +  decays having taking longer than β −  decays. 

 
Fluorine 
 
 Fluorine is the second monoisotopic element, and is the first with even neutron and odd 
proton numbers which trend is followed by all succeeding monoisotopes.  The stable isotope is 19F 

with 9p and 10n.  The β −  half-lives start at 11.163 s for 20F diminishing to 4.9 ms for 27F.  28F 

only emits a neutron, and 29F drops to a 2.6 ms half-life.  The absolute trend of decreasing β −  life 

with increasing neutron number thus increased neutrino attraction is very-slightly broken for the 
first time by 21F with 9p and 12n and a 4.158 s half-life, followed by 22F with 9p and 13n and a 
4.23 s half-life.  But now we are at a place in the periodic table where the nuclides are large and 
complex enough that mild pattern breaks in serial half-life decreases can be attributed to the 
vagaries of atomic structure, just as occurs when general nuclear binding energy trends are broken 

for more complex nuclides.  The β +  half-lives are 109.771 min for 18F and 64.49 s for 17F, and 

these do follow both the expected diminishing half-life pattern and also the pattern of β +  half-

lives being generally longer that those for β −  decays. 

 
Neon 
 

 The three stable isotopes of neon are 20Ne, 21Ne and 22Ne.  The β −  half-lives begin with 
23Ne and its 37.24 s half-life, then 24Ne with the longer 3.38 min, then 25Ne with 602(8) ms.  So 
this too is a break in the half-life diminishment correlation.  Thereafter the half-lives do serially 
descend from 26Ne with 197 ms to 31Ne with 3.4 ms, and then a mild break by 32Ne with 3.5 ms.  
The 24Ne isotope which has the longer half-life than 23N has 10p and 14n, which may be 
attributable to the complete neutron shell, which is a 3p0 shell in atomic parlance, with the 0 

subscript denoting that ml=0.  The isotopes with β +  decays are 19Ne with 17.296 s, 18Ne with 

1.672 s and 17Ne with 109.2 ms.  This adheres to the correlation of diminishing antineutrino 
repulsion with reduced neutron number, and setting aside 24Ne with its 3.38 min that breaks the 

β −  sequence, it also adheres to the pattern of longer β +  over β −  half-lives. 

 
 To summarize, all of the foregoing data for H through Ne does appear to confirm the 
viewpoint that weak beta decays are triggered by CvB neutrinos or antineutrinos entering the 
electron shells of atoms, being lured by weak neutral current Z boson or boson-chain interactions 
with chiral-polarized electrons toward the nucleus, being additionally attracted to the nucleus via 
neutral current interactions with individual nucleons once they are in range, and finally 
precipitating decay via W boson exchange.  First, all beta decay lifetimes in the periodic table are 
no shorter than single digits of milliseconds, which, given the empirical number fluxes and low 
kinetic energies of CvB neutrinos shown in Figure 16, fits the view of these neutrinos and 
antineutrinos as being harvested from a cross section within 106 b of the nucleus.  With 

610  b .01 bb= , this has linear dimensions on the order of 1/10 the Bohr diameter.  That this number 
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is .01 bb and not 1 bb also fits with the view that for CvB fermion to be drawn to a nucleus there 
needs to be at least some original penetration of a CvB fermion into the atomic shell based on its 
random travels through space, and that CvB fermions which merely “glance” the electron shells 
will not interact sufficiently to become ensnared.  In short, the CvB number fluxes and low kinetic 
energies, diameters of atoms, and beta-decay nuclide half-lives all match up. 
 
 Second, given that the weak neutral current interaction between neutrinos and neutrons are 
strongly-attractive and between neutrinos and protons are repulsive albeit less strongly, and that 
these same interactions between antineutrinos and neutrons are strongly-repulsive and between 
antineutrinos and protons are attractive albeit less strongly, through the first eight elements from 

H to O there is an unbroken correlation between increased neutron number and decreased β −  half-

life on the former hand, and between decreased neutron number and decreased β +  half-life on the 

latter hand.  Moreover, when we carefully consider the dual channels for the lightest isotopes of N 

and O, there is also an unbroken pattern of β −  half-lives being shorter than β +  half-lives based 

on neutrino interactions with neutron-rich isotope nuclides being more strongly attractive than 
antineutrino interactions with proton-rich isotope nuclides.  As one considers larger nuclides there 
are occasional mild breaks in these basic patterns, but these may be fairly attributed to the complex 
nuclear shell structures masking these patterns, not really breaking them.  
 

It is also important to observe that all of the foregoing appears to rule out neutrinos being 
Majorana fermions which are their own antiparticles, and to favor them being Dirac fermions just 
like all other elementary fermions.  Simply stated: it would not be possible neutrinos to attract and 
antineutrinos to repel neutrons, and also for neutrinos to repel and antineutrinos to attract protons, 
if neutrinos and antineutrinos were one and the same.  Thus, one can then make the broad statement 
that if beta decays are in fact triggered by CvB neutrinos and antineutrinos and their weak-neutral 
current interactions with electrons, neutrons and protons in the manner proposed, then the 

empirically-observed half-life data for β −  decays taken together with that for β +  decays 

definitively and empirically rules out Majorana neutrinos. 
 
 Understanding weak beta-decay as the consequence of triggering by the flux of CvB 
neutrinos may also help to solve the neutron lifetime puzzle as reviewed in, e.g., [68], [69], wherein 
on average, “bottle” neutrons decay after 14 minutes and 39 seconds while “beam” neutrons last 

14 minutes and 48 seconds.  If β +  decays occur when a CvB neutrino passes through the 100 b 

cross section about a free neutron and then is attracted toward the neutron via the weak neutral 
current, this would indicate that the motion of the beam neutrons somehow reduces the number 
flux of the CvB neutrinos which might otherwise be available to trigger their decay.  This in turn 
suggests a refinement of beam experiments to test the CvB trigger explanation: If the motion of 
neutrons in the beam is reducing the number flux of CvB neutrinos and this in turn correlates to 
lifetime, then performing neutron beam experiments which vary the speed of the neutrons should 
reveal a correlation wherein the faster the neutron beam, the longer the lifetime. 
 

There are two mechanisms which may be considered to account for this number flux 
reduction, and both simply involve the motion of neutrons in the neutron beam:  First, in 
electromagnetism, when we start with static charges in a pair of parallel wires and then apply a 
voltage to generate currents, there is an attraction between the wires when the currents flow in 
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parallel and a repulsion when they flow antiparallel.   This of course, results from the magnetic 
fields of moving charges, and it is well-known how to relate this to relativistic motion.  So, the 
motion of the neutrino beam relative to the CvB background likewise will create neutral current 
“magnetic” fields which will alter the attractive and repulsive interactions between the CvB 
neutrinos and beam neutrons and thus impact number fluxes.  Unlike parallel wires in 
electromagnetism, however, the interaction range for the weak neutral current is extremely short. 

 
Second, perhaps decisively, although the CvB neutrinos are non-relativistic, they are still 

extraordinarily fast by human standards.  Unlike light they do not orbit the earth 6.6 times every 
second, but they still do travel fast enough to cross an entire continent every second.  So, by way 
of a loose analogy, one may think of a bottle neutrino as a car sitting by the side of a highway on 
which many other cars are driving by at 60 miles per hour, and may think of a beam neutrino as a 
car that starts to drive at 30 mph on the highway and so now sees a reduced “flux” of other cars 
going by because of its own motion.  Similarly, if the CvB neutrinos are flowing past the “at rest” 
bottle neutrons from all directions in a statistically-isotopic manner, once these neutrons are 
imparted with motion in the form of a beam, one anticipates that the overall CvB number fluxes 

will diminished and / or the energy distribution will be altered.   
 
In terms of Figure 16, and keeping in mind the Michaelson-Morley experiments which 

yielded a negative outcome for the detection of a rest frame for light, this is to say that: a) the CvB 
background does have a rest frame; b) the Figure 16 data curve for (at least) the cosmological 
neutrinos is taken in this CvB rest frame; c) when detected from other-than its rest frame the CvB 
background does not have the exact same data curve as that shown in Figure 16, because the motion 
either diminishes the height of the curve and / or alters the spread of the curve along the x axis and 
/ or alters the position of the curve along the x axis.  If the CvB background is in fact the trigger 
for beta decays, that any or all of the above will change the beta-decay lifetime for beam neutrinos 
in relation to bottle neutrinos.  As such, the neutrino beam / lifetime experiments provide a very 

good vehicle to test the view that beta decays are triggered by the CvB background, especially if 
the effects of motion on this background can be calculated or detected and then correlated to 
neutron lifetime observations. 

 
Once we understand beta decay half-lives as being environmentally-determined, for 

example, by the particular configuration of electron shells and nuclei inside of which the decays 
are taking place, or by the speed with which a beam of neutrons is moving through the CvB 
background, then any space or time anisotropies in the CvB background will also affect half-life.  
That is, the lifetime of a neutron or proton is determined not only by the atom of which it is a part 
or the speed with which it is beamed, but also, simply, by where it is sitting and when it is sitting 

there.  So, if it becomes possible to detect irregularities in the CvB background, then simply 
moving atoms from one place to the next and finding that the lifetimes have changed becomes 
another way of validating he neutrino trigger hypothesis.  Conversely, one can invert this logic and 
actually use beta decay-susceptible isotopes to detect anisotropies in the CvB background.  
Although in the foregoing discussion we shown the centers of the half-life data and ignored the 
error bars, there are actually two views one can take of these error bars:  First, they may be regarded 
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as ordinary experimental errors based on the limited precision of measuring equipment.  Second, 
unbeknownst, they may in fact already be measuring these CvB anisotropies. 
 

Specifically, while experimental precision is always a factor to be considered, it is not very 
difficult to measure elapsed times on the order of minutes or hours, nor does this require the 
patience of measuring years or centuries.  So, some of the isotopes already reviewed may be 

providing us data regarding the CvB anisotropies even though we are unaware of this.  For 

example, the half-life 11 11C B→  is listed in the Wiki data as 20.334(24) min (error spread just 

under 3 s), that of 13 13N C→  is 9.965(4) min (error just under .5 s), that of 18 18F O→  is 

109.771(20) min (spread of 1.2 s), and that of 24 24Na Mg→  is 14.9590(12) h (spread of about 

8.64 s).  Certainly, using 24Na as an example for discussion, there is no problem at all finding a 
clock that can discern an 8 second time difference, which rules out equipment resolution as the 
source of the error bar.  And while half-lives are determined using statistical data based on large 
numbers of individual decay events, it is difficult to believe that one cannot carry out enough 
experiments with enough samples to determine the 24Na half-life, in a way that statistically narrows 
this 8.64 second spread much more tightly.  So, the only plausible explanation is that this 8.64 
second spread is in fact, unbeknownst to us, a measurement of CvB anisotropy.  Of course, 

translating an 8.64 s spread out of 14.9590 h overall into a percentage number for CvB anisotropy 
would require a very complex understanding of the structure of 24Na and its atomic and nuclear 
shell structures and binding energies and weak neutral current interactions with neutrinos.  So, the 
simplest analysis is that which uses the simplest nuclear structure, and there is none simpler than 

a single free “bottle neutron” with a mean life of 880.2 1.0 s±  based on the PDG data [49].  This 

is a 2 / 880.2 0.227%=  error bar which, properly understood, tells us that on the surface of the 

earth where the experiments to arrive at this neutron mean life data were presumably conducted, 
there is a 0.227% anisotropy in the CvB neutrino background.  Other experiments to directly detect 
CvB anisotropies – if consistent with this number – would confirm the neutrino trigger hypothesis. 
 

Pedagogically, CvB neutrinos and antineutrinos being the triggers for weak beta decay also 
provides a more complete way to think about atoms and their nuclei:  Historically, the neutrino 
was proposed by Pauli and Fermi in view of Chadwick’s discovery of the neutron as a means to 
ensure conservation not only of energy but of particle number and the other quantum numbers 

which distinguish one type of fermion flavor from another.  So, the observed β −  decay written as 

n pe−→  is incomplete, because on the left it has one baryon and on the right it has both a baryon 

and a lepton.  Therefore, to provide proper balance, we add an antineutrino to the right and 

correctly write this as n pe ν−→  (noting again that to be precise we should use the conjugate 

fermion Cν  rather than the adjoint fermion ν ).  Likewise, the β +  reaction, properly-balanced, is 

pe nν− →  for electron capture or p ne ν+→  for positron emission.  But in all instances, there is a 

tendency to show the neutrino or antineutrino on the right side amidst the byproducts of the 
reaction, as opposed to on the left side amidst the ingredients of the reaction.  There appear to be 

two subliminal reasons for this:  First, the foregoing historical context in which neutrinos and 
antineutrinos were added to the byproducts of a reaction to adhere to generalized conservation 
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laws.  Second, because we typically do think about electrons and protons and neutrons as “parts 
of an atom” but do not typically think about neutrinos in this way.  Neutrinos are a sort of 
afterthought needed to balance out the conservation laws. 

 
But once we take the CvB as a given feature of nature, then this background becomes the 

natural “environment” which all atoms exit.   Nuclei naturally exist amidst a CvB background that 

permeates everywhere.  To think about the process by which the electrons and protons and neutrons 
comprising an atom undergo beta decay without understanding this metabolizing neutrino 
environment is like trying to understand human biology without knowing that humans live in an 
atmosphere which provides oxygen required to metabolize their biological processes.  So, once we 

think about atoms always being in a CvB atmosphere, it is natural to rewrite β −  decay as 

n e pν −→  and β +  decay as either pe nν − →  or p neν +→ , treating the triggering neutrinos and 

antineutrinos as the “oxygen” which metabolizes beta decay. 
 
 In closing, it is often said that neutrinos pass through matter and in most cases pass through 
the entire earth without interacting, which is why they are so hard to detect.  But if the foregoing 
is confirmed, this means that weak beta-decays are in fact the best and most-prolific detectors there 
are, of neutrinos flowing through our daily environment.  Indeed, whenever a nuclear beta decay 
is observed – although previously unbeknownst – this means that a neutrino or antineutrino has 
been struck and been absorbed by a nucleus, with one of the nucleons in that nucleus having acted 
as a neutrino detector.  Knowing that there is a neutrino or antineutrino passing through and being 
snared by the electron shells toward a nucleus whenever a beta-decay event is about to occur, may 
also open new paths for better technological “management” of neutrinos. 
 

Conclusion 
 

 As a result of this theory of fermion masses, as summarized at (21.5), the known masses 
of the six quarks and the three charged leptons are all explained within experimental errors in terms 
of the real CKM and PMNS mixing angles and five other parameters.  Four of these other 
parameters are known, namely the Fermi constant FG  and its related vev, the Newton gravitational 

constant G and its associated Planck energy, the Higgs boson mass, and the value ( )2
WMα  of the 

electromagnetic running coupling at an impact energy equal to the W boson mass.   The final 
parameter is the rest mass of a predicted second Higgs boson from which leptons gain their masses.  
As a result, the known masses of the top and strange quarks are refined at (14.5) and (15.10) to 
over two orders of magnitude greater accuracy than what is known at present.  The CKM mixing 
angles 23Cθ  and 13Cθ  have their values tightened at (15.15), the latter by almost three orders of 

magnitude.  The Higgs boson mass is refined at (16.5) to almost three orders of magnitude greater 

accuracy, from the presently known  2125.18 0.16 GeV /hm c= ±  to a much-tighter 
2125.2485 0.0002 GeV /hm c= ± .  The quark masses and the CKM quark mixing angles and 

matrix components and then further refined through the global unitarity fitting at (18.10), (18.11) 
and (18.13), using the CKM mass parametrization (18.3), which also substantially tightens the 

CKM matrix element magnitude ubV  at (18.13).  The PMNS mixing angles 12Pθ  and 13Pθ   are re-
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centered at (19.15), and the remaining real angle 23Pθ  is made tighter at (20.7) by more than two 

orders of magnitude.  At (19.17) the value of ( )2
WMα , presently known to be on the order of 

1/128, is given the more-precise valuation ( ) ( )2 127.90321 / 0.0080WMα ±= .  Further, the sum 

of the masses of the three flavors of neutrino is predicted at (20.2b) to be 
20.13348 eV /em m m cντ νµ ν+ + = .  This enables us at (20.4) to predict the separate masses of each 

neutrino flavor for a normal mass ordering, at 1σ , 2σ  and 3σ  errors, to be 
0.00012 0.00024 0.00035
0.00012 0.00025 0.00037

2 0.03533  eVem cν
+ + +
− − −= ,  0.00009 0.00017 0.00026

0.00009 0.00018 0.00027
2 0.03637  eVm cνµ

+ + +
− − −=  and 

0.00020 0.00041 0.00062
0.00021 0.00043 0.00064

2 0.06178  eVm cντ
− − −
+ + += .  Finally, it becomes understood as a result of the 

foregoing that while the established Higgs boson is used to give mass to the six quark flavors, there 
is a second, separate Higgs scalar boson denoted h2 which gives mass to the six lepton flavors.  
The very existence of this new Higgs particle is a prediction of the theory, and the mass of this 

leptonic Higgs boson is predicted at (21.1) to be 2
2 941.515 0.060 MeVhm c ±= , only a few MeV 

above the proton and neutron masses. 

 The theory presented is entirely consistent with the standard model, without contradiction.  
Indeed, the interrelations developed between fermion masses and other parameters of the standard 
model are what enable the tightening of multiple empirical numbers summarized above.  This is 
because once these masses are interrelated with the other parameters, the masses and other 
parameters which are more-tightly-known can be used to adjust those which are less-accurately-
known.  Additionally, the underlying Lagrangian potentials for the Higgs fields lead us to uncover 
a fundamental role for the cosmological neutrino background (CvB) as the trigger mechanism of 
weak beta decays. 

 The only place we go beyond the standard model, is to predict the neutrino mass sum, 
which at present has no theoretical basis in the standard model, and which is unknown other than 

via experiments which have established its upper limits.  Specifically, the very-small ratio 2/ Pv M c  

of the Fermi vev to the Planck energy is what establishes the neutrino mass sum in (20.2b) as 
against an energy magnitude set by the charged lepton masses and two of the three PMNS mixing 

angles.  So, by including the Planck mass defined as usual by 2
PGM c≡ ℏ , this means that 

gravitation in the form of the Newton constant G becomes injected into particle physics, 
specifically to establish the exceptionally tiny masses and the beta-decay behaviors of neutrinos. 

 By reproducing multiple known experimental results of the standard model, by in several 
cases predicting existing experimental data with even-greater accuracy than what is known at 
present, by tightly predicting the neutrino masses which are presently known only within broad 
upper limits, and by predicting both the existence and the mass of a new leptonic Higgs boson, this 
theory provides multiple points for contact for experimental testing.  And all of this is in addition 
to how this theory finally “repairs” all the long-standing perplexing problems of Kaluza-Klein 
theory in advance of that theory’s 2019 centenary. 
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