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Estimating Variances and Covariances in a Non-stationary Multivariate Time
Series Using the K-matrix

Stephen P Smith, January 2019

Abstract. A second order time series model is described, and generalized to the
multivariate situation. The model is highly flexible, and is suitable for non-parametric
regression, coming with unequal time steps. The resulting K-matrix is described, leading
to its possible factorization and differentiation using general purpose software that was
recently developed. This makes it possible to estimate variance matrices in the
multivariate model corresponding the signal and noise components of the model, by
restricted maximum likelihood. A nested iteration algorithm is presented for conducting
the maximization, and an illustration of the methods are demonstrated on a 4-variate
time series with 89 observations.   

1. Introduction

Multivariate time series analysis is well described in Lütkepohl (1993). Restricted
maximum likelihood (REML) estimation of variances and covariances has also been
worked out satisfactory for multiple records in models with equal design matrices and
with one random effect in addition to the random residue (Meyer 1985, Taylor et al.
1985, Jensen and Mao 1988).

Smith (2001) describe state-space models in the context of a symmetric and indefinite
matrix called the K-matrix that can be subjected to a Cholesky decomposition, even
though it was not customary to factorize such a matrix with this tool. Not to dismiss any
of the previous methods, the goal of the present paper is to specifically utilize the K-
matrix with a particular non-stationary multivariate time series. The non-stationary
model is found in Appendix A of Smith (2018b) where attention was given to non-
parametric regression over a two-dimensional spatial lattice. With each dimension given
a time-like orientation, the model is suitable with unequal time or space steps. Rather
than testing the model as a spatial model, however, the present paper evaluates its
applicability with a multivariate times series that comes with variance-covariance
matrices representing signal and noise effects. Because the model accommodates
unequal time steps, the approach competes with Smith’s (1997, Section 5) illustrative
model that depicts a univariate non-parametric regression for a one-dimensional lattice
but with equal steps. The approach competes with, even makes obsolete, the
stochastic spline function described by Smith (2018c) that was intended to treat
unequal time steps.

The non-stationary model is described in Section 2. Its development from a univariate
2  order stochastic differential equation is presented in Section 2.1, and its extension tond



 The function vech() that is introduced essentially takes the columns of a matrix and1

stacks them one on top of the other into a vector. See Harville (1997, Section 16.4) for more
details.
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the multivariate case in presented in Section 2.2. The construction of the K-matrix is
presented in Section 3. A nested iteration algorithm for estimating variances and
covariances by REML is introduced in Section 4. In Section 5, the application of these
tools are illustrated with four time series that coincide with yearly measurements.

 2. Model Specifications

2.1 Univariate Second Order State-space model

The 2  order stochastic differential equation u(t)O=8×>(t), where >(t) represents whitend

noise at time t, and its solution, are described in Appendix A of Smith(2018b). The
solution is given in a 2×1 state space vector containing a Wiener process u(t)N=W(t) and
u(t), as indicated below.

1 2The errors, ,  and ,  are multivariate normal, and 8 is a baseline variance parameter for
the bivariate process. The state-space equations can be applied over time intervals that

i i i-1may be unequal, where )=t  - t  for i=1, 2, ...N. In matrix notation, the state-space
equations are given by the following .1
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Equation (1) represents 2N equations in 2N+2 unknowns. The variance of r is the
following block diagonal matrix or order 2N.

The observational equations are given by system (2) involving the column vector y



 The symbol “q” introduced with (2) denotes the Kronecker product. See Harville (1997,2

Section 16.1) for more details.
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containing N observations.2

Models (1) and (2) complete the univariate specification, and this is enough to build the
corresponding K-matrix. However, it is first desired to generalize the specifications for
multivariate models.

2.2 Multivariate Model

The following notation is needed to superimpose on the univariate model, (1) and (2), to
permit representation of the multivariate model with M time series.

One the left side of the above equivalence statements, the tilde signifies a multivariate
time series and the subscript indicates which one. And this is required to avoid confusion
with the univariate time series coming with symbols on the right side of each equivalence
that relate directly to (1) and (2).

It is also very convenient to define the following rectangular matrices.
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These can be turned into talk vectors with the subscript removed, as indicated below.

Therefore, model (1) corresponds to the following.

Note that H and V have the same definition as in (1), and G is a M×M variance-
covariance matrix that substitutes for 8 in (1).

Likewise, model (2) corresponds to (4).

Note that X has the identical definition given with (2), and W is a M×M variance-
covariance matrix that substitutes for F  in (2).2

1 2It is better to re-parameterize both W and G, in terms of diagonal matrices D  and D  and

1 2the non-singular matrix Q, such that QWQ =D  and QGQ =D ; this is referred to as theT T

transformation to the canonical scale by Meyer (1985). This offers advantages because
with Q specified, the multivariate system can be transformed and turned into M univariate
systems. From equation (4) the transformation is indicated below.  



 In some cyclic assent algorithms, however, maximizing over an under determined set of3

parameters can be feasible, and come with good convergence properties, even if the solutions are
not uniquely defined.
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From equation (3) the transformation is presented below.

To estimate variances and covariance, a possible approach hinted at by Lin and Smith

1 2(1990) is to estimate Q, D  and D  directly from the likelihood given by the M univariate
models provided by (5) and (6). However, this can only be a constrained optimization, as
it is clear that Q must be non-singular. Moreover, the number of free parameters should3

not exceed the number of free parameters in W and G, being M(M+1). A suitable set of
constrains is given by (7), that has no change in the number of free parameters.
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A more parsimonious parameterization is available, requiring Q to be an orthogonal

1 2matrix, indicated by the restriction (8), where the diagonals of D  and D  are free to vary
in the positive space. This restriction corresponds to the case where it is possible to
simultaneously diagonalize both W and G (Harville, 1997, Section 21.13), but this
preposition is enforced during optimization. The advantage of using (8), rather than (7), is
that it comes with a smaller number of free parameters to estimate, and is, therefore,
more suitable with smaller data sets; plus there is a useful greedy algorithm available to
carry out the optimization as describe in Section 4.

Q Q=QQ =I (8)T T

3. Building the K-matrix

The standard construction of the K-matrix is immediate from (3) and (4), and is presented
below.

While holding that last row and column of K fixed in the last position, a permutation
matrix P can be found such that PKP  =LDL , where L is lower triangular with positiveT T

diagonals and D is a diagonal matrix with diagonals 1 or -1. Because  PKP  is foundT

nearly banded as outputted from general purpose software that computes P, the
factorization of  PKP  requires only linear time in N. If K has order K, then the log-T

iilikelihood suitable for REML is given by (9), where L  is the i-th diagonal of L.

Finding G and W that maximizes of (9) is a very feasible goal, given the differentiation
algorithms described in Smith (2018a). However, its better to reparameterize the model in

1 2terms of unknown parameters Q, D  and D  , and evaluate the appropriate K-matrix for M
univariate models given by (5) and (6). Moreover, its better to re-structure the likelihood
function, and by implication the K-matrix, by concentrating F  out of each univariate2

1likelihood function; where F  represents one of the diagonals of D .2 
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To define the suitable K-matrix, first consider one univariate time series defined from the

ii-th row of Q, or i-th column of Q  denoted by q . The linear transformation of the data isT

given by this post-multiplication, .

Its better to represent this transformation implicitly in the K-matrix, however, effectively

1defining a linear model with M right-hand sides. With the i-th diagonal of D , or F ,2

concentrated out of the likelihood function, that leaves a new parameter to replace the i-

2 2th diagonal of D , or D as the ratio of i-th diagonal of D  over F . This K-matrix, suitable for2

(5) and (6), is presented below.

Now when a permutation matrix P is computed, such that PKP  =LDL  where L is lowerT T

triangular with positive diagonals and D is a diagonal matrix with diagonals 1 or -1, the
last M rows of columns of K remain fixed in the last positions. The last M rows and

columns of L, represent a smaller lower triangular matrix denoted by  in the lower
corner of L. 

0 0Given that two degrees of freedom are used to estimate W(t ) and u(t ), these being
treated as fixed, the REML estimate of F  is provided by the following.2

iThe concentrated log-likelihood, corresponding to q , is given by:

iWith q , held fixed, its easy to maximize (11) and estimate D given the derivative

ialgorithms presented in Smith(2018a). To estimate q , and the rest of Q, note that log-
likelihoods in the form given by (11) will need to be added together over the index-i, and
sided conditions like (7) or (8) become important which will have a collective impact on
the rows of Q. Regarding side condition (8), a nested interaction is feasible as described
next.



 The function ÷(B) signifies the column space of B.4
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4. Nested Iteration

In this section a greedy algorithm is described that will involve a nested iteration that’s 
maximizes (11) each step of the way, and therefore, its guarantee to converge to a local
maximum if not a global maximum while enforcing (8).

iThe vector q  belongs to a vector space that constitutes the span of a set of basis vectors

imaking the columns of B, such that q  =Bs for some vector s. The basis vectors in B will
change during iteration, and moreover, the number of columns of B will become

iprogressively smaller. Therefore, a subscript is added to describe B  as a set of basis
vectors used during a i-th step in the algorithm. 

1 M×MInitially set B =I , and i=j=1. The steps of the algorithm follow.

4.1 If j=1, set D to an initial value, usually D=1 is good. Otherwise, j�1 and a nested

i iiteration is progressing on changes of D. Reconstitute L. The objective is to find q  0÷(B )4

i isuch that (11) is maximum where q q  =1. If i�M, the maximum is found by diagonalizingT

the following matrix, i.e., finding Eigen values and orthogonal Eigen vectors.

The matrix ) is diagonal, and Eigen values are located on the diagonals. The maximum

kis found by location s  corresponding to the column of S where the k-th diagonal of ) is

i i k Mthe smallest Eigen value, then setting q=Bs . If i=M, the case is degenerate, B  is a

i Mcolumn vector and set q=B .

i4.2 Now continue to maximize (11) by holding q  fixed and letting D change. A supervise
Newton-Raphson iteration performs well, given the differentiation algorithms presented in

iSmith (2018a) and where L is reconstituted at each step. Occasionally update q  for the

icurrent value of D, by setting j7j+1 and returning to step 4.1. If both D and q  have
converged, then the i-th step is complete, these two quantities and F  estimated from (10)2

are saved as partial solutions. If i=M then the algorithm is done. Otherwise remove the k-

kth column of S, i.e., removing s  to get S, using the most current evaluation of S. Then

i+1 iset B =B  S, and set i7i+1 and j=1. Return to step 4.1.
 
Owing to the heuristic quality of the above algorithm, it is not surprising that other
algorithms may do better at targeting a local maximum that is larger than what comes
from the above. One such possibility is to replace the matrix diagonalization contained in
step 4.1 with the following diagonalization but when i>1, once L is reconstituted.
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iNote that  gets larger by one column with the incremental change i7i+1, whereas B

gets smaller by one column. The matrix define by (12) will have i-1 zero Eigen values, and

kso when selecting s  it is necessary to find the smallest Eigen value that is not zero. Then

i kset q= s .

5. Example

For the purpose of illustration only, econometric data were collected for each year,
beginning in 1929 and ending in 2017. There were no missing observations, making
N=89. The data has equal time steps by year, even as the model does not require this.
The data represented four time series (M=4): real GDP provided by The Balance; US
national debt and federal tax receipts provided by the Office of Management and Budget;
and the US population size provided the US Census Bureau.

The four times series came in different units of measure, as indicated by Table 1.  A
pictorial view of the 4 time series is presented by Figure 1, with the x-axis representing
years but leaving the y-axis arbitrary for each time series and adjusted so to permit
viewing all four in one figure.

Table 1. Summary Statistics for Four Time Series.

Average Standard Deviation
S.D.

Units

GDP 6.977743 5.22278 Trillions $

Debt 3307.348 5125.92 Billions $

Taxes 783810.8 960135.4 Thousands  $

US Pop 213.580 63.03553 Millions
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Figure 1. Time series data for the years 1929 to 2017, showing real GNP, the US national
debt, federal tax receipts and the US population side.

 
Prior to the multivariate time series analysis, the data was centered and standardized, to
help avoid rounding errors; the average reported in Table 1 was subtracted from each
time series, and the result was divided by the standard deviation (S.D., also reported in
Table 1). With the small number of data points (N=89), constraint (8) is preferred to (7).  It
turns out that the implementation of constraint (8) is not invariant to standardization, but
depends on the innate variation presented to the analysis. Given that the units of measure
are arbitrary, and the standard deviations therefore vary, pre-treating the data so that each
time series has unit standard deviation is also preferred to present the data for analysis in
a more even handed way. It becomes necessary to apply an inverse transformation to
present the results on the original scale.

The results from using (12) as a modification to the nested algorithm of Section 4 came
with a log-likelihood that was slightly larger, and so those are the results that are reported
in Table 2; showing the estimates of F  and D followed by the associated transformation2

iq . The matrix Q  is the 4×4 block of number in the lower-left corner of Table 2. TheT T

1 2diagonals of D  are given by the first column of numbers, the diagonals of D  are found by
the multiplying the first column of numbers by the second column of numbers (row by

1 2row). The estimate of W is Q D Q and of G it is  Q D Q. A result of condition (8) is that WT T

and G commute (Harville 1997, Section 21.13), i.e., WG=GW. As soon as W and G are
turned into correlation matrices, or if returned to the original scale represented by Table 1,
the matrices no longer commute when multiplied together; therefore, the analysis is not



 Perhaps this is unsurprising because this particular 2  order model mimics non-5 nd

parametric regression, and because it represents a non-stationary time series.
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invariant to the scale of measure.

Table 2. Results by Minimum Principal Components.

Component Fit Statistics Linear coefficients for each component

GDP Debt Taxes US Pop

1st 4.67×10 34.58 -1.97×10 -2.18×10 3.17×10 .999798-7 -2 -3 -3

2nd 7.64×10 5.369 .8289837 -.46715 -.30707 1.63×10-5 -2

3rd 1.29×10 3.922 .5221395 .843201 .127456 1.17×10-4 -2

4th 5.11×10 19.67 .1994173 -.26605 .943107 3.63×10-4 -4

The algorithms performed well. While the initial factorization of K depends on the
theoretical selection of D, once factorization is complete for the first time and the sparse
structure of L is found, reconstituting L for different selections of D never became difficult;
the same sparse structure was used over and over. Moreover, the specialized software
was able to permute the rows and columns of K to permit a linear time factorization. While
prior knowledge can be used to find a permutation that permits factorization as
demonstrated by Smith (2001), this knowledge was not needed with the general purpose
software that was used.

The results of Table 2 are returned to the original scale as shown in Table 3. The signal
variation is given by variation associated with u(t), or the variation in the numerator of D.
The noise variation is associated with F . The noise variation was small relative to the2

signal variation. Moreover, the signal variation was tiny compared to the raw standard
deviations reported in Table 1, implying that the second order model did a good  job5

explaining most of the variation for each time series. While there is a positive correlation
between the signals given by GDP and tax receipts, there was a negative correlation
between tax receipts and debt, and a negative correlation between GDP and dept, 
perhaps because of the antagonism of taxation on economic growth. The correlations
involving the population size were all small.
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Table 3. Estimated Parameters in Multivariate Time Series Model.

Correlations B

GDP Debt Taxes US Pop

GDP .05426 .14952 7.593 1 -.4821 .6707 .0782

Debt 61.603 174.62 8.036 .0001 1 -.7462 .0063

Taxes 20686. 91058. 19.37 .3811 -.3998 1 .0057

US Pop .04480 .25474 32.33 .2505 .0752 -.0009 1

Notes: 
A - S.D. taken from Table 1.
B - Correlations above the diagonal correspond to the signal variation, correlations
below the diagonal correspond to noise variation.

Once the i-th step is complete (refer to step 4.2 in Section 4 again), and with L computed,
its easy to calculate predictions of effects shown in models (3) and (4) using backward
substitution (see Smith 2001, Smith 2018b). Furthermore, with the matrix Q estimated,
and with the numbers in Table 1, all transformations can be reversed and predictions of
u(t) can be found for each time series on their original scale. Those predictions are
presented in Figure 2. Curves in Figure 2 are a little smoother than those in Figure 1, but
Figure 1 and 2 look almost identical. This shows that most of the variation was explained
by the 2  order model, that the 2  order model is almost like a multivariate non-nd nd

parametric regression, and that the fit did not suffer from using the more parsimonious
constrains (8) rather than the more general constraints (7).
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Figure 2. Prediction of 2  order effect, or u(t), for the years 1929 to 2017, showing realnd

GNP, the US national debt, federal tax receipts and the US population side.
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