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Abstract

Dempster-Shafer evidence theory as an extension of Probability has wide ap-
plications in many fields. Recently, A new entropy called Deng entropy was
proposed in evidence theory. There were a lot of discussions and applications
about Deng entropy. However, there is no discussion on how to apply Deng
entropy to measure the correlation between the two evidences. In this article,
we first review and analyze some of the work related to mutual information.
Then we propose the extension of Deng Entropy: joint Deng entropy, Con-
ditional Deng entropy and cross Deng entropy. In addition, we prove the
relevant properties of this entropy. Finally, we also proposed a method to
obtain joint evidence.
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1. Introduction

Dempster-shafer evidence theory [1, 2] was proposed by Dempster [1] and
developed by Shafer [2]. Evidence theory as a framework of uncertain rea-
soning is closely related to probability theory. It can be considered as a
generalization of probability, assigning belief to power set of the propositions
rather than single elements. This theory allows for the combination of evi-
dence from different sources and draws a certain degree of conclusion, taking
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into account all available evidence. So there are a lot of applications about
it, and so on [3, 4, 5, 6, 7, §].

Shannon entropy [9] can be used as an uncertainty measure in probabil-
ity theory. But it cannot be directly applied in evidence theory. In order to
solve this limitation, some scholars have proposed some solutions. Pal et al.
[10] proposed an axioms capable of measuring the total uncertainty and de-
rived a new expression. This measure is closely related to basic probability
assignment(BPA) and satisfies additivity. Yager [11] introduces a new en-
tropy combined with BPA and belief function and analyzes the property of
this entropy. Klir [12] later reviewed some of the uncertainties in measuring
uncertainty and pointed out the shortcomings of these methods. Therefore,
the measure of discord is proposed. This method not only satisfies the in-
tuitive reason, but also satisfies some ideal mathematical properties. George
et al. [13] believe that the uncertainty of evidence theory is mainly due to
the randomness and lack of accuracy of evidence. They built a new measure-
ment uncertainty based on the distance of proposition. And so on [14, 15].
Subsequently, some discussions about Deng entropy and its application were
also raised.

Recently, a new entropy [16] called Deng entropy has been proposed as
a measure of uncertainty. It is closely related to the cardinality of BPA and
BPA. When the belief is assigned to single elements, Deng entropy degen-
erates into Shannon entropy [9]. Abellan [17] compares Deng entropy with
other entropies and analyzes some its properties. Xiao [18] based on Deng en-
tropy proposed an improved version of the combination method to deal with
conflicting evidence. And so on [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

Although there are many applications and extensions about Deng En-
tropy, there is no relevant entropy to measure the BPA relationship. There-
fore, based on Deng entropy we proposed cross and conditional entropy of
BPA.

Our contribution can be summarized as follows.
e Review and analyze some related mutual information work.

e Propose joint evidence, conditional Deng entropy, joint Deng entropy,
cross Deng entropy and prove some relations of these entropies.

e Propose a method for approximate calculation of joint evidence .

e Propose a method for approximate calculation of joint evidence.



e Verify proposed method though some examples.
The limitations and future work are as follows.

e How to obtain joint evidence is not clear.

e The proposed method for obtaining approximate joint evidence is through
Dempster’s rule of combination. The result is inconsistent with the in-
tuition, when the evidence contradicts each other.

e In the future we will present some better approximation methods and
demonstrate the effectiveness of the proposed method through a large
number of practical examples.

The structure of this paper is as follows. Section 2 briefly introduces some
basic knowledge. Some related work is introduced in section 3. Section 4
proposes our method and prove and discuss some properties. Section 5 gives
some examples. Finally, conclusion is given.

2. Basic Knowledge

In this section, some basic knowledge are briefly introduced.

Definition 1 Basic probability assignment(BPA) is defined as follows
1, 2].

m:2° = 0,1] (1)

Note that m(¢) =0 and ), e m(A) = 1. where O is the frame of discern-
ment and 29 is the power set of O.

Example 1

if © = {a,b}, then 2° = {6, {a}, {b} ,O}.

Definition 2 Deng entropy is defined as follows [16].

m(F)
Ed—Zm lOgQ\F|_1 (2)
where |F;| is the cardinality of F;.
Definition 3 Suppose two BPAs indited by m; and msy, the Dempster’s
rule of combination is defined as follows [1, 2].

() = (m@m)(A) = —— 3 m(Bm(@ ()
BNC=A#¢

where K =} 5o, m(B)m(C).



3. Related Work

In this section, some related work is reviewed.

3.1. Mutual Information in Probability

Mutual information is a measure that a random variable tells another
random variable. It can be considered as a uncertainty reduction of another
random variable where a random variable is known. High mutual information
represents more uncertainty reduction, low mutual information represents
less uncertainty reduction. In special cases, when mutual information is
zero, there is no change in uncertainty.

Definition 3 Given two discrete random variables X and Y, their joint
probability distribution is Py (x,y)2P(x,y). Mutual information I(X;Y)
is defined as follows [31].

10%,Y) = 3 P(a, ) log % (1)

where P(z) and P(y) are marginals, which indicates P(z) = > P(z,y)

and P(y) =3, P(z,y).
The definition of Shannon entropy and conditional entropy [9] is given in
order to further understand the meaning of mutual information.
Definition 4 The shannon entropy is defined as follows [9].

H(X) =Y P(x)log P(x) (5)
Definition 5 The conditional entropy is defined as follows [9].

H(Y|X) =Y P(z,y)log P(y|z) (6)

A

where Py|x(y|z)=P(y|x) is the conditional distribution.
Shannon Entropy is a measure of uncertainty [9, 31]. It can be proved
that the Eq. 4 is equivalent to the following Eq. 7 [31].

I(X;Y) = H(X) - H(X[|Y) (7)

When given the random variable Y, the uncertainty of the random vari-
able X is reduced [31].



3.2. Fusion of Dependent Evidence Based on Mutual Information

Recently, Su et al. [32] proposed a work about the fusion of dependent
evidence. In the actual information fusion process, many evidences are not
independent of each other [32]. In order to improve the availability of ev-
idence, it is necessary to measure the degree of independence of evidence
32].

The author uses mutual information to judge the degree of mutual inde-
pendence of evidence. However, this mutual information is not ”real mutual
information” among evidences. The author’s method is mainly divided into
5 steps [32].

STEP1 Calculate mutual information 7(S,,S,) [32]. where S, and S,
are the information source [32].

ST E P2 Calculate the generalized correlation coefficient R(S,, S,). where
— _1(5z,5y) [32].

 VH(S:.8)
STFEP3 Build a coefficient matrix [32].

STEP4 Sum the coefficients of the same row [32].

STEP5 Calculate the weighting coefficients of each information source
32].

The author verifies his method through some numerical experiments and
finds that the accuracy of classification can be improved when considering
the degree of correlation between individual evidences [32].

4. Mutual Information in Evidence Theory

So when BPAs are not independent of each other, what is their mutual
information? The mutual information of BPA should be an uncertaintity
measure of another BPA when one BPA is known. When one evidence is
known, the uncertainty of the other evidence should be reduced. So based
on the above assumptions, a joint evidence distribution is defined.

Definition 6 The joint evidence is defined as follows.

m(F, F)Y? m(¢, F)'? = 0|jm(F, ¢)"* = 0 (8)

where F}, Fj, Fy, F; € 2°. Note that the m(F;, F;)"? should satify the
following Fq. 9 and 10.

m(F) = Y m(F F) Hma(F) = Y m(FL B2 ()

J



Zm(Fi,Fj)l’Q =1 (10)

The interpretation of joint evidence is that simultaneously assigning the
beliefs to the power set of © through witness. It should be noted that the
joint evidence is different from the BPA after fusing BPAs by dempster’s rule
of combination, because the joint evidence is multidimensional. Note that
the joint BPA is easy to expand into N dimensions .

A simple example is presented to help understand the definition of joint
BPA.

Example 2

Given a frame of discernment of © = {a, b}, there are two witnesses that
assign the belief to the power set of ©. The joint BPA can be seen in Table
1.

m(F, F;) la b  © my
a 04 02 02 0.8
b 0.1 0 0 0.1
) 0.1 O 0 0.1
my 0.6 02 02 1

Table 1: An example of joint BPA

Definition 7 Once the joint distribution of evidence is determined, the
definition of corss Deng entropy(mutual entropy) is as follows.

m(F;, Fj)

I(myyma) =Y m(F;, Fj)*log ma(Fy)yma(Fy)

1,J

(11)

Definition 8 The conditional Deng entropy is defined as follows.

E. F‘)l,Z
E = B, )12 1og — 0 o 12
a(ma|ms) izjm( , F5) " log ma(E5) (2P — 1) (12)
Definition 9 The joint Deng entropy is defined as follows.
Fi F; 1,2
Eq(my,my) = — Zm(Fz',Fj)l’z log miF ;) (13)

(Q\Fil — 1)(2|Fj| —1)

1,J

The following is proof of the relationship between these entropies.



Theorem 1. I(my;ms) = E4(my) — Eg(mq|ms)
m(F;,Fj)?
Proof 1. I(mysms) = 3, m(Fy, F5)log 2002
B , m(F, b2
= =3 (FZ,F)”lOg g = (= 2 miF, )P log i)
F F 1,2
:—Z ml( )10g2|F(\ i—(—Z (E,F)1210g (()(2\12\ 1))
= Ed<m1) - Ed(m1|m2)

Theorem 1 explains why the uncertainty of BPA m; becomes smaller
when given the BPA my. When BPA my; and BPA m2 are not independent
of each other and if one BPA is given, the uncertainty of the other BPA
will become smaller. The amount of uncertainty reduction is equal to the
conditional Deng entropy( Eq. 12 ) of the two BPAs.

Theorem 2. I(my;msy) = I(mg;mq)

Proof 2. [(ml;mQ):Z (F“F)1210g m(F;,Fj)H?

mi (F Yyma(F})

S mE B oy T — (-3, m(F, F) 2 log B )

21311 1(F)(2FiT-1)
(F;,F;
= — 3, ma(Fy) log P — (=32, m <Efﬁ%gﬁﬁm#w
= E4(ms) — Eq(ma|mi)
= I(mg;m1)

Theorem 2 shows that Cross Deng entropy(Fq. 11) is commutative.
Given two BPAs, their mutual information does not need to be considered
in order. This property is close to the actual situation, Because the order of
evidence is often unclear when collecting evidence from evidence sources.

Theorem 3. E; (my,my) = Ey(ma|my) + Eq(my)

Proof 3. Eq(mi,mg) = =3, ;m(F, F;)?log m(F;, Fj)b?

@IFil—1)(2!5-1)
. 1,2 m(F;, Fj)2my (F;)
- Zzg (F“ L ) lOg (2Fil - 1)(2‘F | —1)ym (F;)

== ;m(F )logzw i (_Z (E,F)”log%)
= Eq(ma|mi) + Eq(ma)

Theorem 3 shows that the joint Deng entropy of BPAs is equal to the

Deng entropy of one of the BPAs plus the conditional Deng entropy of another
BPA.



Theorem 4. I(mq;my) = Eq(mq)
Proof 4. I(my;my) = Eg(my) — Eq(my|my) = Eq(my)

Theorem 4 shows that the Deng entropy of of BPA is equal to its self-
information.

However, in most cases the joint evidence is not clear. Generally only
know each single piece of evidence, do not know the joint evidence. Be-
cause joint evidence is multidimensional and a single piece of evidence is
one-dimensional. The fact is that high-dimensional evidence cannot be in-
ferred from low-dimensional evidence, But low-dimensional evidence can be
derived from high-dimensional evidence.

To address this limitation, we propose an approximate method. The
approach of approximate method is very simple. There are two main steps:

STEP 1

the BPA is fused by Dempster’s rule of combination through Fgq. 3.

STEP 2

Get joint evidence by multiplying the corresponding row element with
the column element. The specific process can be seen in Table 2.

Table 2. STEP

m(F, Fj) I Iy F; Fyei_; M2

F mL,Q(Fl)ml,z(Fl) ml,z(Fl)ml,Q(Fz) ml,z(Fl)ml,z(Fj) ml,?(Fl)m1,2(F2\9L1) ml,z(Fl)
ml,z(FQ)ml,2(

FQ ’HLLQ(FQ)’ITLLQ(Fl) 77L172(F2)TTL112(F2) TILI_Z(FZ)TTLLQ(F}) F2\6\71 ’ITZLQ(FQ)
)

’ITL1_2(FZ')TTL1‘2(

F m/l,Q(Fi)ml,Z(Fl) 7”1,2(3)7711,2(172) ml,z(Fi)ml,z(Fj) Fj ml,Z(Fj)
)
ml,Z(FQ\@Ll)Wll,?(

Fyel_y myo(Foei_1)mao(F1)  maa(Foei_1)mia(Fa) maa(Fyei_1)mia(F;) Faer my2(Fyei_y)
)

mio(Fi)  mia(F1) my»(F1) my(Fy) myo(Fyel_y) 1

Although this method can obtain joint evidence, the way it is obtained
is through Dempster’s rule of combination. There is a lot of debate about
Dempster’s rule of combination. One obvious argument is that when the
evidence is contradictory, it will produce an opposite conclusion. A discussion
of Dempsterrule of combination can be found at [33].



5. Example

Given a frame of discernment of © = {a, b}, there are two witnesses that
assign the belief to the power set of ©. The joint BPA can be seen in Table
1.

Through Eq. 11

I(my,mgy) =

—04><log02 08—1—02><10g02 08—|—[)2><10g02 08—|—()1><log06 01—1—
0.1 x log 5 6X0 T

=0.1710

Calculate I(mq, mz) by approximate method.

First merge the two BPAs through the Dempster rule of combination.
The result can be seen in Table 3.

m(F;, F;) | a b © m
a 0.4793 0.0355 0.1775 0.6923
b 0.0355 0.0026 0.0131 0.0513
C) 0.1775 0.0131 0.0657 0.2563
m 0.6923 0.0513 0.2563 1

Table 3: result of approximation method

Through the Through Eq. 11. the new I(mq, ms) = 0.2887which can see
that the mutual information of the two BPAs is still very low.

6. Conclusion

The "main story” of this article is about how to measure the relevance of
two pieces of evidence. First, we review the work on mutual information and
analyze the role of these mutual information. Then through the previous dis-
cussion to define cross Deng entropy and propose an approximation method
to calculate joint evidence. Finally, verify our method with some examples.
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