Comparing Anytime Learning
to Organic Computing

Thomas Dangl
University of Passau
Passau, Germany
dangl06 @ gw.uni-passau.de

Abstract—In environments where finding the best solution to
a given problem is computationally infeasible or undesirable
due to other restrictions, the approach of anytime learning has
become the de facto standard. Anytime learning allows intelligent
systems to adapt and remain operational in a constantly changing
environment. Based on observation of the environment, the
underlying simulation model is changed to fit the task and the
learning process begins anew. This process is expected to never
terminate, therefore continually improving the set of available
strategies. Optimal management of uncertainty in tasks, which
require a solution in real time, can be achieved by assuming
faulty yet improving output. Properties of such a system are not
unlike those present in organic systems. This article aims to give
an introduction to anytime learning in general as well as to show
the similarities to organic computing in regards to the methods
and strategies used in both domains.

Index Terms— anytime learning, autonomic computing, or-
ganic computing, artificial intelligence, intelligent systems

I. INTRODUCTION

Anytime algorithms and by extension anytime learning are
most applicable in situations that are both subject to contin-
uous change, therefore cannot be addressed by static design
and are highly time-critical. This consists but is not limited to
robotics, scheduling, database query evaluation, path finding
and navigation. These algorithms allow to be interrupted and
provide an imperfect solution, which improves in quality as
computation time progresses, thus allowing intelligent systems
to gain promises about computational time in exchange for
imperfect results [11].

Anytime learning refers to the approach of implementing
continuous learning as an anytime algorithm in changing
environments. This means that the system continues testing
its strategies against the simulation model even when no
new input is available. Typically it is used in the context
of robotics to provide the agent with a sufficient knowledge
base to operate in highly varying situations [5]. Different
implementations and iterations of this technique have been
developed and tested for this specific domain, which all have
the automation of knowledge acquisition in common. What
has yet to be explored is whether these variants of anytime
learning can be applied in domains that currently are exclusive
to anytime algorithms or still rely on a static computation.

Nowadays systems of high complexity across all domains
require a certain degree of protection against both internal as
well as external interference to remain operational. As those

traits are highly similar to those of biological systems, the
logical conclusion must be to build technical systems with
properties of those seen in nature. This led to the somewhat
recent development of Organic Computing in which design
decisions are moved to run-time. In order to fulfill those
promises, systems of that quality must heavily incorporate
machine learning techniques [10].

The article will provide an introduction to anytime learning,
the state-of-the-art strategies employed in this domain and
compare the behavior and properties of this system with those
of an organic system.

II. CONCEPT AND ARCHITECTURE

This section will deal with the general approach of anytime
learning as described by Grefenstette and Ramsey [5] and
the two most prominent specializations of that principle:
Punctuated and case-based anytime learning. For the purpose
of simplification the terminology introduced by them is used
even if it is domain-related. As such the term population will
entail a meaning similar to biology while agent refers to an
entity in that population.

A. General approach

|
|
EXECUTION ‘ LEARNING
SYSTEM) ! SYSTEM

= Monitor I
|
|
|
o -

- . . ecision
Environment == Decision ! Simulatian === Maker
Maker I Model
| Model
} |
b ! l
/" Active ™, : Leaming /" Test
|IIKn0wIedg§§-z-_: | Method = :_-—:I.Knowl edgg]
\, Base / | \. Base /
- ..'/ | \‘.. -

|
|

Fig. 1. Anytime learning architecture as seen in [5]

Every agent that operates on the basis of anytime learning
is structured into two encapsulated modules: The execution
system and the learning system. The former is responsible
for interaction with the environment and other agents, it will
base its actions upon the currently active knowledge base and
monitors the environment to either provide new input data to
the learning system or to resolve conflicts in the simulation
model. The learning system will run continuously and test
new strategies in the simulation model. When a strategy
outperforms the currently active strategy, the learning system
will update the knowledge base of the execution system,
therefore providing itself new input data by testing the strategy
in the environment. A generic architecture for this approach
can be found in Fig. 1.

According to [5] there must be an agreement upon two
policies when designing a system that uses anytime learning:
When and how the learning system is reinitialized. To begin
with, it must be clear under which conditions the learning
system is restarted, this decision should be based upon perfor-
mance metrics and parameter observation. Re-initialization is
required in order to adapt the running system for a changing
environment, most often this happens under the assumption
that the new environment is similar to the old one. Based
on the learning method in place the re-initialization might
require a hard reset, which can be circumvented by using
a genetic algorithm. Population after successful reset differs
from implementation to implementation, a possible approach
is shown in Fig. 2.

Members of
Gurrent Population
(50%)

Default Strategies
(25%)

Exploratory Strategies
(25%)

Fig. 2. Generic initial population as seen in [5]

B. Case-based anytime learning

To improve the performance of the system, the genetic
algorithm can be changed in a way that the initial population—
in accordance to previously mentioned reset policy—contains
a set of strategies that were acquired in similar environ-
ments [8]. Whenever the execution system instructs a reset
of the simulation model, the best strategies that were found
in this environment are stored. Later when this situation is re-
encountered, the initial knowledge base can be populated with
the already learned strategies. This reduces the need to relearn

good and proven strategies thus improves overall quality of the
solution.

Best Solutions of Similar Cases (50%)

Members of Previous Population (25%)

Default Strategies (12.5%)

Exploratory Strategies (12.5%)

Fig. 3. Case-based initial population as suggested in [8]

Grefenstette and Ramsey introduce the use of a nearest neigh-
bor search and weight the results of this search by how recent
they are [8]. An instance of this type can be found in Fig. 3
where half of the re-initialized population consists of solutions
in similar cases.

C. Punctuated anytime learning

In domains where the agent might get damaged or ends
up incapable of acting due to its own actions, it might be
favorable to physically detach the learning system from the
execution system. Continuous learning still takes place in
this architecture, yet there are periods of highly accelerated
learning after communication with the agent that contains
the execution system. The input data will be provided to the
learning system either by a human operator or an automated
system like a camera with image recognition. When the
learning system finds a new solution, it will alert the operator
to progress with the testing [7].

As a result, this reduces costs as the learning system is
likely the most expensive piece of hardware. Furthermore,
if the damage prevents the agent from operating, traditional
anytime learning can end up in situations where one strategy
consistently breaks the agent before the learning system can
change its behavior. This method can even be used to co-
evolve two separate populations in punctuated generations.
Every individual can be matched with a highly specialized
individual from another population to further improve the set
of available strategies [6].

III. STRATEGIES AND PROGRESS

The previously mentioned genetic algorithm will require
operators inspired by natural selection. This section will cover
some of the more common genetic operators alongside conflict
resolution.

A. CROSSOVER and MUTATION

CROSSOVER which is heavily inspired by reproduction in
biology, is the most prominent binary operator for genetic
algorithms. Multiple versions of this operator have been men-
tioned in literature, however, this article will only cover
1-POINT CROSSOVER.

chitd 1 (111|000

Crossing Site

Fig. 4. 1-POINT CROSSOVER instance

As seen in Fig. 4, a random point will be selected among
two parents, the child will then contain every bit on the left
side of the crossover site from the first parent and every bit
on the right side from the second parent.

After CROSSOVER takes place, some arbitrarily selected bits
are subject to MUTATION [1]. Fig. 5 shows this in an instance
where the third bit is selected and therefore flipped. Obviously
both operators can be modified to work on the semantic level
of the following rule model.

Before 1 1 1)])]]

After 1 1 1 1 @ @

Fig. 5. MUTATION instance

B. Utility estimation

Grefenstette suggests a classifier-based rule model in which
every rule is in the following form:

IF the current state is in the set S
THEN apply operator O

To resolve conflicts, every rule in such a system has a current
strength assigned to it [3]. The strength of a rule in this model
is given by a function that increases with the expectation
and decreases with the variance, so that it represents both
confidence and utility in the current environment [4]. If the
expected payoff is interpreted as a random variable, the
following formula can be considered an implementation of
this principle:

Strength(X) = E(X) — o(X)

Given a bid bias, arising conflicts can now be resolved in 4
steps as shown by Grefenstette [4]:

1) Find a set of rules that nearly match the current state.
2) Define the bid of an action as the maximum of all
strengths of the rules in the match set that specify this
action.
3) Raise the bid to the power of the bid bias.
4) The bids form a probability distribution from which a
suitable action can be picked.
Rules of low strength will be slowly removed from the
population [5] as suitable replacements are introduced by the
usage of the next two operators.

C. SPECIALIZE and GENERALIZE

The following two operators due to their nature should only
be applied during high-payoff periods.

SPECIALIZE is applied when a general rule—based on a
given threshold—fires. The rule’s condition will be modified
to more closely match the current environment, e.g. conditions
given in interval representation will have their bounds moved
to the arithmetic mean of the previous bound and the sensor
reading, and the rule’s action value is updated.

GENERALIZE is applied when a rule fires due to partial
match, i.e. there is no rule that matches the sensor readings
entirely. It modifies the rule’s condition so it can execute given
the current sensor readings, in the example of an interval this
means setting either the lower or upper bound to the current
value [4].

IV. RELATION TO ORGANIC COMPUTING

Now the concept of Organic Computing will be introduced
and compared to that of anytime learning based on the
qualitative characteristics of both approaches.

A. Definition

Unlike autonomic computing and anytime learning, Organic
Computing is a concept that has only become relevant in the
last decade. Organic Computing however does not mean to
build technical systems out of organic material but to build
systems that behave “life-like”. It aims to replicate properties
of living things such as flexibility, robustness and protection
against internal and external interference [10]. Because bio-
logical organisms inherently require an immense level of both
error tolerance and flexibility in order to endure evolution, it
is highly desirable to incorporate these traits in autonomous
systems to improve overall reliability. In its entirety this
approach handles the ever-growing complexity of systems by
shifting the focus from design-time challenges to run-time.
As there is no definition that is generally agreed upon, for the
purpose of this paper, systems qualify as organic not by how
they are built but by how they behave and which properties
they entail [10].

B. Architecture

An organic system consists of two complementary parts by
design: One that is responsible for the technical operation
of the system and the other that is contains the adaptation

i i :E data analyser
i (metrics)
I

I

uoI1eAI3SqO JO [3pOoW

1 sigyaweled uogenyss

. system*nder observation and control@uoc) && ‘
H & & & b

| objective

1 —_]

¢ function]
e g :
B ;Ijl_e_“““' ‘
i - —
Vo1 simulation 0 : 2
b = adaptation | i '
P model) [

rule

i
performance i+

evaluation

L [9h3]

mapping |
(rule base) !

H
controller

4 &g
006 g

Fig. 6. Generic Observer-Controller architecture as seen in [9]

capabilities typically provided by machine learning [10]. This
separation of concerns is not unlike that present in anytime
learning systems, in which the learning module is responsible
for knowledge acquisition and the execution module is used
to interact with the environment.

The most prominent implementation of the aforementioned
separation is the observer-controller architecture which can be
seen in Fig. 6. It has been adopted for many scenarios such
as traffic control, elevator control or cleaning robots and splits
the organic system into three parts [10]:

1) The System under Observation and Control (SuOC)
works independently of the other two components and
represents the production part of the system.

The Observer monitors the actions and the state of the
SuOC and aggregates this information.

The Controller will instruct the SuOC based on the
information provided by the Observer and the super-
ordinate goal of the user.

2)

3)

The third part—the controller—which contains the simula-
tion model and the rule adaption model, is undoubtedly highly
similar to the components of an anytime learning system [2].
It is noteworthy that the objective or utility function in this
architecture is clearly user controlled, while in Grefenstette
and Ramsey’s generic anytime learning architecture [5] it is
seen as an internal state that cannot be changed once the
system is in place. In summary it can be said, that on the
architectural level anytime learning and Organic Computing
appear highly complementary.

C. Properties

While explaining some properties of these systems, they are
to be compared to the properties of anytime learning systems.

As outlined by Tomforde et al. there are nine different self-x
properties to be found [10], this paper will only examine a
few of them:

o Self-configuration / self-adaptation:

Organic systems tend to configure themselves according
to a superordinate goal, i.e. setting up the subsystems
so itself in its entirety can achieve this certain goal.
Systems that operate on the basis on anytime learning
however do not change or configure their components, yet
behave in accordance to a goal like organic systems. This
might not be obvious at first glance, but the strength of a
rule can be interpreted as the result of a utility function
given the matching action. As such the utility function
can be considered the higher goal for which the agent
tries to optimize in the test environment. Therefore the
behavior—at least partially—matches those of an organic
system.

Self-healing:

In case an organic system encounters a failure—whether
on the hardware or the software side—it is capable of
locating and repairing it, so it eventually is able to
function properly again. When the environment of an
anytime learning system changes, this situation may be
considered a failure as the currently present strategies no
longer work and prevent the agent from operating in the
new environment. It can be considered self-healing when
the execution system reacts to this issue and re-initializes
the knowledge base as explained before. This allows
the agent to properly function in the new environment,
repairing him so to say. Furthermore in the case of
punctuated anytime learning an agent that stops operating
properly due to hardware failure can be matched with a

robot from a different population [6] that has the required
strategies to repair the hardware defect and allow the
agent to continue its task.

o Self-protecting:

Organic systems must even exceed the capabilities of self-
healing and provide protection for both the subsystems
and the overall system, so that failures and attacks are
detected before they take place. This allows the system
to mitigate external and internal interference before any
damage is caused. A certain level of protection in anytime
learning systems is provided by the continuous learn-
ing and the restart mechanism of the execution system
previously mentioned. When the scope of the question
is extended to systems that operate under the premise
of case-based anytime learning, the protection has to be
considered even stronger as the initial population consists
of strategies that have proven themselves to be effective
in the new environment [8].

« Self-stabilizing:

Eventually, an organic system must enter a stable state
that is to say it must become reliable. A generic anytime
learning system will build its knowledge base due to
continuous learning, so over time all active rules in
that knowledge base will have very similar strengths
associated with them and will only be swapped out for
explorative rules every now and then, which means as
time progresses, the system becomes more and more
confident in its environment. As such the actual progress
of anytime learning can be considered inherently self-
stabilizing.

o Self-improving / self-optimization:

When speaking of organic systems a property that is often
overlooked is self-improvement. Essentially this means
that the system uses the results of previous actions to
improve itself and furthermore indirectly the effectiveness
of the other mechanisms. The first part of this property
is self-evident for anytime learning systems as this can
be considered their sole purpose. When it comes to the
second part, i.e. amplifying other system properties the
following is to be considered: It is clear that an improved
knowledge base improves the principle mentioned when
discussing self-configuration, so it is reasonable to as-
sume that the learning system’s capability of adapting
to the environment is also improved. In regards to the
self-organization it should be noted that the organization
of the anytime learning system is not subject to change
therefore cannot be improved by a wider or specialized
knowledge base.

V. SUMMARY

In this article the motivation and development of anytime
learning has been briefly introduced and discussed in relation
to Organic Computing. While the concept of anytime learning

is much more mature than Organic Computing in its current
state, it has become clear that both concepts offer a high
potential for symbiosis. Looking forward the trend of ever-
growing (distributed) systems in complexity and scale is only
to continue. Eventually these systems will reach a state where
it is no longer suitable or possible to be designed or operated
by a human in the traditional sense. Therefore it is highly
warranted to delegate responsibility to the run-time of such
intelligent systems.

Organic Computing is suitable to fill this gap and provide a
logical organization of these systems. Anytime learning seems
to integrate into this concept almost intuitively. What has yet
to be answered is how the adaptation of anytime learning for
organic systems takes place in applications like traffic control
or cleaning robots.

In conclusion it must be stated, that the concept of anytime
learning will most likely be used in conjunction to existing
architectures of Organic Computing in application scenarios
which require an additional simulation before applying its
actions in the real world.

REFERENCES

[1] Nikolaos. G. Bourbakis. Artificial Intelligence Methods and Applica-
tions. Advanced series on artificial intelligence. World Scientific, 1992.

[2] Juergen Branke, Moez Mnif, Christian Miiller-Schloer, Holger Proth-
mann, Urban Richter, Fabian Rochner, and Hartmut Schmeck. Organic
computing — addressing complexity by controlled self-organization.
Second International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (isola 2006), pages 185-191, 2006.

[3] John J. Grefenstette. Credit assignment in rule discovery systems based
on genetic algorithms. Machine Learning, 3:225-245, 1988.

[4] John J. Grefenstette. Lamarckian learning in multi-agent environments.
In ICGA, 1991.

[5] JohnJ. Grefenstette and Connie Loggia Ramsey. An approach to anytime
learning. In ML, 1992.

[6] Gary B. Parker and H. Joseph Blumenthal. Punctuated anytime learning
for evolving a team. 2002.

[7]1 Gary B. Parker and Karen J. Larochelle. Punctuated anytime learning
for evolutionary robotics. 2000.

[8] Connie Loggia Ramsey and John J. Grefenstette. Case-based anytime
learning. 1994.

[91 Sven Tomforde, Holger Prothmann, Juergen Branke, Jorg Hihner, Moez
Mnif, Christian Miiller-Schloer, Urban Richter, and Hartmut Schmeck.
Observation and control of organic systems. In Organic Computing,
2011.

[10] Sven Tomforde, Bernhard Sick, and Christian Miiller-Schloer. Organic
computing in the spotlight. CoRR, abs/1701.08125, 2017.

[11] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. Al
Magazine, 17:73-83, 1996.

