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Summary 

 

The author has developed an approach to logics that comprises, but also goes beyond predicate logic. 

The FUME method contains two tiers of precise languages: object-language Funcish and metalanguage 

Mencish. It allows for a very wide application in mathematics from geometry, number theory, recursion 

theory and axiomatic set theory with first-order logic, to higher-order logic theory of real numbers etc. . 

The conventional treatment of axiomatic set theory (ZFC) is replaced by the abstract calcule sigma so 

that certain shortcomings can be avoided by the use of Funcish-Mencish language hierarchy: 

 

-  precise talking about formula strings necessitates a formalized metalanguage 

 

-  talking about open arities, general tuples, open dimensions of spaces, finite systems of open 

   cardinality and so on necessitates a formalized metalanguage. 'dot dot dot … ' just will not do 

 

-  the Axiom of Infinity is generalized in order to allow for certain other infinite sets besides the natural 

   number representation according to von Neumann (i.e. general recursion)  

 

-  the Axioms of Separation is modified as it seems more convenient 
 

-  there are only enumerably many properties that can be constructed from formula strings, as these are 

   finite strings of characters from a finite alphabet; this should be kept in mind in connection with the 

   Axioms of Replacement 

 

-  a new look at Cantor's continuum hypothesis in abstract axiomatic set theory leads to the question 

   of so-called basis-incompleteness versus proof-incompleteness 

 

-  the Axioms of Separation seem to have a flaw; there is a caveat for axiomatic set theory. 
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1  FUME-method object-language and metalanguage 
 

Axiomatic set theory is commonly claimed as a foundation system of all mathematics or at least most 

mathematics. The somewhat surprising fact is that only one sort and only first-order-logic (FOL) is 

needed in axiomatic set theory, or what is usually called predicate-logic with identity  
 

The author has put forward a precise system of object-language and metalanguage that overcomes 

certain difficulties of predicate logic and that extends to a full theory of types . In order to describe an 

object-language one also needs a metalanguage. According to the author's principle metalanguage has 

to be absolutely precise as well, normal English will not do. The FUME-method contains at least three 

levels of language:  
 

Funcish object-language formalized precise. 

Mencish metalanguage  formalized precise 

English supralanguage  natural 
 

'Calcule' is the name given to a mathematical system with the precise language-metalanguage method 

Funcish-Mencish . 'Calcule' is an expression coined by the author in order to avoid confusion. The word 

'calculus' is conventionally used for real number mathematics and various logical systems. As a German 

translation 'Kalkul' is proposed for 'calcule' versus conventional 'Kalkül' that usually corresponds to 

'calculus'. 
 

A concrete calcule talks about a codex of concrete individuals (given as strings of characters) and 

concrete functions and relations that can be realized by 'machines' (called calculators).  
 

An abstract calcule talks about nothing. It only says: if some entities exist with such and such properties 

they also have certain other properties. Essentially there are only 'if-then' statements. E.g. 'if there are 

entities that obey the Euclid axioms the following sentence is true for these entities' . 
 

Calcules with first-order logic FOL are called haplo-calcules , calcules with higher-order logic HOL for 

a theory of types are called hypso-calcules . As the following will only deal with first-order logic the 

expression 'calcule' will always mean 'haplo-calcule' . An abstract calcule is based on a finite count or 

on enumerably many axioms as opposed to a concrete calcule whose foundation can be put into practice 

by a machine. Axiom strings are certain sentence strings, they can also be provided with a metalingual 

Axiom mater (rather than the usual 'scheme' or 'schema', as the expression scheme has a different 

meaning in Mencish), that produce enumerably many Axiom strings. 
 

Calcules are given names based on the Greek sort names. Small letters are used for abstract calcules e.g. 

sigma with sort , capital letters for concrete calcule e.g. ALPHA with sort . 
 

  
 

Figure 1  Hierarchy of languages and codices for two example calcules  
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Metalanguage Mencish is chosen with perfect exactness, just as object-language Funcish. They both 

have to meet the calculation criterion of truth: every step of reasoning must be such that it can be 

checked by a calculating machine. Funcish and Mencish sentences and metasentences resp.are 

understandable without context: 'wherefore by their words ye shall know them' (vs. Mathew 7.20).  
 

On first sight Funcish and Mencish look familiar to what one knows from predicate-logic. However, 

they are especially adapted to a degree of precision so that they can be used universally for all kind of 

mathematics. And they lend themselves immediately to a treatment by computers, as they have perfect 

syntax and semantics. It is not the place to go into details. Both Funcish and Mencish have essentially 

the same syntax. Notice that Funcish has a context-independent notation, which implies that one can 

determine the category of every object uniquely from its syntax. The reader may be puzzled by some 

expressions that are either newly coined by the author or used slightly different from convention. This 

is done in good faith; the reason for the so-called Bavarian notation is to avoid ambiguities.  
 

The fonts-method allows to distinguish between object-language (Arial and Symbol, normal, e.g. 

1), metalanguage (Arial and Symbol, boldface italics e.g.1  or  Axiom) and supralanguage English 

(Times New Roman) 
  

The essential parts of a language are its sentences. A sentence is a string of characters of a given 

alphabet that fulfills certain syntactical and semantical rules. This means that metalanguage talks about 

the strings of the object-language. The essential parts of the metalanguage are the metasentences  (that 

are strings of characters as well, just in boldface italics). In supralanguage one talks about the 

metasentences, just as metalanguage talks about object-language. Here it is not discussed in general what 

an object-language talks about . 
 

Mencish has strictly first order logics, it has some recursion with 3 metafunctions and 6 binary 

metarelations for the manipulation of Funcish strings, that can be implemented by machines operating 

on strings of characters. The necessary metafunctions and metarelations: 
 

synaption     concatenation of two strings,   except for leading 0 

character-deletion     delete 2nd string in 1st string

string-replacement     replece 2nd string in 1st string by 3rd string, e.g. variable by constant 
 

matching     with respect to string length 

shorter      with respect to string length 

suitably containing     e.g. variable 

suitably bound-in     variable 

suitably free-in    variable 

compatible     no variable is free in one and bounded in the other string. 
 

A calcule contains basis-individual-constant , basis-relation-constant and basis-function-constant 

strings, one can introduce extra-individual-constant , extra-relation-constant and extra-function-constant 

strings by definitions, that are either explicit or implicit. An explicit definition is just an abbreviation 

whereas an implicit definition necessitates some logical reasoning. Without proper introduction it should 

be clear what is meant by the following essential metaproperties : 
 

pattern  term  no variable     e.g. 3u 

  scheme with variable    e.g. 113 
 

phrase  sentence no free variable 

  formula with free variable but no 0  e.g. 3133 

  formulo with free variable and free 0 e.g. 201102 
 

Implicit definitions are based on UNEX-formulo 1) strings. UNEX-formulo strings  define relations that 

hold  for exactly one value 0 for every booking of the input variable strings according to the arity of the 

UNEX-formulo . Hopefully it will become clearer in the examples of section 3.  
 

TRUTH mater of implicit definition of individuals (nullary functions) by nullary UNEX-formulo 
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12formulo1variable2 12sentence01 

3 individual-constant3

TRUTH012102 200130 
 

 

TRUTH mater of  implicit definition of functions by uanry and multary UNEX-formulo 

 
 

12345formulo1 omny2variable4

1 4sentence2013 52

6standard-function-constant65  TRUTH

2014104 4032016503 
 

 

where the standard-function-constant string can be replace by a particular-function-constant string if it 

is considered convenient. 
 
 

You will find some hints on the front of the hompage https://pai.de/ and some  short description in the 

pdf-downloads that can be started there. A thorough description of Funcish and Mencish is forthcoming. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1)  UNEX is short for 'unique existence'  

https://pai.de/
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2  Ontological basis and axioms 
 

The obvious question is: how does axiomatic set theory relate to the Funcish-Mencish language system? 

The answer is straightforward: one can set up the abstract calcule sigma  with FOL which exactly 

describes ZFC-set-theory, Zermelo-Fraenkel-theory with the axiom of selection (or choice). 
  

It is clear that one cannot represent ZFC-set-theory by a concrete calcule (that only would allow a finite 

string for an individual ). Therefore an abstract calcule is introduced in the following. It will be discussed 

what it means that FOL is sufficient for axiomatic set-theory and what kind of problems are connected 

with it. So-called 'classes' as 'collections of sets that can be unambiguously defined by a property that all 

its members share' are not formally contained in ZFC are not treated here, although it could be done 

straughtforwardly . Neither does ZFC-set-theory contain any so-called 'urelements', i.e. elements of sets 

that are not sets themselves. 
 

All strings of Funcish for calcule sigma are constructed by concatenation from the following alphabet, 

of 128 characters where the first line contains all syntax characters including the Greek letter for sort 

'set' , the second  and third all function symbols followed by all relation symbols, the fourth all Latin 

letters for constants (i.e.names) and finally the petit numbers for variable suffices.  

 

                         Symbol

                          

                         
A B C D E F G H I J K L M N O P Q R D T U V W X Y Z Arial 
a b c d e f g h i j k l m n o p q r s t u v w x y z 10 medium 

0 1 2 3 4 5 6 7 8 9 -                8 petit 
 

Table 1  Alphabet for calcule sigma (with enough characters for new defintions) 

 

The admissible pattern (scheme , term) and phrase (formula , sentence) strings are formed with respect 

to the ontological basis according to the semantic rules for Funcish. The following examples should be 

sufficient in order to understand this publication (all of it can be defined perfectly, at most simple limitive 

recursion is necessary):  

 

sort ::        set 

type ::   ¦  ¦  ¦  … property, binary relation, unary and binary function 
 

individual-constant :: n¦  vnl¦  vnpo   …  empty set, set of natural numbers, their power set .. 

individual-variable :: 0¦  1¦  2 …  
 

omny ::  kety :: 1¦  12 …  …  ¦  
 

function-constant :: ¦  ¦  … parition, unition, potention ... in standard notation 
1)

   ¦  ¦  …  and in corresponding particular notation 

relation-constant :: ¦ ¦  … membrity, subity, card-equality … in standard notat.

   ¦  ¦   …  and in corresponding particular notation 
 

term ::   n¦ n¦ (vnln  … from function- and individual-constant

scheme ::  2¦ 14¦   vnl2  …  from function- and individual-constant and 

        at least one individual-variable
        (all in particular notation)
 

formula strings are formed by proper insertions with  ,, , , , , , , , , from   term , 

scheme and variable strings except for 0 . formula strings have at least one free variable . formulo strings 

are like formula  strings but they must contain 0 as a free variable. 
 

sentence strings are formed like formula strings, however all variable strings must be bound by  or  . 

They may contain 0 as a bound variable  . 
 
1) particular notation is used instead of standard notation for better readability for most of the frequently occuring relations 

and functions  
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The basis-ingredient strings of abstract calcule sigma of axiomatic set theory (usually called ZFC) 

contain only one sort for sets and only one binary-relation-constant  for membrity. The extra-

individual-constant , extra-relation-constant and extra-function-constant strings are given in section 3.. 
 

nr              -axiom string or mater 
   

A1 Extensionality 1) 121233132 
   

A2 Regularity 2)   122122133132 
   

A3 Selectivity 3)  1221332

23421314243

233144243

5525354 
   

A4 Nilition 4) 0110 
   

A5 Parition 5) 1203303132 
   

A6 Unition 6) 1022033123 
   

A7 Potention 7) 1022033231 
   

A8 Recursion 8)

0 from 1 , 2  

nullary and unary 
UNEX-formulo 

strings 

 

iteration from start 

and no subset with 

same feature 
 

12345

sentence01sentence012

variable3variable4variable5

sentence03451

sentence013452

Axiom01310330

1023203300 

330103110203 

455450334103

11420340
   

A9 Separation 
9) 

intersection 0  

by scheme1  

and property given 

by formula 2 

12345

scheme1formula2variable3omny4

sentence4 1  1 

03 2 5 

Axiom4 033031 2 5  
   

A10u Unary-

replacition 10) 
1sentence101

sentence01231

Axiom101210220

230031121 

   

A10m Multary-
replacition 

image 3 of a 

set 2 under 1 

UNEX-formulo 

123omny2sentence2 1013 

formulo1sentence2 012313 

Axiom2101210220

2300311213  
  

 

Table 2  Axiom strings and matres 
 

The order is chosen so that the three metaproperty axioms are followed by four UNEX-formulo strings, 

followed by four Axiom matres, where the last ones treat unary and multary cases separately. 

 

If there are redundancies in the above Axiom table, so what: just replace them by the simpler version. 

 
1) sometimes called 'extension'   2) often called 'foundation'   3) usually called 'selection' or 'choice', sometimes replaced by 

the weaker 'well-ordering'   4) nullary - usually 'empty set'    5) binary - usually called 'pairing'   6) unary - usually one of the 

two meanings of 'union'   7) unary - usually called 'power set'   8) generalizes what is usually called 'infinity'   9) often called 

'specification'   10) usually called 'replacement'  
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There are 7 constructions of sets, 4 by Axiom strings (A4 to A7 for nilition, parition, unition and 

potention) and 3 by Axiom matres (A8 to A10 for recursion, replacition and separation) with uniqueness 

by A1 . 
 

Recursion-axiom mater A8 is taken more general than usual. Rather than starting from the empty set and 

natural number succession it is generalized in the following sense: start from any set given by a UNEX-

nullary-formulo 1  iterate by a unary function that is given by a  UNEX-unary-formulo 2 . Perhaps one 

should generalize it even more: higher arities for 2 ? The usual 'Infinity' Axiom is just one special case 

that relates to recursion where function succession   of section 3 is used that produces von-Neumann 

natural numbers (conventionally denoted as ) starting from the empty set. 
 

12121331221331443

4242 
 

or with the definitions for empty set n (conventionally denoted asØ ) and succession  

1n122121 
 

Separation-axiom mater A9  allow for a more general choice for 1 ( a scheme 1 depending on variable 

1 and more variable strings) and of formula 2 that depends on variable 1 as well. It makes definition 

of functions simpler, if it is not at all necessary. 
 

The possibilities of mater A9  include the simple reduced case that is kind of a prototype in usual 

introductions of axiomatic set theory. It states the existence of a set 0 given by a unary formula 2   (with 

free variable 3 and no variable 0 and 1) with respect to a given set 1 : 
 

Axiom10330312   
 

Replacition-axiom matres A10 express that 'the image of a set 2 under a function given by a UNEX-

formulo1 is a set 3 . One has to distinguish the unary and the multary case A10u and A10m .The 

functions are represented by UNEX-formulo strings. As finite strings UNEX-formulo are denumerable but 

not enumerable (enumerable meaning effectively denumerable); unique existence has to be shown in 

every case. How does that relate to non-denumerable sets? After all axiomatic set theory was introduced 

to allow for  a gargantuan universum of infinities far beyond the denumerable! But that is another 

problem that will not be treated here. 
 

It is convenient to introduce extra-function-constant , extra-individual-constant and extra-relation-

constant strings, some of them are well-known from naive set theory. This is done in the following three 

sections.  
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3  Introduction of extra-function-constant strings 
 

It is convenient to introduce extra-function-constant strings. 
 

nr name  definition ari 
     

   implicit from Axiom A5 , A6 , A7  

DF1 parition  1233123132 2 

DF2 unition  122133123 1 

DF3 potention  122133231 1 
     

   explicit  

DF4 singlition 1)  11 1 

DF5 singlation  11 1 

DF6 oparition 2)  112 2 

DF7 union 3)  12 2 

DF8 succession  11111 1 
     

   implicit from unary case of Separation-axiom mater  

DF9 intersectition  122133123 1 

DF10 imponition  122133123 1 
     

     

   implicit from binary case of Separation-axiom mater  

DF11 intersection  1233123132 2 

DF12 complemention   1233123132 2 

DF13 production  123312

454152345

2 

     

   explicit  

DF14 tri-production 123 3 

DF15 bi-potentiation  11 1 

DF16 tri-potentiation  111 1 
     

   implicit from unary case of Separation-axiom mater  

DF18 diag-production  1221213233 1 
     

 

Table 3  Definition of  extra-function-constant strings
 

The Extensionality-axiom A1 is necessary for uniqueness of functions in the following. 
 

Definition in full detail for binary function parition as there is A5  

1203303132with formulo 3303132 

then there is unique existence by Axiom mater of  implicit definition of multary functions:

1123303132 

and one can introduce  for 1 and define it by

1233123132
 

Definition in full detail for unary function unition as there is A6 

1022033123
then there is unique existence by Axiom mater of  implicit definition of unary functions:

11221133123 

and one can introduce  for 1 and define it by

122133123 
 

 

 

 
1) a singleton is a set with one element  2) the result is usually called 'ordered pair set'  3) pair-union, usually there are two 

meanings for 'union'  
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Unary function potention is also obtained by implicit definition with the UNEX-formulo from A7 . 
 

The following are definitions from unary case of Separation-axiom mater 

10220212 with sentence 11 1 22 
 

for intersectition choose1as 1and33123 as 2 

102202133123 

102203312333123

1022033123 
 

for imponition choose 1as 1and33123 as 2 

 

1022133123 

 

definitions from binary case of Separation-axiom mater 

120330312 with sentence 121 1 32 

for intersection choose 1 1 and2 32 

for complemention choose 1 1  and2 32 

for production choose 1 12  and productivity as2 454152

and obtain          345

123312454152345 

 

It looks like using a sledgehammer to crack a nut, as the set 12 is doubly infinite and one is 

using only the simplest subsets consisting of one or two members. But one cannot do it otherwise. The 

set 12 contains all ordered pairs of members of the two sets 1 and 2 (and much more, but 

this is irrelevant). 
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4  Introduction of extra-individual-constant strings 
 

The introduction of extra-individual-constant strings makes use of the above functions and contains 

implicit definitions, for the latter one has UNEX-nullary-formulo strings. 
 

nr name  definition ari 

     
   implicit by Nilition-axiom  

DI0 nil n 11n 0 
     

   explicit from functions  

DI1 neumann-unus vu n 0 

DI2 cantor-duo cb n 0 

DI3 zermelo-quattuor zq n 0 

DI4 fraenkel-tres ft n 0 

 …  the other ones accordingly  
     

   implicit by Recursion-axiom start n and  

DI11 neumann-natral vnl iteration  0 

DI12 cantor-natral cnl iteration2 0 

DI13 zermelo-natral znl iteration2 0 

DI14 fraenkel-natral fnl iteration2 0 
     

   explicit therefrom  

DI15 neumann-potential vnpo vnl 0 

DI16 cantor-potential cnpo cnl 0 
     

     

 

Table 4  Definition of  extra-individual-constant strings 

 

Definition in full detail: set neumann-natralvnl of natural numbers, it is based on two UNEX-formulo 

strings for start 1 0n  and succession2 01 and from Recursion-axiom mater there is 

unique existence of its 'power-set' obtained by potention cnl ; in conventional notation the von-

Neumann-set of natural numbers is called  ω : {{},{{},{{}}},{{{},{{}}},{{{},{{}}}}} , … } with 

power-set P(ω) . 
 

 

0n022n11021 

344340

n322n1132130 
 

and by application of implicit definition (nullary case) one can introduce vnl for 0 and define it by 
 

nvnl22n11vnl213 

44340n322n113213vnl 
 

 

In the same way one can introduce cantor-natralcnl of natural numbers and its 'power-set' obtained by 

potention cnl ; in conventional notation the Cantor-set is given as  {{},{{}}, {{{}}}, … } .  

It is based on two UNEX-formulo strings for start 1 0n  and singlition2 01 
 

ncnl22n11cnl213 

44340n322n113213cnl  
 

It is a matter of taste and convenience, what set one chooses to represent natural numbers. Usually it is 

von-Neumann's choice, but in the following simple considerations the  simpler Cantor-set cnl is 

sufficient. 
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5  Introduction of extra-relation-constant  strings 
 

The definition of a relation-constant by a  formula is straightforward. Depending on the arity of the 

formula one should enclosed formula strings by 1……  or 12……  or 

123…… or 1234…… resp.  
 

nr name  definition by formula ar 
 

 
   

DR1 equi-subity  33231 2 

DR2 subity (genuine subset)  2121 2 

DR3 oparity OP 22134234 1 

DR4 productivity PD 454152345 3 
     

DR11 potentiality 
(property) 

PT 21

33231 

2 

DR12 orelity 
ordered-pair relation 

OR 312443

565162456 

3 

DR13 auto-orelity AOR 21332

454151345 

2 

     

DR21 jectivity JR OR123

441552453

66245365 

3 

DR22 injectivity 
directed existence ? 

IJR JR1234567

4151456272

46357367 

3 

DR23 surjectivity 
directed existence ? 

SJR JR123

442551543 

3 

DR24 bijectivity BJR IJR123SJR123 3 
     

DR31 auto-jectivity AJR JR112 2 

DR32  DR33  DR34  auto-injectivity, auto-surjectivity and auto-bijectivity accordingly 2 
     

DR35 auto-ject-composity AJC set1 with auto-injectivities 2 and 3 composed to produce 4 4 
     

DR51 transitivity TRANSO 23213231 1 

DR52 connexity CONNO 2321312332 1 

DR53 minimality MINDO 2213313223 1 

DR54 fundamentality FUNDO 221332442

4334 

1 

DR55 totality TOTO TRANSO1CONNO1 1 

DR56 limitality LIMO TOTO1MINDO1 1 

DR57 ordinality ORDIO TOTO1FUNDO1 1 

DR58 cardinality CARDIO ORDIO122112 1 
     

DR61 card-minor-equality 

order relation? 
 3SJR213 2 

DR62 card-equality 

equivalence relation? 
 3SJR1233SJR213

3BJR123  

2 

DR63 card-minority  1212 2 

DR64 ordi-minor-equality   2 

DR65 ordi-equality   2 

DR66 ordi-minority   2 
     

DR71 finity  22cnl12 1 

DR72 aleph-nullity  1cnl 1 

DR73 aleph-unity  1cnpo 1 
     
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Table 5  Definition of  extra-relation-constant strings 

Wherever such  a relation is used in a string 2  it can be replaced by the formula 1 where one only has 

to keep in mind to adapt the bound variable strings in the formula 1 such that the replacement is 

compatible 12 meaning that no  variable is free in one and bounded in the other string. 
 

One can only talk about sets in the abstract calcule of sigma , so all statements have to be reduced to 

talking about sets. E.g. there are no functions except ones that can be introduced via extra-function-

constant strings as it was done in table 3. No quantion is possible with respect to functions and relations, 

this would only posible with second-order logic e.g. 1  or  2 . However, making use of 

oparition one can represent functions and relations as sets that have special features. A unary 

function of mapping a set 1 to its image 2 is called jection, it is represented by a set 3  that fulfills 

the jection relation JR123. One can define functions of any arity in a similar fashion, e.g. a binary 

mapping of two sets 1 and 2 to its image set 3 is represented by a set 4  that fulfills the binary 

mapping relation BMR1234. This method corresponds exactly to the UNEX-formulo method as 

introduced in section 1 ; existence has to be expressed as well as uniqueness. Notice that features of 

functions are given as extra-relation-constant strings. All functions represented by sets are partial (also 

called 'conditioned') in the sense that they are not defined for all sets.  
 

The opening line of this section was 'the definition of a relation-constant by a  formula is straightforward'. 

For the above examples this is indeed the case. However, in section 9 we shall return to this statement. 
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6  Cardinality and diagonalization 
 

Do not mix up the two different appearances of functions in axiomatic set theory as it was already 

mentioned in section 3 . 
 

On one side there are functions that are introduced by function-constant strings like e.g.,  , 

, or  .  
 

On the other side functions can be represented as sets making use of oparition and apply the 

UNEX-formulo method as introduced in section 1 . These sets represent functions mapping one set to 

another, an origin and an image set. Some necessary classifications are listed as extra-relation-constant 

strings in table 5. The definitions contain three parts, the first part takes care of mapping the origin set 

to the image set, the second part guarantees the existence of an image value for every origin value and 

the third part is necessary for uniqueness. The functions that are introduced by function-constant strings 

cannot be represented as sets as they are defined for all sets and not for a given origin set. 
 

At the heart of set theory is the concept of cardinality; after all, that is where Cantor started from. Talking 

about cardinality one does not always need a concept of so-called cardinal-numbers. Cardinality so far 

is just a façon de parler. One can compare sets with respect to their cardinality by binary relations:  

means that a set has less or equal cardinality with respect to another set,  means that a set has less 

cardinality with respect to another set, and  means that two sets have equal cardinality. Appropriate 

order and equivalence relations are sufficient for the start of cardinality theory. For the proper definitions 

one has to deal with special jections. 
 

 

Let's start with the extra-relation-constant OR . The ternary relation orelity means that the third 

argument position is an oparition-set that gives a relation between the first two sets. 
 

OR123312443565162456
 

The ternary relation jectivity given by extra-relation-constant JR  means that the third argument 

position is a unex-oparition-set that represents a jection of one set to another set (existence and 

uniqueness required); it refers to a unary function, higher arities would read like e.g. a binary function 

JR . 
 

JR123OR123

55166256377257376 

 

The ternary relation  injectivity given by extra-relation-constant IJR means that the third 

argument position is a unex-oparition-set that represents an injection of one set to another set. 
 

IJR123JR1234567

415145627246357367 

 

The ternary relation surjectivity given by extra-relation-constant SJR means that the third 

argument position is a unex-oparition-set that represents a surjection of one set to another set 
 

SJR123JR123442551543
 

The ternary relation bijectivity given by extra-relation-constant BJR means that the third 

argument position is a unex-oparition-set that epresents a bijection of one set to another set, but one 

should notice that 3 only applies to the direction 1 to 2 ; the other direction needs a different 3 . 
  

BJR123IJR123SJR123 
 

Using these extra-relation-constant strings one can define the order relations and equivalence relations 

that allow for introducing cardinality as mentioned before. 
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Table 5 contains the definitions of three binary relations: card-minor-equality , card-equality   

and card-minority  .  is a total order relation as it is reflexive, antisymmetric, transitive and 

connective.  is an equivalence relation relation as it is reflexive, symmetric and transitive.  

 

One can express card-equality using surjectivity only as there is the following THEOREM 

 

12123SJR1233SJR123
 

 

Applying it to a set and its potention set one gets the general-diagonal-sentence 
 

12BJR112
 

111
 

and with choice of  cnl for 1 the special cantor-diagonal-sentence 
 

1BJRcnlcnl1
 

cnlcnl
 

With the representations of relations one can do Cantor diagonalization and state the general-diagonal-

sentence as a THEOREM in calcule sigma with first-order logic FOL : 
 
 

1221331

441553452


 

It reads in its most condensed form 




11l1 
 

 

Following the indirect proof of Cantor that uses first-order logic for 

111212112  

with the choice of a counter-example  21 and 11111 
 

we get the proof of the above THEOREM by contradiction with a counter-example obtained by 

diagonalization: 
 

replace 53 by equivalent 553 

take 54 and subset  3121 

and realize that  44121contradicts 442 
 

The simplest case of the THEOREM is the original cantor-diagonal-sentence where 1 is taken as cnl 
 
 

11cnl22cnl33cnl442341
 

In conventioanl language it says: the set of natural numbers has less cardinality than its power-set (given 

by potention). It reads in its most condensed form as follows: 




cnlcnl 
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7  Proof-complete and basis-complete 
 

The expressions complete and its negation incomplete appear in two different meanings with respect to 

a logical system. It would be better if a system were called 
 

proof-incomplete  if there are true sentence strings that cannot be proven within the system 
 

basis-incomplete  if there are sentence strings that that do not contradict the system,  

    nor do their negations contradict the system. 
 

Gödel's famous completeness and incompleteness theorems mean proof-completeness and proof-

incompleteness. The author thinks that the expression 'complete' is not a very good choice. There is 

nothing missing in a proof-incomplete system that one could add to make it complete. It would be better 

to talk about autarkic and non-autarkic systems. In an autarkic system the truth of sentence strings is 

derivable within the system, whereas in a non-autarkic system the truth s comes from the outside. 
 

The expression 'complete' is a much better choice in the second case, as the systems actually lack 

something. At least in certain cases incomplete systems can be made complete by new Axiom strings.  
 

The simplest example for an basis-incomplete system is the abstract calcule gamma of group theory 

where neither the simple commutability sentence 121221 nor its negation contradict 

the Axiom strings. Traditionally the most important example is the basis-incomplete absolute planar 

geometry, where Euclid's Axiom of unique parallels or its negation, Lobachevsky's Axiom of multiple 

parallels can be added. Both Euclidean and Lobachevskyan geometries are basis-complete.  
 

The following figure shows the various classifications of sentence strings with respect to TRUTH in the 

systems of the FUME-method that are called concrete calcules or abstract calcules.  
 

     

 
Clarity 

Tautology 
 

Verity 
 

Contradictivity 
 

Falsity 
 

 
 

limbHOOD 

 

 
CISCLARITY 

 
CISVERITY 

 

 
CISFALSITY 

 

 

only abstract 

calcules 

 

 
TRANSCLARITY 

 
TRANSVERITY 

 

 
TRANSFALSITY 

  

     
 TRUTH FALSEHOOD   

 CLEARHOOD   

 

Figure 2  Classification of sentence strings with respect to TRUTH  
 

The TRUTH of a clarity needs at most limitive logic (predicate logic with limited quantions). 

The TRUTH of a CISCLARITY sentence needs a special proof and quantive logic (predicate logic). 

The TRUTH of a TRANSCLARITY sentence cannot be found within the calcule. 
 

For a proof-incomplete calcule the yellow area of TRANSCLARITY is not empty: there are true 

sentences like the famous Gödel-sentence (of Gödel's so-called 'incompletnesss theorem') that cannot be 

proven from axioms. 
 

In a basis-complete calcule it holds that every sentence is either a TRUTH or a FALSEHOOD : e.g. in 

Euclidean geometry every sentence is either true or false, tertium non datur. In a basis-incomplete calcule 

the purple area of limbHOOD is not empty: there are sentences that are neither true nor false, they are 

can be called limbic (the negation of clear), as they are so to speak 'in limbo'; . The simple example of 

absolute geometry theory can be made basis-complete by adding an axiom of parallelity. This is not the 

case for the famous example of axiomatic set theory with the sentence of Cantor's continuum hypothesis 

that shows that it is not basis-complete.  
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8  Continuum-hypothesis and basis-incompleteness 
 

An important problem at the very center of set theory is called the Continuum Hypothesis CH . Its 

simplest form is given by the cantor-continuum-sentence which states that there are no sets with 

cardinality between cnl and its potention cnl where cnl is the infinite set created from the nilset 

n by successive singlition  . With the concept of cardinal numbers one says that there is no cardinal 

number between aleph-zero and aleph-one. Observe the use of boldface italics fonts in cchs for 

distinguishing metalanguage Mencish  from object-language Funcish: 

 
 

cchs 1cnl11cnl1cnl1cnl 
 

 

Alternative formulation 
 
 

cchsa 2cnl22cnl
 

 

The general-continuum-sentence claims that all sets between a set and its potention have either the 

cardinality of the set or the cardinality of its potention. 

 
 

gchs 3443343434 

 

 

Kurt Gödel had shown in 1938 : if ZF is consistent so is ZFC+CH (Continuum Hypothesis), 

Gödel, K. (1940). The Consistency of the Continuum-Hypothesis. Princeton University Press 
 

Paul Cohen had shown in 1963 : if ZF is consistent so is ZFC+ negation of CH 

Cohen, Paul J. (December 15, 1963). "The Independence of the Continuum Hypothesis". Proceedings 

of the National Academy of Sciences of the United States of America. 50 (6): 1143–1148 

 

The Gödel-Cohen metasentence says that Cantor's continuum hypothesis can neither be proven nor can 

its negation be proven in the framework of axiomatic set theory. The cantor-continuum-sentence was 

the first example of a sentence that was shown to be independent of ZFC . This means that axiomatic 

set theory is basis-incomplete as can be expressed in metalanguage: 

 

1 sentence1TRUTH1TRUTH1 
 

The cantor-continuum-sentence  is neither true nor false: it is a limbic sentence 
 

TRUTHcchsTRUTHcchs  
 

 

 

  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC221287
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9  A weird formula and the Separation-axiom 
 

In sections 1 and 2  formula strings were introduced in an abbreviated fashion. This should be sufficient 

for this publication, as formula strings correspond exactly to the conventional use of the expression 

'formula' in logical systems. It is also clear what is meant by a unary-formula string as formula that 

contains exactly one free variable and a  norm-formula string that has successive free variable strings 1, 

2, 3 … and a unary-norm-formula string with exactly one free variable 1 . 
 

Returning to the opening line in section 5 'the definition of a relation-constant by a formula is 

straightforward' one can have second thoughts if that is so in general. The reason for this investigation 

are the results of the two preceding sections on basis-incompleteness and Cantor's continuum hypothesis. 

One starts with the following unary-norm-formula that make use of the alternative expression of the 

cantor-continuum-sentence : 
 

weird-formula 1n1ncchsa

weird-formula 1n1n2cnl22cnl
 

It is not a formula that gives a value 'true' or 'false' for every argument, as it is limbic at 1n . There 

is no way to know beforehand in axiomatic set theory if a formula is clear everywhere. One has to notice 

the important (usually ignored) general fact that in an incomplete theory there are limbic formula strings 

besides limbic sentence strings as well. In the preceding section 8 the cantor-continuum-sentence has 

been introduced which is limbic, and it was mentioned that there are other limbic sentence strings in 

axiomatic set theory as well. 
 

There are many formula strings like weird-formula . One cannot determine beforehand if a formula is 

clear or limbic, it has to be checked for every instance, and it poses the same problem in principle as 

determining if a sentence string is clear or limbic. 

 

What does that mean in connection with the Separation-axiom strings ? They are based on formula strings 

without any further restrictions. The simplest Separation-axiom strings are obtained from the following 

mater with unary-norm-formula strings 1 with free variable 1 , it says that there exists a set 0 whose 

elements are those of a set  2 that also fulfill the formula strings 1  : 

 

20110121 
 

Choose  2cnl and 1weird-formula 

 

01101cnlweird-formula 

01101cnl1n1n2cnl22cnl
 

Choose  1n as the empty set, observe ncnl ,

0n0ncnlnnnn2cnl22cnl
 
 

0n02cnl22cnl 

 

0n0cchsa 
 

 

This, however, is not a proper TRUTH as it is required for a set that must be definite if another set is 

contained in it or not: The binary relation-constant  is defined everywhere, one must not exclude 

certain elements. 

 

Other formula strings may be limbic (i.e. indefinite with respect to truth) but the formula expressed by 

12 with the basis-relation of membrity  must be clear (i.e. definite with respect to truth for all 

instances).
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In other words: one can obtain sentence strings as Separation-axiom strings that are not TRUTH strings. 

One has to refute Separation-axiom strings in the usual fashion. And it seem doubtful if one can replace 

them by something else, as there is no way to determine beforehand if a formula is clear, i.e. if it is true 

or false for all instances. 

 
 

Is there more than a flaw in axiomatic set theory ? 
 

 

The situation is different for the appearance of formulo strings in the Recursion-axiom and Replacition-

axiom strings as they are qualified as UNEX-formulo strings, a feature that can be expressed within 

metalanguage. 
 

The problem is also very important in connection with the comprehension principle that is necessary 

for the introduction of classes. 
 

In some axiomatic set theories there are no separation axioms, as the corresponding sentences can be 

derived as theorems, but this does not change the problem, it just moves it to another level.  

 

The author is deeply worried as the Separation-axiom strings are used right from the very beginning: 

e.gt. intersectition , intersection , complemention  and production  necessitate 

Separation-axiom strings. And so one has to end with the question: 

 
 

How can one solve  the Separation-axiom problem of axiomatic set theory ? 
 

 

 

Axiomatic set theory is considered as the means to talk about so-called actual infinities in a precise 

fashion, using first-order logic only. Axiomatic set theory is thought to be the mathematical theory on 

infinity. But perhaps one cannot outsmart infinity. 


