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 Abstract-Quantum entanglement, a phenomenon 

occurring when states of pairs or groups of particles 

cannot be described independently, is one of the most 

‘spooky action’ but truly exists. In this paper, entangled 

states and few of its application is introduced. 
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I. Introduction 

 Quantum entanglement is a physical phenomenon 

which occurs when pairs or groups of particles are 

generated or interact in ways such that the quantum 

state of each particle cannot be described 

independently of the state of the others, even when 

the particles are separated by a large distance—

instead, a quantum state must be described for the 

system as a whole. Such phenomena were the subject 

of a 1935 paper by Albert Einstein, Boris Podolsky, 

and Nathan Rosen, describing what came to be 

known as the Einstein-Podolsky-Rosen paradox, or 

EPR paradox. At the very beginning, Einstein and 

others considered such behavior to be impossible. 

Later, however, such counterintuitive predictions of 

quantum mechanics were verified experimentally by 

producing violations of Bell's inequality.  

 Entanglement has many applications in quantum 

information theory. Among the best-known 

applications of entanglement are superdense coding 

and quantum teleportation. 

 

II. EPR paradox, and Bell’s inequality 

 EPR paradox of 1935 is a thought experiment 

claimed by Albert Einstein, Boris Podolsky, and 

Nathan Rosen, to demonstrate the ‘incompleteness’ 

of quantum mechanics. One version of the thought 

experiment is as following: Prepare an EPR pair 

consisted by particle A and particle B with zero total 

spin. Then separate them in space. Set the separation 

of two particles to be a, then if position of particle A 

is measured to be x, particle B would be at position 

(x-a). Also if momentum of particle B is measured to 

be p, by conservation of momentum, another particle 

A would have momentum –p. Then position and 

momentum of each individual particle can be know, 

but this violate principle of uncertainty. In addition, if 

one is particle is measured to be spin up, then another 

one must be spin down. [1] 

 Einstein believed that to explain this paradox, 

either one of the following has to be true: (i) there 

exists action at a distance, so that measuring position 

of one particle can affect momentum of another 

particle instantaneously. (ii) quantum theory is not 

complete, and need to extended with hidden 

variables. [1] 

 Bohr on the other hand, come up with the 

resolution as follows: for two "entangled" particles, 

measurable properties have well-defined meaning 

only for the ensemble system. Properties of 

constituent subsystems, considered individually, 

remain undefined. Which eliminates the need for 

hidden variables, action at a distance, or other 

schemes introduced over time, in order to explain the 

phenomenon. [2] 

 A preference for the latter resolution is supported 

by experiments suggested by Bell's theorem of 1964, 

which exclude some classes of hidden variable 

theory. Notate a and a’ to be detector settings on side 

A, b and b’ on side B. Classic theory suggest that the 

correlation of measured result of a particle pair 

should follow the inequality (detailed derivation in 

Appendix I): [3][4] 

 𝐸(𝑎, 𝑏) + 𝐸(𝑎, 𝑏′) + 𝐸(𝑎′, 𝑏) − 𝐸(𝑎′, 𝑏′) ≤ 2 (2.1) 

where E refers to correlations of particle pair. 

 Lager number of experiments has been done since 

Bell proposed his theory. Experimental evidence of 

the violation of Bell's inequality suggests that 

predictions of quantum mechanics are correct. 
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III. Entanglement and Bell states [4] 

 Consider a two-particle (2-qubit) system and each 

particle (qubit) can in either one of the two states: 

 |0⟩ = (
1
0
) or |1⟩ = (

0
1
) (3.1) 

There are 4 ways they form a pair: 

 

|00⟩ = |0⟩⨂|0⟩ = (
1
0
)⨂ (

1
0
) = (

1
0
0
0

) 

|01⟩ = |0⟩⨂|1⟩ = (
1
0
)⨂ (

0
1
) = (

0
1
0
0

) 

|10⟩ = |1⟩⨂|0⟩ = (
0
1
)⨂ (

1
0
) = (

0
0
1
0

) 

|11⟩ = |1⟩⨂|1⟩ = (
0
1
)⨂ (

0
1
) = (

0
0
0
1

) 

(3.2) 

   

 Entangled states are states that cannot be 

represent by tensor product of two qubits. Because of 

the entanglement, measurement of one qubit will 

assign a value to the other qubit immediately. There 

are four ways one qubit assigned the value to the 

other qubit depend on how these two particle are 

entangled. The state of their entanglement can be 

represented by Bell states. Bell state of a pair of qubit 

can be expressed as: 

 

|𝛽00⟩ =
(|00⟩ + |11⟩)

√2
 

|𝛽01⟩ =
(|01⟩ + |10⟩)

√2
 

|𝛽10⟩ =
(|00⟩ − |11⟩)

√2
 

|𝛽11⟩ =
(|01⟩ − |10⟩)

√2
 

(3.3) 

(|00⟩ with |10⟩, or |11⟩ with |01⟩ can be represent by tensor 

product of 2 qubits, so they are not entangled states) 

Or 

 

|Ψ±⟩ =
(01⟩±|10⟩)

√2
  

=
1

√2
(|0⟩⨂|1⟩ ± |1⟩⨂|0⟩) 

 

|Φ±⟩ =
(|00⟩±|11⟩)

√2
  

=
1

√2
(|0⟩⨂|0⟩ ± |1⟩⨂|1⟩) 

(3.4) 

IV. Quantum teleportation [5] 

 Using the fact that measurement of one qubit is 

related to its entangled partner, a complete new 

method of sending information is proposed. The 

seminal paper first expounding the idea of quantum 

teleportation was published by C. H. Bennett, G. 

Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. 

Wootters in 1993. Quantum teleportation is not a 

form of transportation, but of communication: it 

provides a way of transporting a qubit from one 

location to another without having to move a physical 

particle along with it. The protocol of quantum 

teleportation is as follows: [6] 

 1. An EPR pair is generated, one qubit sent to 

 location A, the other to B. 

2. At location A, a measurement of system of the 

qubit of the EPR pair and anther qubit contained 

information is performed, yielding one of four 

measurement outcomes, which can be encoded in 

classical information. 

3. The classical information are sent from A to B. 

4. As a result of the measurement performed at 

location A, the EPR pair qubit at location B is in 

one of four possible states. Which of these four 

possibilities actually obtained, is encoded in the 

classical information. With the information of the 

classical bits and state of qubit at location B, the 

information contained in qubit at location A can 

be reproduced. 

 Mathematical representation for the process listed 

above is as follows: 

 Using an EPR pair (particle 2 and 3) prepared in 

bell state |Ψ-
23⟩ as an example: 

 

|Ψ23
− ⟩ =

(|01⟩−|10⟩)

√2
  

          =
1

√2
(|02⟩⨂|13⟩ − |12⟩⨂|03⟩) 

(3.4) 

 Particle 2 is send to A and particle 3 is send to B. 

Information need to be sent from A to B can be 

stored into a third particle 1. If the information is (a, 

b), the third particle can be made as: 

 |𝜑1⟩ = a|01⟩ + b|11⟩ (4.1) 

 State of the whole system (particle 1, 2, and 3) 

can be written as: 
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|Ψ123⟩ = |𝜑1⟩⨂|Ψ23
− ⟩   

     =
𝑎

√2
(|01⟩⨂|02⟩⨂|13⟩ − |01⟩⨂|12⟩⨂|03⟩) 

+
𝑏

√2
(|00⟩⨂|02⟩⨂|13⟩ − |00⟩⨂|12⟩⨂|03⟩) 

(4.2) 

 Since particle 1 and 2 are at A, people at 1 and 2 

can only measure the state of system consisted by 

particle 1 and 2. When measurement is performed on 

the system of particle 1 and 2, process called 

entanglement swapping occur, and particle 1 and 2 

are now an EPR pair. 

 Rewritten Eq.4.2 as a linear combination of bell 

states of particle 1 and 2, since measurement for 

system of particle 1 and 2 only gives information of 

EPR pair of particle 1 and 2. 

 
|Ψ123⟩ = |I3⟩⨂|Ψ12

− ⟩ + |II3⟩⨂|Ψ12
+ ⟩ 

           +|III3⟩⨂|Φ12
− ⟩ + |IV3⟩⨂|Φ12

+ ⟩ 
(4.3) 

where |I3⟩, |II3⟩, |III3⟩, and |IV3⟩ are states of particle 

3. 

 Since Bell states are orthonormal, we can find |I3⟩, 

|II3⟩, |III3⟩, and |IV3⟩ using inner product: 

 

⟨Ψ12
−  |Ψ123⟩ = |I3⟩⟨Ψ12

−  |Ψ12
− ⟩

+ |II3⟩⟨Ψ12
−  |Ψ12

+ ⟩
+ |III3⟩⟨Ψ12

−  |Φ12
− ⟩

+ |IV3⟩⟨Ψ12
−  |Φ12

+ ⟩ 

(4.4) 

therefore: 

 
|I3⟩ = ⟨Ψ12

−  |Ψ123⟩ = ⋯ 

             = −
1

2
(a|03⟩ + b|13⟩) 

(4.5) 

Use same method, we get: 

{
 
 
 

 
 
 |I3⟩ = ⟨Ψ12

−  |Ψ123⟩ = −
1

2
(a|03⟩ + b|13⟩)

|II3⟩ = ⟨Ψ12
+  |Ψ123⟩ = −

1

2
(a|03⟩ − b|13⟩)

|III3⟩ = ⟨Φ12
−  |Ψ123⟩ =

1

2
(a|03⟩ + b|13⟩)

|IV3⟩ = ⟨Φ12
+  |Ψ123⟩ =

1

2
(a|03⟩ − b|13⟩)

 (4.6) 

express the above four state in matrix representation: 

 

{
 
 
 

 
 
 |I3⟩ =

1

2
[
−1 0
0 −1

] (
𝑎
𝑏
)

|II3⟩ =
1

2
[
−1 0
0 1

] (
𝑎
𝑏
)

|III3⟩ =
1

2
[
0 1
1 0

] (
𝑎
𝑏
)

|IV3⟩ =
1

2
[
0 −1
1 0

] (
𝑎
𝑏
)

 (4.7) 

 It is clear that |I3⟩, |II3⟩, |III3⟩, and |IV3⟩ are all the 

original state of particle 1 (a, b) under change of a 

unitary matrix. Therefore once measurement at A is 

done, people at A know which bell states is particle 1 

and 2 are in. The measurement result is one of |Ψ-
12⟩, 

|Ψ-
12⟩, |Ψ-

12⟩, and |Ψ-
12⟩, and those state indicate 

particle 3 is in state |I3⟩, |II3⟩, |III3⟩, or |IV3⟩ 
respectively. Then next thing people at A have to do 

is just sending the corresponded unitary matrix to 

people at B, so people at B can use the matrix and 

particle 3 to recover the original state of particle 1 

and get the information (a, b). 

 Quantum teleportation is almost a perfect way to 

send information securely. Since tapping on classical 

trennel can only get the unitary matrix, but to get the 

information, both the unitary matrix and qubit sent to 

B is required. In addition, because the no-cloning 

theorem (details in Appendix II), any attempt to 

measure or copy the qubit sent to B change the state 

of the qubit, and the information then is ‘destroyed’. 

 

V. Superdense coding [7] 

 Superdense coding is a technique that allows 

increasing the classical information content that can 

be encoded within a number of qubits. In its simplest 

form, the protocol is used to encode two classical bits 

of information in the state of a single qubit. It can be 

thought of as the inverse of quantum teleportation, in 

which one transfers a quantum state from one party to 

the other via communication of a number of classical 

bits. 

 Quantum 
teleportation 

Superdense 
coding 

Channel used Classical 
channel 

Quantum 
channel 

Information 1 qubit 2 classical 
bits 

Information 
sent via 
channel 

2 classical bits 1 qubit 

Table 1. Comparison between quantum teleportation and 

superdense coding. 

 Suppose people at A want to send 2 bits of 

classical information to people at B using only 1 

qubit. First, people at A and B need to have an EPR 

pair, one at qubit at A and the other at B, for 

example: 
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 |𝛽00⟩ =
1

√2
(|0⟩𝐴⨂|0⟩𝑏 + |1⟩𝐴⨂|1⟩𝐵) (5.1) 

where subscribes mark the location of qubits. 

 Table 2 lists messages people at A can send, and 

in order to send a specific message, what operator 

needed to performed on qubit at A. 

info operator result of operation 

00 no 
operator  

|𝛽00⟩  

01 X-Gate 𝑋|𝛽00⟩  
 

=
1

√2
((𝑋|0⟩𝐴)⨂|0⟩𝑏 +

(𝑋|1⟩𝐴)⨂|1⟩𝐵)  
 

=
1

√2
(|1⟩𝐴⨂|0⟩𝑏 +

|0⟩𝐴⨂|1⟩𝐵)  
 

= |𝛽01⟩  
10 Z-Gate 𝑍|𝛽00⟩  

=
1

√2
((𝑍|0⟩𝐴)⨂|0⟩𝑏 +

(𝑍|1⟩𝐴)⨂|1⟩𝐵)  
 

=
1

√2
(|0⟩𝐴⨂|0⟩𝑏 −

|1⟩𝐴⨂|1⟩𝐵)  
 

= |𝛽10⟩   
11 X-Gate 

then Z-
gate 

𝑍𝑋|𝛽00⟩  

=
1

√2
((𝑍𝑋|0⟩𝐴)⨂|0⟩𝑏 +

(𝑍𝑋|1⟩𝐴)⨂|1⟩𝐵)  
 

=
1

√2
(−|1⟩𝐴⨂|0⟩𝑏 +

|0⟩𝐴⨂|1⟩𝐵)  
 

= |𝛽00⟩   
Table 2. Information want to send and corresponded 

operator need to be performed. 

 X-Gate and Z-Gate are quantum logic gates used 

in quantum computing. For a 2-qubit system, X-Gate 

and Z-Gate’s matrix representation as following: [8] 

 𝑋 = [
0 1
1 0

] (5.2) 

 𝑍 = [
1 0
0 −1

] (5.3) 

 Then people at A send the qubit been operated to 

B, and people at B measure the state of the pair of 

qubits. Each Bell state is corresponded to a 2-bit 

classical message. 

 Again, superdense coding is a very security way 

to communicate. Even if the qubit sent from A is 

somehow ‘stolen’ by a third party, without the qubit 

at B, no useful information can be extract. 

VI. Conclusion 

 Property of quantum entanglement makes 

entangled pair to be perfect media for transmitting 

information. Applications such as quantum 

teleportation and superdense coding guarantee secure 

communication.  

 The main challenge faced by the field of quantum 

communication nowadays is the effect so-called 

quantum decoherence, which refers to when a 

quantum system is not perfectly isolated, but in 

contact with surroundings, coherence decays with 

time and eventually system can be no longer 

considered to be entangled. Once the problem 

brought by quantum decoherece is resolved, quantum 

communication over long distance can be possible. 
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Appendix I 

Bell inequalityi 

 Assume two sides A and B are independent for 

any selected value of the ‘hidden variable’ λ, so joint 

probabilities of pairs of outcomes can be obtained by 

multiplying the separate probabilities. λ is assumed to 

be drawn from a fixed distribution of possible states 

of the source, the probability of the source being in 

the state λ for any particular trial being given by the 

density function ρ(λ), the integral of which over the 

complete hidden variable space is 1. Thus: 

 𝐸(𝑎, 𝑏) = ∫ 𝐴̅(𝑎, 𝜆)𝐵̅(𝑏, 𝜆)𝜌(𝜆)𝑑𝜆 (I.1) 

where A and B are the average values of the 

outcomes. Since the possible values of A and B are 

−1, 0 and +1, it follows that: 

 |𝐴̅| ≤ 1, |𝐵̅| ≤ 1 (I.2) 

Then, if a, a’, b and b’ are alternative settings for the 

detectors: 

 

𝐸(𝑎, 𝑏) − 𝐸(𝑎′, 𝑏′) 

= ∫(𝐴̅(𝑎, 𝜆)𝐵̅(𝑏, 𝜆) − 𝐴̅(𝑎′, 𝜆)𝐵̅(𝑏′, 𝜆))𝜌(𝜆)𝑑𝜆 

= ∫𝐴̅(𝑎, 𝜆)𝐵̅(𝑏, 𝜆)[1 ± 𝐴̅(𝑎′, 𝜆)𝐵̅(𝑏′, 𝜆)]𝜌(𝜆)𝑑𝜆 

−∫𝐴̅(𝑎, 𝜆)𝐵̅(𝑏′, 𝜆)[1 ± 𝐴̅(𝑎′, 𝜆)𝐵̅(𝑏, 𝜆)]𝜌(𝜆)𝑑𝜆 

(I.3) 

Take absolute value to both side and by the triangle 

inequality: 

|𝐸(𝑎, 𝑏) − 𝐸(𝑎′, 𝑏′)| 

≤ |∫ 𝐴̅(𝑎, 𝜆)𝐵̅(𝑏, 𝜆)[1 ± 𝐴̅(𝑎′, 𝜆)𝐵̅(𝑏′, 𝜆)]𝜌(𝜆)𝑑𝜆 

−∫𝐴̅(𝑎, 𝜆)𝐵̅(𝑏′, 𝜆)[1 ± 𝐴̅(𝑎′, 𝜆)𝐵̅(𝑏, 𝜆)]𝜌(𝜆)𝑑𝜆 | 

(I.4) 

Since [1±A ̅(a',λ) B ̅(b',λ)] and [1±A ̅(a',λ) B ̅(b,λ)] are 

both negative, right-hand side of Eq.I.4 can be 

written as:  

| ∫ 𝐴̅(𝑎, 𝜆)𝐵̅(𝑏, 𝜆)[1 ± 𝐴̅(𝑎′, 𝜆)𝐵̅(𝑏′, 𝜆)]𝜌(𝜆)𝑑𝜆| 

+|∫ 𝐴̅(𝑎, 𝜆)𝐵̅(𝑏′, 𝜆)[1 ± 𝐴̅(𝑎′, 𝜆)𝐵̅(𝑏, 𝜆)]𝜌(𝜆)𝑑𝜆 | 
(I.5) 

By Eq.I.2 and assumption that  the integral of ρ(λ) is 

1, Eq.I.5 turns into: 

2 ± [∫ 𝐴̅(𝑎′, 𝜆)𝐵̅(𝑏′, 𝜆)𝜌(𝜆)𝑑𝜆 

     +∫ 𝐴̅(𝑎′, 𝜆)𝐵̅(𝑏, 𝜆)𝜌(𝜆)𝑑𝜆] 
(I.6) 

which is equal to 2±[E(a’,b’)+E(a’b)]. 

Put it back into the inequality and apply the triangle 

inequality again, we can obtain: 

 
2 ≥ |𝐸(𝑎, 𝑏) − 𝐸(𝑎, 𝑏′)| + |𝐸(𝑎′, 𝑏′) + 𝐸(𝑎′𝑏)| 
≥ |𝐸(𝑎, 𝑏) − 𝐸(𝑎, 𝑏′) + 𝐸(𝑎′, 𝑏′) + 𝐸(𝑎′, 𝑏)| 

 
(I.7) 

Which is exactly Eq.2.1. 

 

 

 

Appendix II 

No-cloning theoremii 

 The no-cloning theorem can be explained based 

on the linearity of quantum mechanics. 

 Let A and B be two quantum system, and they are 

in |φA⟩, and |0B⟩. |0B⟩ is ‘blank’ state of B. Suppose 

there are some way to copy any state from quantum 

system A to another B: 

 |𝜙𝐴⟩⨂|0𝐵⟩
𝑐𝑜𝑝𝑦
→   |𝜙𝐴⟩⨂|𝜙𝐵⟩ (II.1) 

 Same operation should copy another state from A 

to B as well: 

 |𝜓𝐴⟩⨂|0𝐵⟩
𝑐𝑜𝑝𝑦
→   |𝜓𝐴⟩⨂|𝜓𝐵⟩ (II.2) 

 Superposition of states of A: 

 |Ψ𝐴𝑡𝑜𝑡𝑎𝑙⟩ = |𝜙𝐴⟩ + |𝜓𝐴⟩ (II.3) 

 By assumption, the total state can be copied to 

system B as well: 

 

|Ψ𝐴𝑡𝑜𝑡𝑎𝑙⟩⨂|0𝐵⟩
𝑐𝑜𝑝𝑦
→   |Ψ𝐴𝑡𝑜𝑡𝑎𝑙⟩⨂|Ψ𝐵𝑡𝑜𝑡𝑎𝑙⟩ 

               = (|𝜙𝐴⟩ + |𝜓𝐴⟩)⨂(|𝜙𝐵⟩ + |𝜓𝐵⟩) 
     = |𝜙𝐴⟩⨂|𝜙𝐵⟩ + |𝜙𝐴⟩⨂|𝜓𝐵⟩ 
      +|𝜓𝐴⟩⨂|𝜙𝐵⟩ + |𝜓𝐴⟩⨂|𝜓𝐵⟩ 

(II.4) 

 However because of linearity: 

 

|Ψ𝐴𝑡𝑜𝑡𝑎𝑙⟩⨂|0𝐵⟩ = (|𝜙𝐴⟩ + |𝜓𝐴⟩)⨂|0𝐵⟩ 

                     = |𝜙𝐴⟩⨂|0𝐵⟩ + |𝜓𝐴⟩⨂|0𝐵⟩ 

                  
𝑐𝑜𝑝𝑦
→   |𝜙𝐴⟩⨂|𝜙𝐵⟩ + |𝜓𝐴⟩⨂|𝜓𝐵⟩ 

(II.5) 

 Eq.II.4 and II.5 are not equal, so this mean the 

assumption ‘there are some way to copy any state 

from one quantum system to another’ cannot be true.

 

i J. S. Bell, in Foundations of Quantum Mechanics, Proceedings of the International School of Physics “Enrico Fermi”, Course XLIX, B. 

d’Espagnat (Ed.) (Academic, New York, 1971), p. 171 and Appendix B. Pages 171-81 are reproduced as Ch. 4 of J. S. Bell, Speakable and 

Unspeakable in Quantum Mechanics (Cambridge University Press 1987) 
ii Nielsen M, Chuang I. Box 12.1: The no-cloning theorem. In: “Quantum Computation and Quantum Information”. Cambridge. UK: Cambridge 

University Press, 2000, p. 532. 
 

                                                           


