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Abstract

Dempster-Shafer Evidence theory is an extension of probability theory, which

can describe uncertain information more reasonably. Divergence measure is al-

ways an important concept in probability theory. Therefore, how to propose

a reasonable divergence measurement has always been a research hot spot in

evidence theory. Recently, Deng proposed the concept of information volume

based on Deng entropy. It is interesting to note that compared with the uncer-

tainty measure of Deng entropy, information volume of Deng entropy contains

more information. Obviously, it might be more reasonable to use information

volume of Deng entropy to represent uncertainty information. Based on this, in

the paper, we combined the characteristics of non-specific measurement of Deng

entropy, and propose a new divergence measure. The new divergence measure-

ment not only satisfies the axiom of distance measurement, but also has some

advantages that cannot be ignored. In addition, when the basic probability as-

signment(BPA) degenerates into probability distribution, the measured result

of the new divergence measure is the same as that of the traditional Jensen-

Shannon divergence. If the mass function is assigned in probability distribution,

the proposed divergence is degenerated as Kullback-Leibler divergence. Finally,

some numerical examples are illustrated to show the efficiency of the proposed
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divergence measure of information volume.
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1. Introduction

In engineering practice and scientific research, a lot of uncertain informa-

tion often appears. To deal with this uncertain information, researchers have

proposed a series of theories, such as probability theory[1], Dempster-Shafer Ev-

idence theory[2, 3], fuzzy sets[4], intuitive fuzzy sets[5], and Pythagorean fuzzy5

sets[6] and so on[7, 8]. It’s worth noting that since the evidence theory satisfies

the weaker condition than the probability theory, it can describe the uncertain

information more reasonably. It has been concerned by researchers and applied

to target recognition[9, 10], decision-making[11, 12] and so on[13, 14].

In Dempster-Shafer Evidence theory, there are many concepts reflected from10

probability theory, such as information entropy, cross entropy, conditional en-

tropy, Jensen-Shannon divergence. Among them, the researchers always paid at-

tention to the divergence of two basic probability assignment functions, because

Jensen-Shannon divergence could be used to measure the difference between

two basic probability assignment(BPAs). Recently, Deng proposed a concept15

of information quantity based on Deng entropy[15]. It can be written like this,

given a BPA, the corresponding information volume is larger than its uncertain-

ty measured by Deng entropy. The so called Deng distribution is defined as the

BPA condition of the maximum Deng entropy. The information volume of Deng

distribution is called the maximum information volume, which is lager than the20

maximum Deng entropy. In addition, both the total uncertainty case and the

Deng distribution have the same information volume. Obviously, information

volume would be a more reasonable description of uncertain information.

Therefore, in this paper, we consider not only the information volume of B-

PA, but also the non-specific characteristics of Deng entropy, and propose a new25
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divergence measure. The new divergence measure has some advantages, such

as satisfying the axiom of distance measurement, high resolution and compati-

bility with traditional Jensen-Shannon divergence. In addition, some numerical

examples are used to explain these advantages.

The rest of this paper is organized as follows. In section 2, some preliminaries30

are briefly reviewed. In section 3, based on information volume, the new diver-

gence measure is proposed. In section 4, numerical examples are expounded to

illustrated the proposed method. In section 5, we have a brief conclusion.

2. Preliminaries

Several preliminaries are briefly introduced in this section, including basic35

probability assignment, information volume based on Deng entropy and Jensen-

Shannon divergence.

2.1. Dempster-Shafer evidence theory

D-S evidence theory assigns probabilities to the power set of events [2, 3], so

as to better grasp the unknown and uncertainty of the things, it offers a useful40

fusion tool for uncertain information. Some preliminaries in D-S theory are

introduced as follows. For additional details about D-S evidence theory, refer

to [2, 3].

Definition 1. ( Frame of discernment)

For a mutually exclusive set Θ composed of Ai, it is defined as

Θ = {A1, A2, · · · , An} (1)

The power set of Θ is indicated by 2Θ :

2Θ = {ϕ, {A1} , {A2} , · · · , {A1, A2} , · · · ,Θ} (2)

Definition 2. ( Basic Probability Assignment)

For a frame of discernment Θ = {A1, A2, · · · , An}, a mapping of m from 0 to 1
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is defined as :

m : 2Θ → [0, 1] (3)

which satifies

m (ϕ) = 0 (4)

∑
A⊆Θ

m (A) = 1 (5)

where m(A) represents the degree of evidence supports A.

Definition 3. ( Belief Function and Plausibility Function )

For any A ⊆ Θ, the belief function Bel :2Θ → [0, 1] is defined as

Bel (A) =
∑
B⊆A

m (B) (6)

The plausibility function Pl : 2Θ → [0, 1] is defined as

Pl (A) = 1−Bel
(
Ā
)
=

∑
B∩A ̸=ϕ

m (B) (7)

Obviously, Pl (A) ≥ Bel (A), the Bel (A) and Pl (A) are lower limit function45

and upper limit function of A. When A is a single set in power set 2Θ, the equal

sign is established.

2.2. Information volume of mass function

Recently, Deng poeposed the concept of information volume[15, 16, 17]. first-

ly, He define Deng distribution as the BPA condition of the maximum Deng en-50

tropy. Then, based on Deng entropy, the information volume of mass function

is proposed.

The maximum Deng entropy and the BPA condition of it have been analyzed

in [18]. However, the terminology, the BPA condition of the maximum Deng

entropy, is not convenient for discussing. As a result, Deng distribution was55

defined as follows:
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Definition 4. ( Deng distribution )[15]

mD(A) =
(2|A| − 1)∑

A∈2Θ(2
|A| − 1)

(8)

which is the BPA distribution of the maximum Deng entropy. Namely, if and

only if under this conditions, Deng entropy can reach its maximum value.

Definition 5. ( The information volume of mass function )[15]

Let the frame of discernment be Θ = {θ1, θ2, θ3, · · · , θN}. Use index i to denote60

the times of this loop, and use m(Ai) to denote different mass function of dif-

ferent loops. Based on Deng entropy, the information volume of mass function

can be calculated by following steps:

step 1: Input mass function m(A0).

step 2: Continuously separate the mass function of the element whose cardinal65

is larger than 1 until convergence. Concretely, repeat the loop from step

2-1 to step 2-3 until Deng entropy is convergent.

step 2-1: Focus on the element whose cardinal is larger than 1, namely,

|Ai|> 1. And then, separate its mass function based on the

proportion of Deng distribution:

mD(Ai) =
(2|Ai| − 1)∑

Ai∈2Θ(2
|Ai| − 1)

(9)

step 2-2: Based on Deng entropy, calculate the uncertainty of all the

mass functions except for those who have been divided. The

result is denoted as Hi(m).70

step 2-3: Calculate ∆i = Hi(m)−Hi−1(m). When ∆i satisfies following

condition, jump out of this loop.

∆i = Hi(m)−Hi−1(m) < ε (10)

where ε is the allowable error.

step 3: Output HIV−mass(m) = Hi(m), which is the information volume of the

mass function.
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2.3. The JensenShannon divergence between two probability distributions

Lin introduced an information-theoretical based divergence measure between75

two or more probability distributions, called as JensenShannon (JS) divergence[19].

Unlike others divergence measures, the main property of JS divergence is that,

it does not require the condition of absolute continuity for the probability distri-

butions involved. JS divergence defines a true metric in the space of probability

distributions actually it is the square of a metric [84]. The main concepts are80

defined as below.

Definition 6. ( The JensenShannon divergence between two probability distri-

butions )

Let us consider a discrete random variable X, and let P1 = {p11, p12, · · · , p1M}

and P2 = {p21, p22, · · · , p2M} be two probability distributions for X. The Jensen-

Shannon divergence between the probability distributions P1 and P2 is denoted

as:

JS (P1, P2) =
1

2

[
S

(
P1,

P1 + P2

2

)
+ S

(
P2,

P1 + P2

2

)]
(11)

where S (P1, P2) =
∑

i p1ilog
p1i

p2i
(i = 1, 2, cdots,M) is the KullbackLeibler

divergence and
∑

i pji = 1 (i = 1, 2, · · · ,M ; j = 1, 2)

There are some properties for the JS divergence:

(1) JS (P1, P2) is symmetric and always well defined;85

(2) JS (P1, P2) is bounded, 0JS (P1, P2) 1;

(3) its square root,
√

JS (P1, P2) verifies the triangle inequality.

3. divergence measure of information volume

In DempsterShafer evidence theory, how to measure the discrepancy and

conflict among evidences is still an open issue that is critical for the fusion of90

evidences. Obviously, DempsterShafer evidence theory is a generalization of

probability theory. By integrating the DempsterShafer evidence theory with

above mentioned JensenShannon divergence, based on the information volume

and non-specific characteristics of deng entropy, a novel divergence measure
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named divergence measure of information volume(IV-JS) which is designed for95

the mass function is defined as below.

Definition 7. ( The IV-JS divergence between two BBAs )

Let Ai be a hypothesis of the mass function m, and let m1 and m2 betwo BBAs

on the same frame of discernment X, containing N mutually exclusive and

exhaustive hypotheses. m̂1 and m̂2 are the information volume of m1 and m2100

in the case of the limit value δ, respectively. The IV-JS divergence between the

two BBAs m1 and m2 is denoted as:

IV − JS (m1,m2) =
1

2

[
S

(
m̂1,

m̂1 + m̂2

2

)
+ S

(
m̂2,

m̂1 + m̂2

2

)]
(12)

where S (m̂1, m̂2) =
∑

i
1

2|Ai|−1
m̂1 (Ai) log2

m̂1(Ai)
m̂2(Ai)

, and
∑

i m̂j (Ai) = 1.

It is obvious that the fraction value tends to infinity when the BPA is zero

and the value of its logarithm also tends to infinity. The proposed method will105

fail in this case, so a very small number 1.0000e − 16 is used to replace zero

value when the above case occurs. It has been proven that this will not affect

the calculation results [88]. The Belief JensenShannon divergence is similar with

JensenShannon divergence in form, however, the IV-JS divergence utilizes the

mass function by taking the place of probability distribution function. In such110

a situation that all of the belief functions hypothesis are assigned to the single

elements, the BPA will turn into probability; the IV-JS divergence degenerates

to JensenShannon divergence in this case.

The property can be inferred as below:

(1) IV − JS (m1,m2) is symmetric and always well defined;115

(2) IV − JS (m1,m2) is bounded, 0IV − JS (m1,m2) 1;

(3) its square root,
√

IV − JS (m1,m2) verifies the triangle inequality.
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4. Some numerical examples

Example 1. Supposing that there are two BPAs m1 and m2 in the frame

of discernment X = {AB,C} which is complete, and the two BPAs are given120

as follows:

m1 : m1 (A) = 0.6,m1 (B) = 0.2,m1 (C) = 0.2;

m2 : m2 (A) = 0.6,m2 (B) = 0.2,m2 (C) = 0.2;

Next, the information volume of m1 and m2 is expressed as follows:

m̂1 : m̂1 (A) = 0.6, m̂1 (B) = 0.2, m̂1 (C) = 0.2;125

m̂2 : m̂2 (A) = 0.6, m̂2 (B) = 0.2, m̂2 (C) = 0.2;

As shown in Example 1, it can be see that m̂1 has the same BPAs as m̂2,

where m̂1 (A) = m̂2 (A) = 0.6, m̂1 (B) = m̂2 (B) = 0.2 and m̂1 (C) = m̂2 (C) =

0.2. Then, the specific calculation processes of IV − JS(m1,m2) are listed as

follows:130

IV −JS(m1,m2) =
1
2

1
2|1|−1

0.6× log
(

2×0.6
0.6+0.6

)
+ 1

2
1

2|1|−1
0.6× log

(
2×0.6
0.6+0.6

)
+

1
2

1
2|1|−1

0.2×log
(

2×0.2
0.2+0.2

)
+1

2
1

2|1|−1
0.2×log

(
2×0.2
0.2+0.2

)
+ 1

2
1

2|1|−1
0.2×log

(
2×0.2
0.2+0.2

)
+

1
2

1
2|1|−1

0.2× log
(

2×0.2
0.2+0.2

)
= 0

This example verifies that when m1 has the same BPAs as m2, the IV −JS

between m1 and m2 is 0 which accords with an intuitionistic result.135

Example 2. Supposing that there are two BPAs m1 and m2 in the frame

of discernment X = {AB,C} which is complete, and the two BPAs are given

as follows:

m1 : m1 (A) = 0.6,m1 (B) = 0.2,m1 (C) = 0.2;

m2 : m2 (A) = 0.7,m2 (B) = 0.2,m2 (C) = 0.1;140

The information volume of m1 and m2 is expressed as follows:

m̂1 : m̂1 (A) = 0.6, m̂1 (B) = 0.2, m̂1 (C) = 0.2;

m̂2 : m̂2 (A) = 0.7, m̂2 (B) = 0.2, m̂2 (C) = 0.1;

Next, IV − JS(m1,m2) = 0.0150, and IV − JS(m2,m1) = 0.0150

From the above results, it can be see that the IV − JS between m1 and145

m2 is equal to the divergence measure between m2 and m1 . Consequently, the

symmetric property of IV − JS is verified in this example.
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Example 3. Supposing that there are two BPAs m1 , m2 and and m3 in

the frame of discernment X = {AB} which is complete, and the two BPAs are

given as follows:150

m1 : m1 (A) = 0.99,m1 (B) = 0.01;

m2 : m2 (A) = 0.90,m2 (B) = 0.10;

m3 : m3 (A) = 0.01,m3 (B) = 0.99.

Next, the information volume of m1 , m2 and and m3 is expressed as follows:

m̂1 : m̂1 (A) = 0.99, m̂1 (B) = 0.01;155

m̂2 : m̂2 (A) = 0.90, m̂2 (B) = 0.10;

m̂3 : m̂3 (A) = 0.01, m̂3 (B) = 0.99.

After that, their corresponding square root values can be calculated as fol-

lows:√
IV − JS(m1,m2) = 0.1799,160 √
IV − JS(m2,m3) = 0.8481,√
IV − JS(m1,m3) = 0.9588.

It can be noticed that
√
IV − JS(m1,m2) +

√
IV − JS(m2,m3) = 1.0280,

so that
√
IV − JS(m1,m2)+

√
IV − JS(m2,m3) ≥

√
IV − JS(m1,m3) which

satisfies the triangle inequality property of IV − JS.165

Example 4. Supposing that there are two BPAs m1 and m2 in the frame

of discernment X = {AB,C} which is complete, and the two BPAs are given

as follows:

m1 : m1 (A) = 0.3,m1 (B) = 0.2,m1 (C) = 0.1,m1 (A,B) = 0.2,m1 (A,C) =

0.1,m1 (B,C) = 0.1,m1 (A,B,C) = 0.1;170

m2 : m2 (A) = 0.1,m2 (B) = 0.1,m2 (C) = 0.1,m2 (A,B) = 0.15,m2 (A,C) =

0.05,m2 (B,C) = 0.1,m2 (A,B,C) = 0.4.

Through section 2.2., we can get the information volume of m1 and m2.

Finally, through Eq.12, the calculation results are as follows:

IV − JS(m1,m2) = 0.1286.175

At the same time, Xiao also proposed BJS divergence[20], and the calculation

results are as follows: BJS(m1,m2) = 0.1286.
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Example 5. Supposing that there are two BPAs m1 and m2 in the frame

of discernment X = {AB,C} which is complete, and the two BPAs are given

as follows:180

m1 : m1 (A) = 0.1,m1 (B) = 0.1,m1 (C) = 0.1,m1 (A,B) = 0.1,m1 (A,C) =

0.1,m1 (B,C) = 0.1,m1 (A,B,C) = 0.4;

m2 : m2 (A) = 0.1,m2 (B) = 0.1,m2 (C) = 0.1,m2 (A,B) = 0.15,m2 (A,C) =

0.05,m2 (B,C) = 0.1,m2 (A,B,C) = 0.4.

Through section 2.2., we can get the information volume of m1 and m2.185

Finally, through Eq.12, the calculation results are as follows:

IV − JS(m1,m2) = 0.0098

Xiao’s[20] calculation results are as follows:BJS(m1,m2) = 0.0098.

Obviously, the two BPAs in Example 5 are more similar and less distant,

which is intuitive. At the same time, the new method is more sensitive than190

Xiao’s method because 0.1286− 0.0098 > 0.1282− 0.0098.

5. Conclusion

In this paper, we propose a new divergence measure(IV-JS). Compared with

existing methods, we fully consider the differences of focal elements from the

perspective of information volume through the non-specific characteristics of195

Deng entropy. The new method satisfies the axiom of distance measure and is

compatible with the traditional divergence measure. Some numerical examples

show that the new method has relatively high resolution. Therefore, this method

can be used to solve the problem of evidence conflict or classification in the

future.200
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