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Abstract 

We calculate for the first time the exact and general solution of a well-known equation which is assumed to be a 

truly nonlinear oscillator and to have only periodic solutions. We find complex-valued functions as solutions. As 

a result the supposed qualities of this equation are open to criticism.    
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Introduction 

The truly nonlinear oscillator equations are subject of an intensive study in the literature since 

they could not be solved exactly in general and by application of standard perturbation 

methods in particular [1].In his book [1] Mickens said that the nonlinear differential equation 
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where a   and  b  are non-negative, with the initial conditions Ax =)0(  and 0)0( =x& , is a 

truly nonlinear oscillator as well as several other nonlinear equations. To prove the existence 

of periodic solutions, Mickens investigated for simplicity reason, the form 
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using phase plane method. Although the equation (2) has no known exact solutions, Mickens 

and Wilkerson [2] and Mickens [1] showed exact and approximate values of the period. Such 

an investigation leads Mickens to claim that all the solutions of (1) or (2) are periodic. 

However, a nonlinear equation widely investigated as oscillator equation in the literature [3-5] 

has been recently shown unable to exhibit smooth periodic solution [6,7]. In this respect it 

becomes reasonable to ask whether the equation (1) or (2) has effectively only periodic 

solutions as claimed by Mickens [1]. Therefore the objective in this paper is to show that the 

Mickens proposition fails from mathematical point of view by exhibiting for the first time, the 

exact  and general solution to (2) as complex-valued function and secondly that a  

modification of sign in (2) leads to physically acceptable real-valued periodic solution. To 

perform this task, we first state the required theory of differential equations (section 2) and 

secondly formulate a theorem for the exact integrability of (2) (section 3). Finally a modified 

Mickens equation is shown to have the ability to exhibit real-valued periodic solutions 

(section 4) and a conclusion of the work is drawn. 

2. Proposed theory of differential equations 
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According to [8] and [9] let us consider the first order differential equation 
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where qI ,,, lβ  and α  are arbitrary constants.  From (3) one may secure by differentiation 

with respect to time the nonlinear equation  
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where .0≠l  This equation may also be established from the Lagrangian developed by 

Monsia et al. [8]. Using (4), exact integrability theorem of (2) may be formulated. 

3. Integrability theorem of the equation (2)  

To formulate the theorem which assures the exact and general solution to (2), let us consider  

,2−=q ,2=l and .
3

2
−=α  Thus (4) reduces to the generalized nonlinear equation 
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For ,aI −= and ,
3

2
β−=b  one may recover the generalized Mickens equation (1). From (5) 

one may state the following theorem for the exact integrability of (2). 

Theorem 1 

If ,
2

3
−=β and ,1−=I then the equation (5) turns into  (2), and  is exactly integrable and the 

exact and general solutions are  
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where  ,1K and 2K   are arbitrary constants. 

Proof 

In the context of (2) the first order differential equation (3) becomes 
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which leads to 
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The change of variable 
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reduces (9) to 
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Setting γ−=I and 
2

3
−=β  (11) becomes [10] 
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so that, one may secure the exact and general solution to (5) as 
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where 1K  and γ  are arbitrary parameters. 

Substituting ,1−=I that is ,1=γ  into (13), one may recover the exact and general complex-

valued solution (6) to the equation (2). To establish the second kind of solutions to (2), let us 

consider the change of variable  
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which leads to                                                                   
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Setting ,0<γ−=I  and ,
2

3
−=β  (15) becomes   
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from which one may get the following exact and general solution to (5) 
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where 2K  and γ  are arbitrary constants. 

Applying ,1=γ that is ,1−=I  into (17), the complex-valued solutions (7) to (2) may be 

obtained. 

Thus the above theorem is proved. Now consider the problem of the modification of Mickens 

equation (2). The Mickens equation (2) is nothing but the harmonic oscillator with a nonlinear 

additional term .3
1

x This suggests that one may consider also the harmonic oscillator equation 

with the additional term 3
1

x−  in order to investigate the existence of real-valued periodic 

solutions to (1) in the context of negative .b  This investigation is carried out in the following 

section. 

4. Proposed modified Mickens equation 

Consider in this part the modified Mickens equation 
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In this respect, the following theorem holds. 

Theorem 2 

If ,
2

3
=β and ,1−=I then (5) transforms into (18) and admits two kinds of exact real-valued  

solutions  
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where  ,3K and 4K  are arbitrary constants. 

Proof 

From the first order differential equation (3), one may write 
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for ,2−=q ,2=l .
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where K  is an arbitrary constant. The integral J  may be computed using two methods. First 

let ,3

1

xX = then (22) yields 
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Applying ,0<γ−=I one may write             
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From that one may read, using (22) 
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which leads to the exact and general solutions 
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where ,3 KK = and γ  are arbitrary constants. 

For ,1=γ   that is ,1−=I  the solution (19) is recovered. Consider secondly the change of 

variable .3
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Setting ,0<γ−=I 2J  turns into 
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to yield [10] 
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Using the equation (22), one may write 
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so that 
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and )(tx  becomes 
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where ,4 KK = and γ  are arbitrary constants. 

For ,1=γ   that is ,1−=I  the solution (20) is obtained. Thus the theorem 2 is proved.  

Conclusion 

This work is designed to show that the proposition following which some truly nonlinear 

oscillator equations have only real-valued periodic solutions is open for criticism from 

mathematical point of view. In this regard it has been shown that one of these equations may 

exhibit complex-valued solutions. It has been also shown that a modification of sign in this 

equation is required to obtain physically acceptable periodic solutions.  
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