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Abstract 

It seems reasonable to assume that mathematical infinity was not the objective of Zeno’s 

Dichotomy (in any of its variants), however, a sort of mathematical infinity was already 

present in these celebrated arguments. Aristotle proposed a first solution to Zeno’s 

Dichotomy by introducing what we now call one-to-one correspondences, the key instrument 

of modern infinitist mathematics. But Aristotle, more naturalist than platonic, finally rejected 

the method of pairing the elements of two infinite collections (in this case of points and 

instants) and introduced instead the distinction between actual and potential infinities. 
Aristotle’s distinction served to define, gross modo, two opposite positions on the nature of 

infinity for more than twenty centuries. The actual infinity was finally mathematized through 
set theory in the first years of the XX century and the discussions on its potential or actual 

nature almost vanished. But, as we will see here, things still remain to be said on this issue. 
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Introduction 

It seems reasonable to assume that mathematical infinity was not the objective of Zeno’s Dichotomy 
(in any of its variants), however, a sort of mathematical infinity was already present in these 
celebrated arguments. Aristotle proposed a first solution to Zeno’s Dichotomy by introducing what 
we now call one-to-one correspondences, the key instrument of modern infinitist mathematics. But 
Aristotle, more naturalist than platonic, finally rejected the method of pairing the elements of two 
infinite collections (in this case of points and instants) and introduced instead the distinction between 
actual and potential infinities.  Aristotle’s distinction served to define, gross modo, two opposite 
positions on the nature of infinity for more than twenty centuries. The actual infinity was finally 
mathematized through set theory in the first years of the XX century and the discussions on its 
potential or actual nature almost vanished. But, as we will see here, things still remain to be said on 
this issue. 

During the last decades of the 19th century, Bolzano, Dedekind and notably Cantor, inaugurated a 

new infinitist era in the history of mathematics, which included the birth of set theory. As could not 

be otherwise, bijections and ellipsis played a capital role in the foundation and subsequent 

development of the new infinitist theory. Interestingly, set theory was founded on a violation, the 

violation of the old euclidian Axiom of the Whole and the Part. Indeed, Dedekind's foundational 

definition states that a set is infinite if it can be put into a one-to-one correspondence with one of its 

proper subsets. For this reason, Bolzano did not dare to consummate the violation, a task that 

Dedekind and Cantor finally completed.  The success of set theory as the fundamental theory of 

modern mathematics catapulted set theoretical infinitism to an absolutely hegemonic position. Yet, 

the controversy surrounding the infinite is not over. Before addressing the heart of the controversy, 

we need to critically examine the mathematical foundations of contemporary infinitism, and that will 

be our starting point. 

It is somewhat ironic that set theory, the infinitist theory par excellence, contains mathematical 
instruments that may serve to call into question the formal consistency of the actual infinity 
hypothesis (the existence of infinite collections as complete totalities). One of those instruments is , 
the first transfinite ordinal, the smallest ordinal greater than all finite ordinals. This first transfinite 
ordinal defines a type of well-order, called -order, that characterizes the most basic infinite objects 
in transfinite mathematics, as -ordered sets and -ordered sequences. Most supertasks, for instance, 
are -ordered sequences of actions performed in a finite time interval. Inevitably, -order implies a 
colossal asymmetry largely ignored in infinitist literature. This asymmetry, in turn, gives way to a 
dichotomy that ultimately results in contradictions, whose ultimate cause can only be the Axiom of 
Infinity that legitimates  and -order. In this work, we will use a formal version of Zeno Dichotomy 
to examine this transition from asymmetry to inconsistency via dichotomy. 

https://www.springer.com/gp/book/9783319459783?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook
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Two seminal papers published at the beginning of the second half of the 20th century, laid the 
foundations for a new infinitist theory independent of set theory that has been developing throughout 
the last decades of the 20th century and the first few years of the 21st. We refer to James Thomson’s 
work [2] on what he called supertasks and to the criticism this work received from Paul Benacerraf 
[3]. The success of Benacerraf's criticism somehow motivated the subsequent development of the 
new infinitist theory: supertask theory. Although, also in this case, the controversy is not over. Indeed, 
supertasks can also be used to question the hypothesis of the actual infinity subsumed into the Axiom 
of Infinity. This contribution forms part of these critical positions. As we will see later, we continue 
Benacerraf's arguments at precisely the point he ended his own. 

Supertasks are carried out by theoretical artefacts usually known as supermachines or infinite 
machines. The problem with machines, including theoretical supermachines, is not the (finite or 
infinite) number of actions to be performed, but the machine’s changes of state involved in each 
performed task. As is well known, the problem of change, another pre-Socratic inheritance, does not 
have a consistent solution within the space-time continuum. Therefore, dealing with machines that 
undergo changes of state has the inconvenience of facing an additional problem — the problem of 
change.  We will see what can be done on this issue. 

Definitions, procedures and proofs with infinitely successive steps are usual in mathematics. Even 
though mathematics is neither concerned nor interested in the way these infinitely successive steps 
could be carried out, the definitions, procedures and proofs of infinitely successive steps can be 
timetabled and converted into mathematical supertasks. These supertasks have the advantage of not 
requiring the use of supermachines, theoretical as they may be. Hence, free of the theoretical 
complications it is possible to argue exclusively in mathematical terms, and then to analyse the 
consequences of assuming the Axiom of Infinity. Some of these mathematical supertasks will be 
discussed here. 

Although supertasks are also discussed from a physical perspective, our goal here is not to involve 
physics in supertask theory but to illustrate the way supertasks could be used to call into question the 
hypothesis of the actual infinity. By the same token, we will also explain why such questioning is of 
great interest to the experimental sciences such as physics. As a result, we will only focus on 
conceptual supertasks. Furthermore, all of our arguments will be developed in a conceptual scenario 
absolutely favourable to the actual infinity hypothesis, without any physical or chemical restriction 
limiting the discussions. Notwithstanding, we will also take into account physics and infinity, 
particularly the restrictions that the Planck scale and Planck universal constants impose on supertasks 
and, what is more interesting, on the infinitist continuums involved in the special theory of relativity. 

Platonism is the natural home of infinity and transfinite mathematics. In general, modern mathematics 
are essentially platonic and a significant number of contemporary mathematicians are also essentially 
platonic, which is shocking from our perspective of natural sciences. For this reason, we will conclude 
this work by questioning Platonism (Platonic idealism) from a biological perspective, since we 
believe that evolutionary biology and neuroscience could shed some light on that classical conception 
of human knowledge. 
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The grounds of transfinite mathematics 

As said above, Dedekind's foundational definition states that a set is infinite if it can be put into a 
one-to-one correspondence with one of its proper subsets. It is, therefore, an operational definition of 
infinite sets based on the violation of Euclid's Axiom of the Whole and the Part. Note that this 
definition says nothing on the potential or actual nature of the involved infinitude.  It is simply taken 
for granted that the infinity in question is the actual infinity. In other words, it is presupposed that 
infinite sets are complete totalities. This is due to the fact that potentially infinite sets are not even 
considered in most mathematical discussions. Bolzano, Dedekind and Cantor unsuccessfully tried to 
prove the existence of actually infinite sets. Bolzano’s proof is as follows (from [3] p. 112): 

One truth is the proposition that Plato was Greek. Call this p1. But then there is another 
truth p2, namely the proposition that p1 is true [there is then another truth p3, namely 
the proposition that p2 is true]. And so ad infinitum. Thus the set of truths is infinite. 

But this endless process (p1 is true, then p2 is true, then p3 is true, then…) does by no means prove 
the existence of a final result as a complete totality; Dedekind’s proof is similar, and Cantor’s one is 
even less successful ( [4], p. 25): 

Each potential infinite presupposes an actual infinity. 

It is clear why the existence of an actually infinite set had to be established in axiomatic terms. 
Precisely, this is the objective of the Axiom of Infinity. In symbols: 

 N(  N   x  N(x  {x}  N)) 

Notice again that the Axiom of Infinity makes no reference to the type of infinitude of the infinite set 
whose existence is being stated. As in the case of Dedekind's definition, it is supposed that we are 
talking about the actual infinity.  

One-to-one correspondences (bijections or exhaustive injections) are not only present in Dedekind’s 
foundational definition, but throughout the whole history of infinity where they were used in a great 
variety of arguments, most of them trying to prove (or disprove) the actual infinity hypothesis. They 
have been and continue to be (along with the inevitable ellipsis) an essential instrument in the 
development of transfinite mathematics. Here we analyse them at the most basic foundational level 
of set theory. 

It is reasonable to assume that two sets A and B have the same number of elements if it is possible to 

pair each different element of A with a different element of B, and therefore, that all elements of A 

and B end up paired (exhaustive injection). But it is also reasonable to assume, and for the same 

reasons, that if one or more elements of B result unpaired (non-exhaustive injections), then A and B 

do not have the same number of elements. The existence of both exhaustive and non-exhaustive 

injections between two infinite sets could indicate they have and do not have the same cardinality. 

Thus, the arbitrary distinction of the exhaustive injections to the detriment of the non-exhaustive ones 

could be concealing a fundamental contradiction in set theory. We will begin by analysing this 

'apparent' conflict. 

If the notion of set is primitive (as it seems to be in the platonic scenario), we need operational 
definitions in which the pairing method seems to have a basic foundational role. Also, if sets have 
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different sizes (cardinalities), we should establish an appropriate method for comparing cardinalities. 
We need to do so before defining the types of sets that can be defined according to their cardinals, 
and before doing any other arithmetic or set theoretical operation. Exhaustive and non-exhaustive 
injections are the only known basic instruments to accomplish this goal. Therefore, it is at this basic 
and foundational level of set theory where we need to discuss whether or not the pairing method is 
appropriate to compare the cardinality of any two sets. If the method is appropriate, then we need to 
explain why non-exhaustive injections are rejected, since this rejection could be pointing to a 
fundamental contradiction in set theory: infinite sets have and do not have the same cardinality as 
some of their proper subsets.  

It could be argued that infinite sets are defined as those that can be put into a one-to-one 
correspondence with one of their proper subsets and that, for this reason, it is possible to define 
exhaustive and non-exhaustive injections between any infinite set and some of its proper subsets. 
However, a simple definition does not guarantee that the defined object is consistent. Definitions 
themselves can also be inconsistent. Furthermore, the existence of a one-to-one correspondence 
between two infinite sets does not prove that they are actually infinite since both of them could also 
be potentially infinite. In this latter case, the infinite sets would not be regarded as complete totalities, 
and thus, we would be pairing the elements of two incomplete totalities of the same cardinality. More 
importantly, in this condition, the Axiom of the Whole and the Part would not be violated. 

Dedekind's definition could be based on one of the terms of a contradiction: the existence of an 
exhaustive injection between the infinite set and one of its proper subsets. The existence of a non-
exhaustive injection between the infinite set and the same proper subset would be the other side of 
the contradiction. No one has ever explained, except in circular terms, why having an exhaustive 
injection and a non-exhaustive injection with the same proper subset is not contradictory. The problem 
has simply been ignored, or justified in behalf of certain properties of infinite cardinals, all of them 
derived from the foundational definition that is being justified. In our opinion, however, this problem 
needs to be addressed even before defining what an infinite set could be. Otherwise, set theory would 
lack a consistent basis.  

The arithmetic peculiarities of transfinite cardinals, such as o = o + o and the like, could be used 
to explain why it is possible to define exhaustive and non-exhaustive injections between a set and one 
of its proper subsets. However, these arithmetic peculiarities are formal consequences of assuming 
the existence of sets that can be put into exhaustive and non-exhaustive injections with some of their 
proper subsets. Therefore, we cannot make use of those arithmetic peculiarities to justify the existence 
of exhaustive and non-exhaustive injections between a set and one of its proper subsets, otherwise, it 
will lead us to unacceptable circular reasoning. In short, at this foundational level of set theory, we 
cannot use posterior attributes of infinites sets derived from the foundational assumptions to justify 
those foundational assumptions. 

If exhaustive and non-exhaustive injections do have the same validity as instruments to compare the 
cardinality of any two sets, then the actually infinite sets would be inconsistent. If they don't, we 
should explain, in non-circular terms, why exhaustive injections are valid instruments to compare the 
cardinality of infinite sets while non-exhaustive injections are not.  Recall that both types of 
correspondences use the same pairing method. And if no (circular) reason can be given, we would 
have to admit that the position to consider both types of injections are valid instruments to compare 
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cardinalities is as legitimate as the position to consider they are not.  Leaving this problem unsolved 
compels us to declare the arbitrary distinction of exhaustive injections as a new axiomatic fundament 
of set theory.  

Meanwhile, the foundation of set theory may rest on a contradiction. The paradoxes of reflexivity 
(like Galileo's celebrated paradox) are simple consequences of assuming the existence of exhaustive 
and non-exhaustive injections between a set and one of its proper subsets. In other word, they are 
consequences of the violation of the old euclidian Axiom of the Whole and the Part. Clearly, they 
could also be reinterpreted as contradictions derived from the inconsistent nature of the actually 
infinite sets (and thus consequences of the Axiom of Infinity). But this alternative, as legitimate as it 
may be, has always been ignored. 

The paradoxes of reflexivity are not the only paradoxes related to infinite sets. Burali-Forti's paradox 
of the set of all ordinals and Cantor's paradox of the set of all cardinals are other well-known examples. 
Though in these cases they are not paradoxes but true contradictions. According to Cantor, the 
inconsistent nature of those sets would be a consequence of their excessive infinitude, too close to 
the absolute infinity, the mother of all infinities that directly leads to God. It can be proved, however, 
that the Cantor inconsistency can easily be extended with the aid of Cantor's theorem of the power 
set. That extension proves (in naïve set theory) that each (finite or infinite) set of cardinal C originates 
no fewer than 2C inconsistent sets, all of them infinite. A short for the proof is as follows: 

In naïve (non-axiomatic) set theory, the elements of a set can be sets, sets of sets, sets of sets of sets… 
So it makes sense to define the following relation R between two sets A and B: set A is R-related to 
set B (symbolically A R B) if B contains at least one element which forms part of the definition of at 
least one element of A. For instance, the sets: 

 {{{a, {b}}}, {p}, d, {{{e}}}, f} and {a, b, c} are R-related through the elements a and b 

 {{{a, {b}}}, {c}, d, {{{e}}}, f} and {1, 2, 3} are not R-related 

In these conditions let X be any nonempty set, and Y any of its subsets, and let us define the following 
set CY of all sets A that are not R-related to any set B that contains elements of Y: 

 CY = {A | B(B  Y     A R B)} 

If P(CY) is the power set of CY then any element of P(CY) is a subset of CY, and then a set of sets that 
are not R-related to any set that contains elements of Y: 

 D  P(Y): B(B  Y     D R B) 

Thus: 

 D  P(CY):  D  CY 

And then the cardinal of P(CY) is equal or less than the cardinal of CY, which contradicts Cantor’s 
theorem of the power set (the cardinal of any set is less than the cardinal of its power set). 

Had we known the existence of such an infinitude of inconsistent sets (far less infinite than Cantor or 
Burali-Forti sets), perhaps transfinite set theory would have had a very different reception. But that 
was not the case, and for more than half a century all the efforts were directed at establishing a 
foundation for set theory free of inconsistencies. The goal was finally accomplished with the aid of a 



6 

 

considerable number of ad hoc axioms. All them grouped in different ways served to establish at least 
half a dozen axiomatic set theories. Indeed, we would need several hundred pages to explain all these 
axiomatic restrictions. One may wonder if this is the best way of founding a formal science. The 
alternative to dealing with all these axioms is to consider a simpler explanation for all the 
inconsistencies arising from set theory: that the actual infinity may be inconsistent, an avenue that 
needs to be explored. 

 

-Order: From asymmetry to inconsistency 

Cantor's Beiträge [4] (Contributions to the founding of the theory of transfinite numbers) was the last 
and most mathematical publication of G. Cantor on transfinite arithmetic. In the second paragraph of 
its epigraph 6 we can read: 

The first example of a transfinite aggregate is given by the totality of finite cardinal 
numbers v; we call its cardinal number 'Aleph-zero' and denote it by o. 

Cantor took it for granted the existence of that set as a complete totality actually infinite. It is 
reasonable to suppose that his profound teoplatonic convictions may explain why he did not consider 
the existence of that complete totality as an initial foundational hypothesis (the Axiom of Infinity in 
contemporary set theories). In any case, from that infinite totality he successfully derived an infinitude 
of growing transfinite cardinals and ordinals. In most of these proofs, Cantor made extensive use of 
his concept of equivalent sets or equipotent sets: sets that can be put into a one-to-one correspondence. 
This concept also illustrates the great importance of bijections, and the violation of the Axiom of 
Whole and the Part in the foundation of transfinite mathematics.  

Particularly significant is theorem I (Part II, 14) that proves the existence of ordinals as limits of 
increasing fundamental sequences of ordinals. According to Cantor's terminology, these are the 
ordinals of the second class, second kind. The first transfinite ordinal, , is the first of the second 
class, second kind transfinite ordinals: it is the smallest of all ordinals greater than all finite ordinals. 
This ordinal defines a type of well order usually known as -order. The set of natural numbers in 
their natural order of precedence is a well-known example of -ordered set. It is important to highlight 
that -order and -ordered sequences will play an important role in what follows. For now, let us 
note that their existence is formally deduced from the Axiom of Infinity. 

We now begin our journey from -order to -inconsistency. The first stage of this journey will be 
from -order to -asymmetry. To begin with, consider any -ordered sequence a1, a2, a3,... In these 
type of sequences there is a first element a1, and each element an has an immediate predecessor an−1 
(except a1), and an immediate successor an+1, so that no last element exists. As a consequence of this 
type of ordering, every element in the sequence has a finite number of predecessors and an infinite 
number of successors. We call this asymmetry, -asymmetry. Since infinitist mathematics consider 
-ordered sequences as complete totalities, we could travel through each of the successive elements 
of the sequence and complete the journey even in a finite time. But even if we managed to complete 
this journey, we will never reach an element with an infinite number of predecessors and a finite 
number of successors. From the start to the end of this infinitist excursion, we will always be dealing 
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with elements that have a finite number of predecessors and an infinite number of successors.  This 
sort of Red Queen’s race to nowhere is known as -asymmetry. 

To grasp the colossal magnitude of -asymmetry, consider a finite straight-line segment AB trillions 
of times greater than the diameter of the visible universe (9.31010 light years). Consider also a point 
C in AB arbitrarily close to B, and let us assume that AB is -partitioned. Whatever the -partition 
is, only a finite number of parts will lie within AC, while infinitely many of them will lie within CB, 
being CB trillions of times smaller than, for instance, Planck length (1.6210-33 cm) that, in turn is 
inconceivably smaller than, for instance, the smallest of the atomic nuclei. Due to -asymmetry, there 
is no way of performing a less asymmetric partition if the partition is -ordered, the smallest of the 
infinite partitions. And, whatever part you consider (even within CB), it will always have a finite 
number of preceding parts and an infinite number of succeeding ones. This is how -asymmetry 
works.  

Let us now travel from -asymmetry to -dichotomy. In order to do so, consider the X axis of the 
euclidian space R3. Let us assume that its interval (0,1) is partitioned by the sequence {zn} of points 
defined by: 

 zn = (2n - 1) / 2n, n N 

where N is the set of natural numbers. For well-known historical reasons, the points {zn} will be 
referred to as Z-points (for Zeno’s points). Now, consider a mass point P moving through the X axis 
from point 2 to point -2 at a finite and uniform velocity v. Now assume that at instant t = 0, P is just 
on the point 1. At instant 1/v it will be at point 0, which means it has traversed all Z-points (do not 
forget that they form a complete totality). Let f(t) be the number of Z-points that P has traversed at 
instant t, for any t within the time interval [0, 1/v]. As a consequence of -asymmetry we will have: 

 f(t) = 0 if  t = 0 

 f(t) = o if  t > 0 

There is no instant t in [0, 1/v] at which f(t) = n, n being any natural number greater than zero. 
Otherwise we would have to deal with the existence of the last n elements of a -ordered sequence, 
something that is impossible in -order (-asymmetry). Keep in mind that f is well defined for every 
t within the interval [0, 1/v]. It maps the set [0,1/v] onto the set {0, 0}. In other words, f defines a 
dichotomy. So, with respect to the number of traversed Z-points, P can only exhibit two states: the 
state P(0), at which it has traversed 0 Z-points, and the state P(0) at which it has traversed 0 Z-
points. Intermediate states P(n) at which P would have traversed a finite number n of Z-points simply 
do not exist. P will always be either at P(0) or at P(0). This is -dichotomy, a consequence of -
asymmetry that, in turn, is a consequence of -order that, in turn, is formally derived from the Axiom 
of Infinity. 

Finally, let us travel from -dichotomy to -inconsistency. First, notice that the points of the interval 
(0, 1) are densely ordered (between any two of them infinitely many other different points do exist), 
whereas Z-points are not. Each Z-point has an immediate predecessor (except the first one), and an 
immediate successor, and no other Z-point exists between any two successive Z-points zn, zn+1. In 
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addition, a distance dn = zn+1 - zn = 1/2(n+1) greater than zero always exists between any two successive 
Z-points zn, zn+1 (-separation). Consequently, at any finite velocity they can only be traversed in a 
successive way, one by one, one at a time, one after the other, and in such a way that it takes a time 
greater than zero to go from any Z-point to its immediate successor or to its immediate predecessor. 

We now know P travels from point 1 to point 0 at a finite and uniform velocity v, so it must become 
P(0) from P(0) as it travels from point 1 to point 0. As a consequence of -order, there is no last Z-
point to begin the transition P(0)→P(0). Thus, it will be impossible for us to calculate either the 
distance P must traverse to become P(0) from P(0) or the time it takes P to complete the transition. 
But the transition takes place even if we cannot describe the way it takes place, since P(0) = 0 and 
P(1/v) = o. We will now prove that the transition P(0)→P(0) must be instantaneous. For this 
purpose, let t be any real number greater than zero, and assume it takes the transition P(0)→P(0) a 
time t. Let t’ be any element in the interval (0, t). According to -dichotomy and being t’ > 0, we will 
have P(t’) = o. Therefore, at t’ the transition P(0)→P(0) has already been completed. Consequently, 
that transition lasts a time less than t, which is any real number greater than zero. We must conclude 
that the transition P(0)→P(0) lasts a time less than any real number greater than zero, i.e., the 
transition P(0)→P(0) lasts a null time: it can only be instantaneous. It is worth noting that we are 
not dealing with a question of indeterminacy derived from the fact that we cannot measure the 
duration of the transition, but with an impossibility directly derived from -dichotomy: the transition 
P(0)→P(0) lasts a time less than any real number greater than zero, and this is possible only if it 
takes a null time.  

We have just proved that the transition P(0)→P(0) must be instantaneous. This implies that P must 
traverse o successive Z-points instantaneously at a finite velocity v. But this is impossible because 
between any two successive Z-points there is a distance greater than zero (-separation). And 
traversing a distance greater than zero at a finite velocity always takes a time greater than zero. 
Therefore, it is impossible for P to traverse any two successive Z-points instantaneously. Simply put, 
at its finite velocity v, Z-points cannot be traversed simultaneously, they can only be traversed 
successively, one after the other and so that a time greater than zero always elapses between passing 
over the one and passing over the other. Oddly enough, we must conclude that the transition 
P(0)→P(0) must be instantaneous but cannot be instantaneous. In short: 

The transition P(0)→P(0) takes place. 

Due to -dichotomy, P(0)→P(0) can only be instantaneous. 

Due to -separation, P(0)→P(0) cannot be instantaneous at a finite velocity. 

In addition to the Z-points, we could also consider the Z*-points {zi*} defined within (0, 1) by: 

zn* = 1 / 2n, n N 

Being now f(t) the number of Z*-points to be traversed by P at any instant t within [0, 1/v], f defines 
a new -dichotomy: with respect to the number of Z*-points to be traversed, P can only exhibit two 
states, the state P(o), in which o points to be traversed still remain, and the state P(0) in which no 
Z*-point remains to be traversed. Intermediate states P(n) at which only a finite number of Z*-points 
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would remain to be traversed are impossible. An argument similar to the above argument on the Z-
points leads to the following conclusions on the transition P(0)→P(0): 

The transition P(0)→P(0) takes place. 

Due to -dichotomy, P(0)→P(0) can only be instantaneous. 

Due to -separation, P(0)→P(0) cannot be instantaneous at a finite velocity. 

This is -inconsistency, an almost direct consequence of -dichotomy, in turn, a formal consequence 
of -asymmetry (the existence of complete totalities in which each and every element has a finite 
number of predecessors and an infinite number of successors), in turn, an immediate consequence of 
the -order derived from . Recall that  is the least transfinite ordinal of the second class, second 
kind whose existence Cantor deduced from assuming the existence of the complete infinite totality 
of the finite cardinals (the Axiom of Infinity in modern terms).  

For exactly the same reasons as in transitions P(0)→P(0) and P(0)→P(0), -inconsistency will 
also appear in any -ordered sequence of actions {ai} successively performed at each of the 
successive instants of {ti}. This means that an infinite number of those actions would have to be 
carried out instantaneously, while they can only be carried out in a successive way, and so that a time 
nt = tn+1 - tn greater than zero always passes between any two of those successive actions. To derive 
a contradiction from an axiom should be a sufficient reason to consider the possibility that the axiom 
may be inconsistent. But, for unknown reasons, if that axiom is the Axiom of Infinity, then it is not 
enough. Let us, therefore, continue to examine this issue. 

 

Benacerraf-Thomson: A seminal discussion 

The concept of supertask was already implicit in many classical discussions in which infinity was 
somehow involved, e.g., in Zeno’s Dichotomy, as well as in its subsequent Aristotle’s criticism. In 
the XIV century, scholastic Gregory of Remini detailed how infinitely many successive actions could 
be carried out in a finite time ( [3], p. 53): 

If God can endlessly add a cubic foot to a stone – which He can –  then He can create an 
infinitely big stone. For He need only add one cubic foot at some time, another half an 
hour later, another a quarter of an hour later than that, and son on ad infinitum. He would 
then have before Him an infinite stone at the end of the hour. 

But it was at the beginning of the 1950’s when these types of discussions became popular, at least in 
the academic world. In the first place, we find Black’s machines [5], which were intended to prove 
the impossibility of performing an infinite number of successive actions. Black’s arguments were 
then discussed by R. Taylor [6] and J. Watling [7]. Thomson’s 1954 paper was precisely motivated 
by those discussions. In his paper, Thomson introduced the term supertask, and developed several 
arguments trying to prove the impossibility of such supertasks. Among these arguments, we find the 
one about his famous lamp that we will examine in the next section. P. Benacerraf successfully 
criticized Thomson’s arguments in a seminal paper published in 1962, and this somehow gave rise to 
the birth of a new infinitist theory in the last decades of the XX century: supertask theory. 
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 Most of supertasks are -supertasks, i.e. -ordered sequences of successive actions (tasks) 
performed at the successive instants of a strictly increasing -ordered sequence of instants within a 
finite interval of time. Here we will only focus on conceptual -supertasks. We will assume that all 
of them are performed along the same strictly increasing and -ordered sequence {ti} of instants 
within the same finite interval of time [ta, tb], being each action ai carried out at the precise instant ti, 
and being tb the mathematical limit of the sequence {ti}. They will be denoted by {ai, ti}, {bi, ti},{ci, 
ti}, etc.  

The possibilities to perform an uncountable infinitude of successive actions were examined, and ruled 
out, by P. Clark and S. Read [8]. The proof was based on a Cantor’s proof on the impossibility of non-
countable partitions in the real line [10]. Let us mention that indeed Cantor’s proof is not an 
independent proof but an immediate corollary of his theorem on the countable nature of the set of 
rational numbers (see below). Supertasks have also been examined from the perspective of non-
standard analysis. But, as far as we know, the possibilities to perform hypertasks along hyperreal 
intervals of time have not been discussed, despite the fact that finite hyperreal intervals can also be 
divided into hypercountably many successive infinitesimal intervals (hyperfinite partitions). 

As indicated before, only conceptual -supertasks will be dealt with here. And we will begin by 
briefly recalling one of the supertasks that James Thomson proposed in 1954, the one performed by 
his famous lamp. We will also recall the criticism this argument received in 1962 from Paul 
Benacerraf, which hits the nail on the head when it comes to super task discussions. So, as Thomson 
did in 1954, let us consider one of these supertasks: 

… reading-lamps that have a button in the base. If the lamp is off and you press the button 
the lamp goes on, and if the lamp is on and you press the button the lamp goes off. 

To avoid unnecessary discussions we will complete Thomson’s lamp definition with the following 
constraints: 

1. Thomson’s lamp has only two states: on and off. 

2. The only way of changing the state of Thomson’s lamp is by pressing the button. 

3. Each change of state takes place at a precise and definite instant. 

4. The button pressing and the corresponding lamp’s change of state are instantaneous and 
simultaneous events. 

Most variants of Thomson’s lamp have been proposed to discuss the possibility of performing a 
Thomson’s supertask in physical terms. Here, our Thomson’s lamp will be a theoretical device 
intended to examine the formal consistency of the Axiom of Infinity.  

Before beginning, we must acknowledge that the problem of change is involved in the discussions on 
supertasks carried out by supermachines that undergo changes of state. As we know, any canonical 
change from state A to state B (without intermediate states) poses a problem still unsolved in the 
space-time continuum, where all solutions have been tried out. As has been claimed for a long time 
ago, canonical changes could be inconsistent. In fact, if the change has a duration greater than zero, 
the changing object can only be in an unknown state (different from A and B) while the change takes 
place. This, in turn, poses the problem of change in terms of a new change between the state A and 
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that unknown state, and so forth. On the other hand, if the change is instantaneous it cannot take place 
in the space-time continuum, since in this continuum no instant has an immediate successor, and a 
time greater than zero always elapses between any two instants of this continuum. Things could be 
quite different in discrete spacetimes, where immediate successiveness is an essential characteristic 
of both space and time. But for now let us focus on what happens in the space-time continuum. 

Having recognized that the problem of change is present, we will ignore it for the sake of the 
discussion. We will assume that change is instantaneous, and discuss supertasks from the perspective 
of the Axiom of Infinity, focusing our attention on -ordering as well as on the corresponding -
asymmetries, -dichotomies and -inconsistencies. Bear in mind that, in theory, -dichotomies and 
-inconsistencies have nothing to do with the problem of change, except for the fact that infinite 
sequences exist as complete totalities.  

Let {ci, ti} be Thomson’s supertask and assume that each click ci is performed at the precise instant ti 
of the strictly increasing sequence {ti} of instants within the finite interval (ta, tb), being tb the limit of 
{ti}. Let us now summarize Thomson-Benacerraf discussion with the following words by J. Thomson: 

… [The lamp] cannot be on, because I did not ever turn it on without at once turning it 
off. It cannot be off, because I did in the first place turn it on, and thereafter I never turned 
off without at once turning it on. But the lamp must be either on or off. This is a 
contradiction. 

And by P. Benacerraf: 

The only reasons Thomson gives for supposing that his lamp will not be off at tb are ones 
which hold only for times before tb. The explanation is quite simply that Thomson’s 
instructions do not cover the state of the lamp at tb, although they do tell us what will be 
its state at every instant between ta and tb (including ta). Certainly, the lamp must be on or 
off (provided that it hasn’t gone up in a metaphysical puff of smoke in the interval), but 
nothing we are told implies which it is to be The arguments to the effect that it can’t be 
either just have no bearing on the case. To suppose that they do is to suppose that a 
description of the physical state of the lamp at tb (with respect to the property of being on 
or off) is a logical consequence of a description of its state (with respect to the same 
property) at times prior to tb. 

(Note: ta and tb appears respectively as t0 and t1 in Benacerraf’s paper). 

We agree with Benacerraf’s argument in that we cannot deduce the state of the lamp at tb from the 
sequence of changes of state that the lamp has previously undergone. We also assume that certain 
properties of the sequence of changes that hold while the number of changes is finite may be not 
satisfied if that number is infinite. But, as we will see, Benacerraf’s argument does not end the 
discussion. ‘Certainly, the lamp must be on or off… but nothing we are told implies which is to be’, 
says Benacerraf. This conclusion will be the starting point of our extension of Benacerraf’s argument 
on {ci, ti}.  

Ignoring what the state of a machine is after the machine has performed a supertask does by no mean 
implies that the machine is not the same machine it was before and while performing the supertask. 
By the way, the machine could only change its (theoretical or physical) nature after completing the 
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supertask, otherwise, it would be impossible for the machine to complete the supertask. There is no 
reason, (except reasons of arbitrary convenience) to assume that if we define a theoretical machine to 
perform a conceptual supertask, after performing the supertask the machine is no longer the same 
machine it was defined to be – regardless of its current state. Simply put, ignoring the state of the 
machine is not the same as ignoring the nature of the machine (its formal definition in our conceptual 
scenario). 

Consequently, we presuppose that after performing a supertask, the conceptual objects that 
participated in the supertask (regardless of their current states) continue to be the same objects they 
were before and during the execution of the supertask. For example, if x is a rational variable and we 
redefine it a certain (finite or infinite) number of successive times, we believe that after these 
redefinitions have been carried out, x will still be a rational variable, and not a red hat or a neutron 
star. By the same token, if T is a table of real numbers within (0, 1) whose rows are permuted any 
finite or infinite number of times, then after the permutation has been carried out, T will continue to 
be a table with the same real numbers it had before its rows were permuted. So, unnecessary as it may 
seem, we will begin by assuming the following hypothesis: 

H0: The definition of a conceptual object does not change as a consequence of performing 
any finite or infinite sequence of successive actions with that object. 

More specifically, we assume that formal definitions, laws, conditions and constraints are never 

arbitrarily violated as a consequence of having performed any finite or infinite number of actions. 

Denying H0, on the other hand, would have catastrophic consequences on transfinite mathematics. 
For instance, after performing a recursive definition (or procedure, or proof) of infinitely many 
successive steps (that could also be scheduled in the form of a supertask), we can say nothing on the 
defined object. And this would also happen to all the axioms, definitions and theorems involved.  

If nothing can be said on a conceptual object after having performed a supertask, then nothing can be 
said either on any mathematical object or result obtained through a sequence of infinitely many 
successive steps. Evidently, in these conditions, transfinite mathematics would remain empty of 
content (see mathematical supertasks below). As we will see, we could also define conditional 
supertasks (particularly, mathematical supertasks) in such a way that each task would be performed 
only if certain conditions are satisfied. In this case, it would be impossible for us to know whether the 
number of performed tasks is finite or infinite. Even if we accept that the state of a conceptual object 
cannot be deduced from its previous states while performing a supertask, according to H0 its formal 
definition does not change as a consequence of such a performance.  

 

Thomson’s lamp revisited 

According to H0, Thomson’s lamp will be the same Thomson lamp before, during and after 
performing the supertask {ci, ti}. Consequently, at tb, after performing {ci, ti}, the lamp will be at a 
certain state Sb. We are not interested in knowing whether the lamp is on or off at Sb, although by 
definition a Thomson lamp can only be either on or off. Some authors have claimed it could be in any 
exotic state different from these two states. But we must insist that if the lamp can be in any exotic 
state other than on or off, then it is not, by definition, a Thomson lamp. We know that the state of the 
lamp is Sb at tb, and it is immediate to prove that at any instant prior to tb it is impossible for the lamp 
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to have reached Sb, — whatever the state is. In effect, let t be any instant prior to tb. Since tb is the 
limit of the sequence {ti}, there will be a tv in {ti} such that: tv ≤ t < tv+1, which means that at t only a 
finite number v of clicks have been carried out (-asymmetry). In consequence, Sb cannot be 
originated at t for any t within (ta, tb). Therefore, with Sb being the state of the lamp at tb, the state Sb 
can only originate at the precise instant tb. Notice that this conclusion is a direct consequence of the 
fact that tb is the mathematical limit of {ti} and of the assumption that {ci, ti} has been carried out 
along the successive instants of the strictly increasing sequence {ti}. 

Notice also that while tb is the mathematical limit of the strictly increasing and upper bounded 
sequence of real numbers (successive instants) {ti}, the state Sb is not the mathematical limit of the 
sequence of states {Si} = on, off, on, off, on off…, which the lamp undergoes as a consequence of {ci, 
ti}.  Recall that oscillating sequences do not have a limit. Therefore, Sb is the state of a Thomson lamp 
that originates at a certain and precise instant tb, otherwise the supertask would not have been 
completed. And this is all that can be said on Sb and the supertask {ci, ti}. 

Now according to the above definition, a Thomson lamp only changes its state by clicking its button. 
Hence, it is not acceptable to claim that the lamp may change its state by reasons unknown. Remember 
again that according to H0 a lamp that changes its state by reasons unknown is not, by definition, a 
Thomson lamp. With tb being the precise and definite instant at which Sb originates, the button of the 

lamp had to be clicked at tb   (the clicking and the corresponding change of state are instantaneous 

and simultaneous events that take place at a precise and definite instant). Yet this is impossible 
because at tb the supertask {ci, ti} has already finished. Thus, tb is the first instant after performing {ci, 
ti}, and the button of the lamp has not been clicked at tb.  

Let f(t) now be the number of clicks to be performed at the precise instant t within the closed interval 
[ta, tb]. As a consequence of -order and -asymmetry, each ci of {ci} has infinitely many successors. 
Consequently, we will have: 

 f(t) = 0 if t < tb 

 f(t) = 0 if t = tb 

which means that for any natural number n there is no an instant t at which f(t) = n 

Otherwise, the impossible last n elements of an -ordered sequence would exist, or simply put, an 
element of the sequence with a finite number n of successors would exist. Therefore, with respect to 
the number of clicks to be performed, a Thomson lamp can only have two states:  

TL(0) at which 0 clicks still have to be carried out,  

TL(0) at which no click remains to be carried out.  

An argument similar to the one above on Z*-points proves that the transition TL(0)→TL(0) can 
only be instantaneous, and hence, 0 clicks have to be performed simultaneously. This contradicts 
the fact that the button of the lamp is clicked successively and that each click ci happens at the instant 
ti, in such a way that a time it = ti+1 – ti greater than zero always elapses between any two successive 
clicks ci and ci+1 (-separation). 
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To better illustrate the problem posed by the above -dichotomy of {ci, ti} consider a box BX 
containing a denumerable sequence {bi} of labelled balls b1, b2, b3,…, and assume that we remove 
the balls from the box one by one, in such a way that at each click ci, (i.e. at each instant ti) we remove 
the ball bi from the box. At tb all balls will have been removed from BX, exactly as the one-to-one 
correspondence g(ti) = bi proves. If f(t) is now the number of balls to be removed at instant t, we get 
the same -dichotomy of Thomson’s lamp we saw above. So, despite the fact that all balls are 
removed one by one, one after the other, and in such a way that a time t = ti+1 – ti > 0 always passes 
between the extractions of any two successive balls bi, bi+1 (-separation), the box BX will never 
contain a finite number of balls. BX is emptied by successively removing one by one all of the balls 
but it will never contain …5, 4, 3, 2, 1, 0 balls. The number of balls within the box will always be 
either 0 or 0. The number of balls inside the box will suddenly change from 0 to 0. 

Furthermore, as in the case of Sb (and for the same reasons), the change can only be instantaneous. 
Thus, an infinite number of balls would have to be removed from the box simultaneously, which is 
not compatible with the fact that all of them are removed successively, as the bijection f(ti) = bi proves. 
All things considered, one may wonder if is this a new infinitist extravagancy or simply an 
inconsistency? We can imagine Ockham’s opinion. Notice that we are not subtracting cardinals but 
removing balls from a box under the restriction of a dichotomy formally derived from -order, and 
thus from the Axiom of Infinity. By the way, subtracting cardinals is really a suspicious transfinite 
arithmetic operation: sometimes it is permitted (Tarski-Bernstein theorem, Tarski-Sierpinski theorem 
etc.), sometimes it is not; sometime it is consistent, sometimes it is not (Faticoni argument and the 
like).  

For illustrative purposes only, and without going into further details, we will now formalize 
Benacerraf-Thomson discussion. For this consider the following expressions and their corresponding 
symbolic representations: 

Thomson’s lamp on at instant t:  *[t] 

Thomson’s lamp off at instant t:  o[t] 

Thomson’s lamp on along the interval (ta, tb):  *(ta, tb) 

Thomson’s lamp off along the interval (ta, tb):  o(ta, tb) 

Click at instant t the lamp being previously on:  c{[t], *} 

Click at instant t the lamp being previously off:  c{[t], o} 

Click at least one time along the interval (ta, tb) the lamp being previously on:  c{(ta, tb), *} 

Click at least one time along the interval (ta, tb) the lamp being previously off:  c{(ta, tb), o} 

Note the word ‘previously’ in the expression ‘the lamp being previously on (off)’, and recall that in 
the spacetime continuum no instant has an immediate preceding (or succeeding) instant, in the same 
way that, for instance, the natural number 5 has an immediate predecessor (the natural number 4), or 
an immediate successor (the number 6). As noted above, this is why the problem of change remains 
unsolved in the spacetime continuum. And this is a problem that affects all changes we can think of, 
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whether theoretical or experimental. Therefore, we need to leave the problem of change aside, if we 
want to continue discussing change, including the state changes of a Thomson lamp. 

According to the above symbolism, we can formalize some fundamental laws of Thomson’s lamp, 
for instance the following axioms (definition of the lamp): 

c{[t], o}  *[t] 

c{[t], *}  o[t] 

*[t]  o[t] 

 (*[t]  o[t]) 

And the following derived laws: 

c{(ta, tb), o}  t (ta, tb): *[t] 

c{(ta, tb), *}  *(ta, tb) 

o[tb]   *[tb, ) 

etc. 

We are interested in the following two laws: 

 BT1:   c{(-, tb),*}  *[tb, )   t ≤ tb: c{[t], o}   c{(t, ), *} 

 BT2:   c{(-, tb),o}  o[tb, )   t ≤ tb: c{[t], *}   c{(t, ), o} 

BT1 reads: if the lamp’s button has been clicked at least once within the interval (-, tb), the lamp 
being previously on, and the lamp stays on from tb, then there is an instant t equal or prior to tb such 
that the button is clicked at t, the lamp being previously off, and the button is no longer clicked from 
t. BT2 reads equal except we have to replace on with off and vice versa. Now let us prove BT1 (the 
proof of BT2 is similar). 

H1: Assume that t ≤ tb: c{[t], o}. We will have: 

 c{(-, tb], o} 

On the other hand, according to the antecedent of BT1 we have: 

 c{(-, tb), *}   t < tb: c{[t], *} 

which means o[t].  

From: 

 c{(-, tb], o} and o[t], being t < tb 

we derive o[tb] and then *[tb, ), which goes against the second term of BT1 antecedent. Therefore, 
if that antecedent is true then H1 is false. 

H2: Assume that:   t ≤ tb:  c{(t, ), *}.  

We will have: 
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 c{[tb, ), *} 

which goes against the second term *[tb, ) of BT1 antecedent. So, if this antecedent is true then H2 
must be false. The falsehood of H1 and H2 proves BT1. Notice that BT1 is not derived a la Thomson, 
from the successively performed clicks. BT1 is a law directly derived from the laws that define 
Thomson’s lamp. Therefore, if we assume H0, BT1 must hold before, during and after performing 
any (finite or infinite) number of clicks. 

Consider again the supertask {ci, ti}. Assume that the state Sb is on (a similar argument can be 
developed if it were off although with BT2 in the place of BT1). In these conditions, the antecedent 
of BT1 would be true. Therefore, its consequent would also be true.  However, it is false. In fact, on 
the one hand, if t < tb, and with tb being the limit of the sequence {ti}, there would exist a tv in {ti} 
such that tv ≤ t < tv+1 and hence only a finite number v of clicks would have been carried out. On the 
other hand, t cannot be tb either, because at tb the button of the lamp has not been clicked. 
Consequently, t cannot be an element of (, tb]. Therefore, to perform {ci, ti} implies the violation 
of BT1, which goes against H0. 

 

On marbles and boxes 

Sometimes we call a paradox what is really an inconsistency. This is the case of the above-mentioned 
Burali-Forti's and Cantor's paradoxes, among others. Ross’ paradox could also belong to this category. 
It is a supertask in which there is no general agreement, which we will come to a little later. But before 
doing that, we will introduce expofactorial and n-expofactorial numbers that will be used later to 
define two variants of Ross’ supertask (expofactorials were also introduced independently by C. 
Pickover [9]). Although we do not need those numbers to define the supertask, they make it easier to 
address the subject in an appropriate way, while at the same time illustrating how finite natural 
numbers can be so large that they may prove repulsive. 

The expofactorial n! (note the factorial symbol ! appears as an exponent) of a number n is the factorial 
n! raised to a power tower of order n! of the same exponent n! Thus the expofactorial of 2 is: 

 2! = 2! ^ 2! ^ 2! = 2 ^ 2 ^ 2 = 24 = 16 

But if we try to calculate the expofactorial of 3, in symbols 3!, we simply cannot! 

3! = 3! ^ 3! ^ 3! ^ 3! ^ 3! ^ 3!  

= 6 ^ 6 ^ 6 ^ 6 ^ 6 ^ 6 

= 6 ^ 6 ^ 6 ^ 646656 

= 6 ^ 6 ^ 6265911977215322677968248940438791859490534220026992430066043278949707355987388290912134229290… 

where the incomplete exponent of the last expression of 3! has nothing less than 36306 digits, roughly 
ten pages of  a standard text like this one. We have not been able to calculate the next step even with 
the aid of a big integer supercalculator. And there still remain three steps to go. So 3! is such a large 
number that we could certainly not calculate its precise sequence of ciphers (it is not an anodyne 
sequence of zeroes) even with the aid of the most powerful current computers. Imagine 9! Let alone 
100!. 
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Expofactorials are minuscule compared to n-expofactorials, recursively defined from expofactorials: 
The 2-expofactorial of a number n, denoted n!2, is the expofactorial n! raised to a power tower of order 
n! of the same exponent n! 

 n!2 = n! ^ n! ^ …(n! times)…^ n! 

The 3-expofactorial of a number n, denoted n!3, is the 2-expofactorial n!2 raised to a power tower of 
order n!2 of the same exponent n!2   

 n!3 = n!2  ^  n!2  ^…(n!2 times)…^ n!2 

The 4-expofactorial of a number n, denoted n!4, is the 3-expofactorial n!3 raised to a power tower of 
order n!3 of the same exponent n!3   

n!4 = n!3  ^  n!3  ^…(n!3 times)…^ n!3 

and so on and on. These numbers really are far beyond human imagination. Three arithmetic symbols, 
9!9, suffice to define a number (9-expofactorial of 9) so large that the standard writing of its precise 
sequence of figures would surely require a volume of paper trillions of times greater than the volume 
of the visible universe. As we noted above, they are so large that they prove repulsive.  But, being 
finite, they are much smaller than the smallest of the infinite cardinals o (or than the improper real 

number ). In some of the following discussions we will make use of the number 9!9, which for the 

sake of simplicity will be denoted by the letter H (for huge). 

Consider now the following supertask, our first variant of Ross’ supertask: At each instant ti of {ti} 
we add H marbles (i.e. 9!9) to an initially empty box A. On the other hand, if the index i is an integer 
multiple of H (i.e tH, t2H, t3H,…) then one marble is added to another initially empty box B. At tb, once 
completed the supertask, A and B will contain the same number of marbles: o. From the transfinite 
arithmetic perspective, there is nothing remarkable in this conclusion because transfinite cardinals 
satisfy things such as o = (o)H and the like. But a certain intellectual dissatisfaction is also 
inevitable.  

On the one hand, o is the least transfinite number greater than all finite integers. In this sense, it is 
the upper limit of any strictly increasing -ordered sequence of natural numbers. Since the number 
of marbles in each box forms an strictly increasing -ordered sequence of natural numbers, at tb both 
boxes contains the same number o of marbles. This is fine, but there is a third strictly increasing and 
-ordered sequence of natural numbers {di}, namely, the difference in the number of marbles within 
A and B as the supertask progresses: 

{di} = H, 2H, 3H,…H2  – 1, H2 + H – 1, H2  + 2H – 1, H2 + 3H – 1,… H3 – 2… 

di = H1+a
i + bi H – ai 

where ai = Int(i/H) and bi = (i mod H).  

So, if at tb the number of marbles in A is the limit o of the sequence: 

 {iH} = H, 2H, 3H,…  

and the number of marbles in B at the same instant tb is the limit o of the sequence: 
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 {i} = 1, 2, 3,… 

we may wonder why the difference in the number of marbles in A and in B at tb is not the limit o of 
the sequence: 

{H1+a
i
 + bi H – ai} = H, 2H, 3H,…H2  – 1, H2 + H – 1, H2  + 2H – 1, H2 + 3H – 1,… H3 – 2… 

How is it possible for that difference to be 0 tb? Recall that at tb both boxes contain the same number 
of marbles. Notice also that we are discussing the limits of strictly increasing -ordered sequences, 
not on the properties that only apply to finite sequences. And things can get even worse if we take 
into account the fact that the difference in the number of marbles inside A and B becomes null just at 
tb, at the first instant after all marbles have already been added. In effect, we have: 

t  (t1, tb): tv {ti}: tv ≤ t < tv+1  

Consequently, at instant t the difference d(t) in the number of marbles inside A and B is 

d(t) = dv = H1+int(v/H) + (v mod H) H –  int(v/H) 

which, obviously increases with v and then with t within (t1, tb). How can it finally be d(tb) = 0? Is it 
unreasonable to suspect that there is something amiss here? 

In order to begin our second variant of Ross’ supertask {Ri, ti} (which hardly differs from the original 

version), consider an -ordered collection of identical marbles {mi} labelled with the successive 
natural numbers, and assume that at each instant ti of {ti} we add a group of H marbles labelled from 
(i – 1)H +1 to iH to an initially empty box A. In addition, the box A is provided with a mechanism M 
such that it removes the marble with the least index from the box; at the same time a new group of H 
marbles is added to the box, including the first group. The mechanism M is set in such a way that it 
only works within the interval [ta, tb). In these conditions each marble mi will be removed at the 
instant ti, an instant at which the box will contain exactly i(H – 1) marbles. Thus, as the supertask {Ri, 
ti} progresses, the number of marbles within A varies according to the following strictly increasing 
and -ordered sequence of natural numbers: 

 {i(H – 1)} = 1(H – 1), 2(H – 1), 3(H – 1), 4(H – 1),… 

On the one hand, and each marble mi being removed from the box at the precise instant ti, the one-to-
one correspondence f(ti) = mi proves that at tb, once the supertask {Ri, ti} is completed, all marbles 
have been removed from the box. There is nothing to discuss here. The conclusion that at tb the box 
A is empty is a direct consequence of a simple bijection. 

On the other hand, let t be any instant within (t1, tb), being tb the limit of the sequence {ti} we will 
have: 

t  (t1, tb): tv {ti}: tv ≤ t < tv+1  

Consequently, at instant t the number n(t) of marbles within the box A will be: 

n(t) = n(tv) = v(H – 1) 

which strictly increases with v, and then with t within (t1, tb). It is then impossible for box A to be 
empty at any instant within the interval (t1, tb). Therefore, and taking into account that at tb no marble 
has been removed from the box (because at tb the supertask {Ri, ti} has already finished and the 
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mechanism M is off), the box cannot be empty at tb. There is nothing to discuss here either. The 
conclusion to this variant of Ross’ paradox can only be that  box A at tb is and is not empty. 

To end this section on marbles and boxes, consider the same-labeled -ordered collection of marbles 
{mi} of the above supertask {Ri, ti}, and in the place of box A, a hollow cylinder C of an infinite 
length and a diameter equal to the diameter of the marbles. Assume that at each instant ti of {ti} the 
marble mi is introduced into the cylinder through its left end. At tb all marbles will have been 
introduced into C. If we now introduce a rigid rod through the left end of C, the rod may hit a marble 
mv, proving that only a finite number v of marbles have been introduced into C. But it may also be 
the case that the rod traverses the whole cylinder without hitting any marble, as there is no last marble 
to be hit in the -ordered sequence of marbles {mi}, which contradicts the fact that infinitely many 
marbles were introduced inside the cylinder. 

 

Synchronising a supertask 

To illustrate the need for H0 in supertasks discussions, a mathematical supertask will be now 
synchronically performed with a classical supertask. In this case, the classical supertask will be 
carried out with the collaboration of the infinitely patient guests of Hilbert’s Hotel. But before 
beginning, let us relate some of the extraordinary properties of this illustrious hotel. Its director, for 
example, has just discovered a new infinitist way of getting rich: he demands one euro from G1 (the 
guest of room R1); G1 recovers his euro by demanding one euro from G2 (the guest of room R2); G2 
recovers his euro by demanding one euro from G3 (the guest of room R3); and so forth. Finally, each 
guest recovers his euro since there is not ‘last guest’ losing his money. The crafty director then 
demands a second euro from G1 who recovers it again by demanding one euro from G2, who recovers 
it by demanding one euro from G3, etc. This way, there are thousands of euros coming from the 
(infinitist) nothingness to the pocket of the fortunate director! We could also imagine a perpetuum 
mobile functioning by powering an appropriate machine fed with the calories obtained from the 
successive rooms of the prodigious hotel in the same way its director got his money 

Eccentricities aside, let us assume that the rooms of the inclitus hotel are disposed in a unique row 
divided into two adjacent parts, the left and the right side. The right side is an -ordered sequence of 
contiguous rooms labelled from left to right as R1, R2, R3,…The left side is also an -ordered 
sequence of contiguous rooms, now labelled from right to left as …L3, L2, L1 and in such a way that 
L1 is contiguous to R1. Symbolically: 

 HH = …L5  L4  L3  L2  L1  R1  R2  R3  R4  R5…. 

In addition to its front entrance door, each HH’s room has two lateral doors, the left door that 
communicates with the contiguous room on the left, and the right door that communicates with the 
contiguous room on the right. We will also assume that along the interval [ta, tb] all lateral doors are 
open, and that all entrance doors of every single room are blocked, so that no guest can leave the 
hotel. To denote that a room Li or Ri is empty we will write Li

o, Ri
o; to denote that the guest Gn 

occupies them, we will write Li
Gn, Ri

Gn. We will assume that, initially, each right room Ri, is occupied 
by the guest Gi, being all left rooms initially empty. So the initial state of HH at ta will be: 

 HH(ta) = …L5
o
   L4

o
   L3

o
   L2

o
   L1

o
   R1

G1
   R2

G2
   R3

G3
   R4

G4
   R5

G5…. 
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Now consider the following HH-change: through the left door of his room, the guest G1 changes to 
the left empty room contiguous to his current room, provided that such an empty room exist, and each 
guest Gi, i>1 changes through the left door of its current room to the room previously occupied by Gi-1:  

HH(t1) = …L5
o
   L4

o
   L3

o
   L2

o
   L1

G1
   R1

G2
   R2

G3
   R3

G4
   R4

G5
   R5

G6…. 

HH(t2) = …L5
o
   L4

o
   L3

o
   L2

G1
   L1

G2
   R1

G3
   R2

G4
   R3

G5
   R4

G6
   R5

G7…. 

HH(t3) = …L5
o
   L4

o
   L3

G1
   L2

G2
   L1

G3
   R1

G4
   R2

G5
   R3

G6
   R4

G7
   R5

G8…. 

…  

By induction or by Modus Tollens (MT) it can be easily proved that for every natural number v it is 
possible to carry out the first v -changes (Theorem 1). 

On the other hand, let A0 = {a1, a2, a,…} be an -ordered set, and consider the following -ordered 
sequence of recursive definitions {Di(Ai)} of the sequence of nested sets {Ai}: 

 i = 1, 2, 3,...   Di(Ai):  Ai = Ai - 1 – {ai} 

Let us assume that at each instant ti of the sequence of instants {ti} the ith definition Di of {Di(Ai)} is 
carried out, and that at the same instant ti the ith HH-change is also carried out, provided that it can 
be performed. At tb, once the infinitely many successive definitions Di has been performed, (supertask 
{Di, ti}) and thanks to H0, we will have a new sequence of nested sets {Ai} completely defined as a 
complete totality, and we can make any subsequent use of it, for instance to prove a certain theorem. 
This is standard infinitist mathematics (if it was not for the fact that standard infinitist mathematics 
is not interested in timetabling the steps of -ordered sequences of steps). 

Things are quite different for {HHi, ti}. In fact, at tb, and once all possible HH-changes have been 
performed, all guests mysteriously disappeared from the hotel: Gn being any guest, she cannot be in 
any right room Rk (for any natural number k) nor in any left room Lp (for any natural number p) 
because in the first case only the first n - k HH-changes would have been carried out, while in the 
second case that number would be p + k - 1. Clearly, both results contradict Theorem 1. So, if H0 
applies to supertask {HHi, ti} in the same way it applies to the recursive definition {Di(Ai)}, we have 
a serious conflict with the -ordering derived from the Axiom of Infinity. If not, a convincing reason 
should be giving to explain why we are not facing a conflict. 

 

Mathematical supertasks 

Definitions, recursive definitions, procedures and proofs consisting of infinitely many successive 
steps are quite common in contemporary mathematics. In general, mathematicians are not interested 
in the way those infinitely many steps could be actually carried out. They simply take it for granted 
they are, and focus their attention on the final results. If these results consist of infinite collections, 
like sets or sequences, they are considered as completed totalities accordingly to the hypothesis of the 
actual infinity subsumed into the Axiom of Infinity, which in turn implies that the infinitely many 
steps have been completed in an effective way. Of course, all those infinite definitions, procedures or 
proofs assume H0. Otherwise, after performing the infinitely many steps of the corresponding 
definitions, procedures or proofs, we would find ourselves in the odd situation of being incapable of 
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saying anything about them, becoming absolutely useless for us. Uninteresting as it may seem from 
a pure mathematical perspective, we could schedule those infinitely many successive steps, for 
instance, in the form of a supertask. These mathematical supertasks have the advantage of not being 
affected by the problem of change. On the other hand, they have the same discursive functionality as 
standard supertasks, and could be used, for example, to examine some transfinite fundaments like -
order and the Axiom of Infinity. Though not in a detailed form (detailed arguments in [12]), we will 
now introduce some of these mathematical supertasks. 

 

Lost in exchanges 

Let {ai} = a1, a2, a3,… be an -ordered sequence, and consider it as a table of one row and infinitely 
many columns -ordered and indexed by the successive natural numbers. Assume now that we 
successively exchange a1 with the element placed in the next column on the right of a1. Let us denote 
these exchanges as a1-exchanges. After the first n successive a1-exchanges we would have: 

 a1, a2, a3, a4, …an, an+1 an+2, an+3… 

 a2, a1, a3, a4, …an, an+1 an+2, an+3… 

 a2, a3, a1, a4, …an, an+1 an+2, an+3… 

 … 

 a2, a3, a4, a5, …an, an+1 a1, an+2, an+3… 

It is easy to prove by induction or by MT that for any natural number v greater than 0 it is possible to 
perform the first v successive a1-exchanges (Theorem 2). Now consider the following supertask {ai, 
ti}: at each successive instant ti of {ti} exchange a1 with the element in the next adjacent column on 
the right of a1, provided that such a column does exist, otherwise, stop the supertask. In any case, at 
tb the supertask will have finished. Let v be any natural number and assume that at tb the element a1 
is in the vth column of {ai}. If that were the case, the first v a1-exchanges would not have been carried 
out, which goes against Theorem 2. Therefore, and being v any natural number, we must conclude 
that at tb the element a1 is no longer an element of {ai}. At tb, a1 has disappeared from the table in 
spite of the fact that no a1-exchange made it disappear. 

 

The next rational 

The set Q+ of positive rational numbers in their natural order of precedence is densely ordered: 
between any two rationals infinitely many other rationals exist. But Q+ is also denumerable, and 
therefore it can be put into a one-to-one correspondence f with the set N of natural numbers. This 
correspondence f induces a -order in Q+: {q1, q2, q3,…}, where qn is the rational number f(n). 
Therefore, the set of positive rational numbers can be densely ordered (between any two rationals 
infinitely many other rationals exist) and -ordered (between any two successive rationals no other 
rational exists). This sort of numerical schizophrenia allows us to develop the following argument. 
Let x be a rational variable whose initial value is 1, and consider the following sequence {Di(x)} of 
x redefinitions: 
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i = 1, 2, 3,.. :  
If |qi+1 – q1| < x Then Di(x): x = |qi+1 – q1| 
Else Di(x): x remains unchanged 

which redefines x (for each i = 1, 2, 3 ,…)  as |qi+1 – q1| if |qi+1 – q1| is less than the current value of x, 
|qi+1 – q1| being the absolute value of qi+1 – q1, and < the natural order in Q+.  

It is worth noting that all of the successive definitions Di(x) redefine the same object, the rational  
variable x. By contrast, each recursive definition Di(Ai) of the above sequence of definitions {Di(Ai)} 
defines a different object, the set Ai of the sequence of nested sets {Ai}. This difference is crucial: in 
the second case we have a -ordered sequence of definitions without a last definition that originates 
a -ordered sequence of nested sets without a last set. In the second case, we also have a -ordered 
sequence of definitions without a last definition, but all those successive definitions define the same 
object x, which forces {Di(x)} to leave a permanent trace in the form of the rationality of x: once all 
possible redefinitions Di(x) are performed, the variable x will continue to be a rational variable, and 
one that has been redefined a certain number of times. Otherwise, H0 would have been violated, and 
the same violation could happen to any sequence of successive definitions of the same object or of 
different objects. The only alternative to this, would be the prohibition to redefine the same object 
infinitely many successive times, in which case that prohibition had to be declared as an additional 
axiomatic restriction in transfinite mathematics. Meanwhile, we continue our argument on Di(x) since, 
for the time being, we can redefine an object any finite or infinite number of successive times.  

By induction (or by MT) it can easily be proved that for any natural number v, the first v redefinitions 
of the sequence {Di(x)} can be carried out (Theorem 3). Consider the following supertask {Di(x), ti}: 
perform Di(x) at instant ti if it is possible to perform Di(x); if not, end the supertask. In any case, at tb 
all possible redefinitions Di(x) will have been carried out. Whatever the value of x at tb is, it will be a 
rational number since x is a rational variable, one that can only take rational values, and that has been 
redefined a certain number of times. Otherwise, we would be violating H0. We now prove the 
following two contradictory results on the value of x at tb.  

 R1: At tb the rational q1 + x is not the least rational greater than q1.  

Proof: Q Being densely ordered, the rational number q1 + 0.1x, for instance, is greater than q1 and 
less than q1 + x. So q1 + x is not the least rational greater than q1. 

R2: At tb the rational q1 + x is the least rational greater than q1. 

Proof: Assume it is not. Q+ being -ordered, there will be a qv in {q1, q2, q3,…} such that: 

 q1 < qv < q1 + x 

And then: 

 0 < qv – q1 < x 

which implies the vth redefinition Dv(x) (that would have defined x as qv – q1)  has not been carried 
out, a conclusion that is impossible according to Theorem 3. So q1 + x is the least rational greater 
than q1. 
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Cantor’s 1874 argument 

In 1874 Cantor published a short paper in which he proved that the set A of algebraic numbers (and 
then the set Q of rational numbers) is denumerable [10]. In the same paper he also proved, for the 
first time, the set R of real numbers is not denumerable. This 1874 argument is far less well known 
than his diagonal proof, yet it is as conclusive as the other. Cantor’s 1874 argument leads to three 
exhaustive and mutually exclusive alternatives, each of them proving that R is not denumerable. But 
two of these three alternatives could also be applied to the set Q of rational numbers. Thus, we need 
to prove that Cantor’s 1874 argument always leads to the third alternative when it is applied to the 
set of rational numbers, otherwise Q would also be non-denumerable. So, until this is proved to be 
the case (and the proof is far from being obvious) set theory is facing a contradiction related to the 
cardinality of the set of rational numbers. It is hard to believe that neither Cantor nor his infinitist 
successors ever realized that proof is in fact necessary. 

A variant of Cantor’s 1874 argument will serve us to define a new mathematical supertask with 
conflicting consequences. As noted above, Q can be put into a one-to-one correspondence f with N. 
We can therefore define an -ordered sequence of rational numbers {qi} = {f(i)} that contains all 
rational numbers. Let (a, b) be any rational interval and x a rational variable whose domain is just (a, 
b) and whose initial value is c, any element of (a, b). Then consider the following -ordered sequence 
{Di(x)} of successive x redefinitions: 

i = 1, 2, 3,…: 
If qi  (a, b) And qi < x  Then Di(x):  x = qi  

Else Di(x): x remains unchanged 

that compares x with the successive qi of {qi} within (a, b), and redefines x as qi each time qi is in (a, 
b) and is less than the current value of x. By induction or by MT it is easy to prove that for each 
natural number v it is possible to perform the first v definitions of the sequence {Di(x)} (Theorem 4). 

Assume that if performing Di{x} is possible then it is performed at the precise instant ti of the 
sequence {ti}, otherwise end the supertask {Di(x), ti}. In any case, at tb all possible redefinitions of 
the sequence {Di(x)} will have been carried out. According to H0, at tb x will be defined as a rational 
number within the interval (a, b), since x is a rational variable whose domain is (a, b) and has been 
redefined a certain number of times. Consider then the rational interval (a, x), and let q be any of its 
elements. Evidently q is in (a, b) because (a, x) is a subinterval of (a, b). Yet q cannot be an element 
of {qi}. Let us suppose it is. In this case, we would have that q = qv, for a certain qv in {qi}, and then 
qv < x because qv is in (a, x). But this implies that the vth redefinition Dv(x) has not been carried out 
and this conclusion contradicts Theorem 4 (note that Dv{x} would have been redefined x as qv). We 
must conclude that the sequence {qi} that contains all rational numbers does not contain all rational 
numbers. 

 

Cantor’s diagonal argument 

Cantor’s diagonal argument [11] is one of the most celebrated and productive arguments in the recent 
history of logic and mathematics. It is a simple and elegant Modus Tollens (MT) proving the set of 
real numbers is non-denumerable. In our opinion, and despite its critiques, it is correct. Indeed, it is 
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relatively common in infinitist discussions to try to discard an argument because the conclusion of 
another independent argument contradicts the conclusion of the first one. This has been the case with 
Cantor’s diagonal argument, and it is clearly inadmissible, because if two independent arguments 
prove contradictory results they are simply proving a contradiction. An argument can only be 
dismissed if we indicate where and why that particular argument fails. 

Cantor’s diagonal argument also poses a problem that has not been adequately addressed so far: could 
the indexed rows of Cantor’s table be permuted in such a way that the resulting table defines a rational 
diagonal (and then a rational antidiagonal)? Clearly, and for the same reasons as in Cantor’s 1874 
argument, if that were the case, we would be facing a contradiction regarding the cardinality of the 
set of rational numbers. As with the alternatives of Cantor’s 1874 argument, we need to prove that 
such a reordering of the rows of Cantor’s table is not possible if we want to discard the contradiction 
(and, again, the proof is anything but obvious). Once again, it is amazing how little attention has been 
paid to this problem. 

Our last mathematical supertask is related to Cantor’s diagonal. Although in this case some auxiliary 
work will be necessary. To begin with, we need to prove the following theorem of the nth decimal: 

For every natural number n there are infinitely many different rationals in (0, 1) with the same 
decimal dn in the same nth position of its decimal expansion. 

Without going into details, the sequence of rationals numbers: 

q1 = 0.d1d2…dn1 

q2 = 0.d1d2…dn11 

q3 =  0.d1d2…dn111 

q4 = 0.d1d2…dn1111 

… 

and the bijection f(n) = qn will suffice to prove the theorem. Let us recall that Cantor’s hypothetical 
indexed table {ri} contains all real numbers (rational and irrational) within the interval (0, 1), one 
number in each row ri. Although it is not necessary for the next argument, Cantor’s table could easily 
be redefined in order to ensure it contains at least all rational numbers within (0, 1). 

The decimal expansion of rational numbers with a finite decimal expansion will be completed with 
infinitely many 0s on the right of its last decimal. So, in the place of 0.25 we will write 0.250000… 
Finally, we will say that a row of Cantor’s table is n-modular if the nth decimal of its decimal 
expansion is (n mod 10). For instance: 

 row r1:   0.60305111022339… is 3-modular, 5-modular, 13 modular etc. 

 row r2:   0.02000671010000… is 2-modular, 6-modular. 7 modular etc. 

 row r3:   0.11300000000000… is 1-modular, 3-modular. 10 modular etc. 

If the nth row rn of Cantor table is n-modular, we will say that it is D-modular (in the above examples 
the rows r2 and r3 are D-modular). If a row ri is not D-modular it can be exchanged with any of the 
following i-modular rows rj, j>I, provided that such a row exists. Once exchanged, ri will contain the 
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number in rj (and vice versa) and it will become D-modular. We call D-exchanges to these exchanges. 
This is all we need to define the next Cantor diagonal supertask. 

Assume that at each instant ti of {ti} the row ri of Cantor’s table is considered in such a way that: 

If ri is D-modular then it remains unchanged. 

If ri is not D-modular and it can be D-exchanged with any following i-modular row rj, j>i, then it 
is D-exchanged. 

If ri is not D-modular and cannot be D-exchanged then it remains unchanged. 

Note that once a non-D-modular row ri has been D-exchanged, it becomes D-modular and will remain 
D-modular (and unaffected by the subsequent D-exchanges) due to the condition j > i (in rj, j>i) of D-
exchanges. At tb all rows will have been considered and the supertask will have finished. Let this 
supertask be denoted by {ri, ti}. 

It is now immediate to prove that at tb, once performed {ri, ti}, all rows of Cantor table are D-modular. 
Let us assume that they are not, i.e let us assume that at tb there is a row rn that is not D-modular. As 
a consequence of -asymmetry, rn has a finite number (n-1) of preceding rows and an infinite number 
of succeeding rows. This implies that rn can only be preceded by a finite number of n-modular rows. 
According to the theorem of the nth decimal, there are infinitely many rationals with the same decimal 
(n mod 10) in the same nth position, since all n-modular rows have the same decimal (n mod 10) in 
the same nth position of its decimal expansion. Or in other words, there are infinitely many n-modular 
rows, of which only a finite number precede rn. Consequently, rn is succeeded by infinitely many n-
modular rows and hence it had to be D-exchanged with any of them. Therefore rn must be D-modular. 
We must conclude that, once the supertask {ri, ti} has been performed, all rows of the Cantor table 
are D-modular. As in the case of Cantor’s diagonal argument, this one is also a simple Modus Tollens. 
The reader can easily prove that supertask {ri, ti} leads to other conflicting results such as the 
disappearance of infinitely many rows from the table.  

Now then, if all the rows of Cantor table become D-modular, then the new diagonal of the table will 
be a periodic rational number within (0, 1) whose period is 1234567890, i.e. the rational number: 

0.123456789012345678901234567890… 

From this diagonal we can define infinitely many rational antidiagonals, for example, the periodic 
rationals within (0, 1) of periods 0123456789, 45, 21, etc. For the same reasons as with irrational 
antidiagonals, each of these rational antidiagonals would prove that the set of rationals within (0, 1) 
is not denumerable. Therefore, we would have a fundamental contradiction in set theory: the set of 
rational numbers would and would not be denumerable. The alternative to this contradictory 
conclusion would be a violation of H0, so that, for example, at  tb the rows of Cantor’s table are no 
longer real number within (0, 1), or its rows are arbitrarily permuted so that we cannot ensure that all 
of its rows are D-modular, etc. Obviously, the same final arbitrary effects could be expected in any 
definition, procedure or proof composed of infinitely many successive steps, and transfinite 
mathematics would lose all of its meaning. 
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Partitions a la Cantor 

The following summarized argument is not a supertask but a mathematical procedure of infinitely 
many steps, expressed in the compact form of computer language, that illustrates another way of 
posing problems related to the hypothesis of the actual infinity. It is inspired by Cantor Ternary Set 
(Cantor’s power) and by Cantor’s 1885 argument [12] on the partition of the real line. Let A be the 
real interval (0, 1) and  X a set of indexes whose elements will be referred to as a, b, c, d,… and whose 
cardinal is 2o. Let u and v be two real variables and f a one-to-one correspondence between A and 
X. Consider the following procedure P: 

u = 0     ‘Used to define the left ends of the successive intervals. 
v = 0     ‘Used to define the right ends of the successive intervals. 
While A   

 X = X – {a}   ‘a (b, c, d,…) is any X’s element. 
 A = A – {f(a)}   ‘Remove f(a) from A. 
 v = v + f(a)   ‘Right end of the interval. 
 If v is in R Then  ‘R is the set of proper real numbers. 
  (xa, ya] = (u, v] ‘Define a new real interval. 
 Else 

  Exit Loop  ‘Two real numbers whose sum is not a proper real number. 
 End If 
 u = v    ‘Left end of the next adjacent and disjoint interval. 
Loop 

Since the sum of any two real numbers is a real number, P exhausts the sets I and A, and defines a 
partition T = {(xa, ya], (xb, yb], (xc, yc],…} in the real line, each of whose intervals (xh, yh] defines a 
different real number rh = yh – xh. It is then immediate to prove that g((xh, yh]) = rh is a one to one 
correspondence between T and (0, 1). Thus, by selecting a rational number qh within each (xh, yh] we 
would have a non-denumerable sequence of different rational numbers. As in the cases of Cantor’s 
1874 argument and Cantor’s diagonal presented above, this new conclusion also points to a possible 
contradiction related to the cardinality of the set of rational numbers. 

 

Infinity and Physics 

While many authors believe in the formal consistency of supertasks, the number of them who also 
believe in the physical possibilities of actually performing a supertask is much smaller. In this latter 
group we also find those who believe that supertasks could be performed in infinite intervals of time 
perceived as finite intervals thanks to the relativistic dilation of time (bifurcated supertasks). As we 
will see now, -asymmetry and quantum mechanics add new difficulties to the possibility of actually 
executing (or observing) a supertask in a finite interval of time. In fact, let tp be Planck time (5.3910-

44 s) and consider the time interval (tb-tp, tb). Due to -asymmetry, at any instant t within (tb-tp, tb) 
only a finite number of actions have been performed, and there still remains an infinite number of 
actions to be performed. Indeed, since tb is the limit of {ti}, there will exist a tv in {ti} such that tv ≤ t 
< tv+1, and hence, at instant t only a finite number v of actions will have been carried out. So, infinitely 
many actions would have to be performed within an interval of time far less than Planck time. 
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A simple exercise of differential calculus proves that, assuming Heisenberg Principle of Uncertainty, 
Planck length and Planck time are the shortest length and least time that can be measured in physical 
terms. So, we could never verify in physical (proper or improper) terms that a supertask has been 
carried out in a finite interval of time simply because infinitely many actions would have to be carried 
out in less than Planck time. Furthermore, as most of physicists now suspect, beyond Planck scale 
physical laws may no longer hold. It is also quite plausible that nothing in the physical world can last 
a time less than Planck time. This adds some additional difficulties to the pretension that supertasks 
could be physically carried out. In any case, here we have only focused on conceptual -supertasks. 
Our aim was not to implicate physics in supertask theory but to illustrate the way supertasks could be 
used to call into question the Axiom of Infinity because, as we will see now, that questioning is of 
great interest to experimental sciences e.g., physics.  

Apart from -asymmetry, -inconsistency also applies to physical supertasks: regarding the number 
of actions to be performed, that number can only take two values: o and 0. The only solution to this 
dichotomy is that infinitely many successive actions have to be carried out simultaneously. But 
successive actions cannot be performed simultaneously in physical terms, whether proper or improper. 

The mathematical infinite, on the other hand, is anything but a trivial matter. Its consequences in 
physics are enormous. The points of the infinitist continuum of the real numbers, for instance, are of 
capital importance in physics: point masses, point particles, point charges etc. The special theory of 
relativity, one of the more successful theories of modern physics, is a physical theory on the spacetime 
continuum. Theoretical physics is made almost exclusively of infinitist mathematics. But, as we will 
see, the continuum may not be the best model to deal with the physical world, particularly when we 
approach certain ultramicroscopic scales, such as the Planck scale. The persistent problems we have 
found there (in the physical realm) for more than fifty years suggest the physical world could be 
essentially discrete, discontinuous, i.e., digital.   

For many contemporary physicists, the persistent incompatibility between quantum mechanics and 
general relativity is a consequence of the lack of discreteness of the continuum-based models [13]. 
They suspect that space and time are not continuous but discrete (composed of indivisible minima), 
and that the granular fabric of spacetime could be the meeting place for both fundamental theories of 
physics. An increasing number of theoretical and experimental research is now trying to prove the 
discrete nature of space and time. As we will also see here, the search for violations of Lorentz 
symmetry at Planck scale (the plausible granular scale of the physical world) is now becoming an 
active area of theoretical and experimental research [14], [15]. The continuum being a formal 
descendent of the Axiom of Infinity, we must insist on the importance of reexamining the formal 
consistency of the actual infinity hypothesis, simply because if it were inconsistent, so would all 
continuums. But most physicists, who fully rely on mathematics, have not even thought of that 
possibility. And, for obvious reasons, the infinitist paradise is not very enthusiastic about it. 

Some of the above conclusions on supertasks and mathematical supertasks suggest that the hypothesis 
of the actual infinity (the existence of infinite totalities as complete totalities) embraced by the Axiom 
of Infinity may be inconsistent. If that were the case, more than a century of mathematics would have 
to be revised. And perhaps a new type of discrete (digital) mathematics would have to be developed, 
including discrete analysis and discrete geometry (see below). Physics would also be affected by this 
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hypothetical crisis of infinity, though in a different way. At least this is what the following points 
seem to be indicating: 

1. Though theoretical physics is made up of infinitist mathematics, experimental physics always 
deals with digital results. Even when we call them analog, all observations and measurements 
are always discrete, truncated to a small number of digits. 

2. When the infinites appear in physics equations they have to be removed from them in order 

to avoid the unsolvable problems they invariably lead to, for example, in the Standard Model 

of Particles (renormalization). 

3. All physical magnitudes seem to be of a discrete nature, with indivisible minima. Even space 

and time are also suspected of being also composed of indivisible minima. 

4. Nothing we have observed, measured or divided is infinite. In physics, in fact, infinity could 

be just a ‘manner of speaking’.  

5. The suspected digital scale of nature could be the Planck scale. When experimental and 
theoretical physics approach this scale some problems appear, and most physicists suspect 
that it is not possible to fin a solution within our current analog models. We will deal with one 
of these problems in this section. 

If nature is indeed discrete in all its observables, the analog mathematics of the continuum may not 
be the most appropriate instrument to deal with the physical world. While we examine the world far 
away from its discrete scale of minima, the analog mathematics of the continuum works quite well. 
The problems appear when we approach that scale.  

Before approaching to the hypothetical digital scale of the physical world (and the problems it poses 
to some well-established physical theories) let us recall n-expofactorial numbers of unimaginable size 
as 9!9. It is one thing to be able to define finite numbers that large, but to suppose that they are 
meaningful is quite another. Imagine a real number with 9!9 decimals in its decimal expansion. 
Imagine as well that all physical constants needed to explain our Universe were real numbers with 9!9 
decimals (and 9!9  is minuscule when compared with o). In our opinion, that would be a really 
grotesque universe (we presume Ockham would also agree with us). All periodic rational numbers 
and all irrational numbers, on the other hand, have a -ordered sequence of o decimals in their 
decimal expansions. Also, according to the infinitist orthodoxy, all of them exist all at once as a 
complete and finished totality. Most of the irrational numbers within (0, 1) are supposed to have an 
infinite (-ordered) and random sequence of decimals. Being infinite and random as they are, it would 
be easy to prove that each of these sequences contains an encoded version of all known texts (books, 
papers, poems, letters, etc.) written by all humans from Neolithic to nowadays. And what is even 
more incredible, each one of them would also contain sequences of the same decimal repeated, for 
instance, 99!99 times. These are inevitable consequences of the marriage between randomness and the 
actual infinity. 

As we know, o is the smallest number greater than all finite natural numbers, the cardinal of the set 
of natural numbers. The problem with o is that its definition is not related to the operational 
definition of natural numbers via the successor set. o is not the successor of any finite natural number 
simply because there is no last natural number to be succeeded by o. Cantor proved o is not a 
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natural number because o = o + 1, while every natural number n satisfies n  n + 1. Then he proved 
that o is greater than all finite cardinals because for any finite cardinal n the set {1, 2,… n} is not 
equivalent to N, while it is a proper part of N. He also proved that it is the least cardinal greater than 
all finite cardinals ( [4], theorems A and B, epigraph 6). So, o is the limit of all strictly increasing 
and -ordered sequence of natural numbers. But o does not play in physics the fundamental role it 
plays in set theory. 

The next transfinite cardinals are 2o y 1. The former is the cardinal, among others, of the set of real 
numbers, i.e., the power of the continuum. The latter is the cardinal of the set of all ordinals whose 
sets have the same cardinal o. We do not know if 2o = 1 (hypothesis of the continuum). The 
sequence of powers (2o, 2^2o, 2^2^2o,…) and the sequence of alephs (1, 2, 3,…) yield an 
interminably number of infinities of an increasing infinitude that leads towards the absolute infinity, 
which is so infinite that it becomes inconsistent, at least to our poor limited human minds, says Cantor. 
All of them, except the power of the continuum, are absolutely irrelevant to physics.  

The spacetime continuum is, in fact, grounded on the continuum of the real numbers, whose cardinal 
is 2o (in physics literature, even under the signature of certain Nobel laureates, it is not unusual to 
meet with the erroneous assertion that this cardinal is 1. After all, transfinite arithmetic may not be 
essential for doing physics). As is well known, the continuum of the real numbers is so infinite that a 
straight line segment of Planck length (1.6210-35 m) has the same number of points as the whole 
tridimensional visible universe, which, bijections aside, is rather enigmatic from a pure physical point 
of view (think, for instance, of virtual quantum particles). In our opinion, bijections and ellipsis form 
a really dangerous couple. 

The physical theory more directly concerned with the hypothesis of the actual infinity is the special 
theory of relativity, since it was founded on the basis that space and time are unified into a four-
dimensional continuum called spacetime, this continuum being the infinitist continuum of real 
numbers. As is well known, Einstein’s theory refines Newton mechanics for velocities approaching 
the speed of light. As in the case of Newton mechanics, the special theory of relativity has been 
satisfactorily confirmed by experiments and observations. But a question becomes inevitable: is there 
any aspect or scale of nature at which the special theory of relativity will also need to be refined, or 
is it the ultimate theory? The question is pertinent because space and time could be discrete rather 
than continuous, in whose case some aspects of the theory of relativity would need to be modified.  

Since the beginning of the 21st century there is a growing interest in the search for violations of 
Lorentz symmetry at the Planck scale. Although this scale was intended to define a metric reference 
independent of our arbitrary definitions of unities for mass, length and time, the interest in the 
Planck’s scale has gone far beyond the original metric objectives of its author. Indeed, now it is 
considered as an appropriate candidate to define the granularity (discreteness) of space and time. The 
Planck scale is defined by a set of universal constants, basically Planck mass mp, Planck length lp and 
Planck time and tp (Planck energy, Planck charge and Planck temperature can also be included). 
Planck mass, Planck length and Planck time, are defined in terms of three universal constants: h 
(Planck constant), c (the speed of light in the vacuum) and G (constant of gravitation). The 
universality of the Planck universal constants poses, as we will now see, some significant problem to 
Lorentz transformation. 
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The First Principle of the special theory of relativity asserts that the laws of physics are universal, the 
same in all inertial reference frames. The universality of physical laws implies the universality of the 
physical constants involved in their mathematical expressions. In addition, if A and B are two 
universal constants, any algebraic combination of them must also be universally constant. For 
instance, being o (the magnetic permeability of the vacuum) and o (the electric permittivity of the 
vacuum) two universal constants, the algebraic combination of them (o · o)-1/2 is also a universal 
constant (in this example, the speed c of light in the vacuum). For the same reason, lp, tp and mp, 
which are also defined as algebraic combinations of three universal constants (h, c and G in the three 
cases), can only be universal constants in all reference frames. If that were not the case because of a 
certain algebraic combination f(h, c, G) changed with relative motion, this particular change could 
only be due to a change in, at least, one of these three universal constants (provided that real numbers 
and algebraic operations do not change with relative motion). Thus, at least one of those three 
universal constants would change with relative motion and it would not be the universal constant it 
was assumed to be. 

The problem is that Lorentz transformation does not preserve the universality of certain algebraic 
combinations of h, c, and G. More specifically, it does not preserve the universality of Planck length, 
Planck time and Planck mass. As L. Smolin pointed out [14], it is really astonishing that this problem 
(the relativity of universal constants) had never been posed until the first years of the 21st century. It 
is a good example of the cuasi-religious way we learn, teach and profess science in general, and 
certain theories in particular. At the beginning of the 21st century, Amelino-Camelia proposed a 
solution that is now known as Doubly Special Relativity, also known as Deformed Special Relativity 
(DSR for short) [16]. In addition to the speed of light as universal constant, DSR includes two 
additional universal constants (independent of relative motion), a maximum energy (Planck energy) 
and a minimum length (Planck length). The theory has now several variants as DSR II by J. Magueijo 
and L. Smolin [17]. Not surprisingly, DSRs have not been enthusiastically welcomed.  

DSR and its successive variants have built upon the same infinitist mathematics of the continuum (as 
the rest of physical theories did). The problem here is that at Planck scale we plausibly approach the 
discrete scale of nature, a place where the continuum-based mathematics could no longer be the 
appropriate instrument. It is at this point where the importance of examining the formal consistency 
of the hypothesis of the actual infinity (subsumed into the Axiom of Infinity) becomes evident: if that 
hypothesis were inconsistent so would all continuums formally derived from it, and we would be 
forced to develop a new discrete mathematics more attuned to the physical world (the branch of 
mathematics we usually call discrete mathematics has nothing to do with this issue). Besides, and for 
the first time in the history of logic and mathematics, we now have at our disposal two productive 
instruments to put into question that foundational hypothesis: On the one hand , the least transfinite 
ordinal, with its trail of asymmetries, dichotomies, and more than possible inconsistencies; and, on 
the other hand, supertask theory, an appropriate scenario to represent the arguments. 

 

Platonism and biology 

From a physical point of view, an object exists if it can interact with other objects in such a way that 
their states result somehow modified as a consequence of this interaction. It is just through these 
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interactions that we can detect the existence of physical (spacetemporal) objects. The different 

branches of physics (and in general of experimental sciences) study the different types of interactions, 

from a simple change in the trajectory of a photon to a chemical reaction or a galactic collision. We 

call them ‘dynamic interactions’ because energy is always involved in them. As far as we know, they 

are always governed by the same set of universal laws. No exception is known to this consistent 

behaviour of nature: rivers always flow downhill. 

Living beings introduced another type of interaction into the physical world: ‘infodynamic 
interactions’, interactions in which arbitrary signals and codes are involved. Infodynamic interactions 
modify the state of the receiving objects in such a way that it is not always possible to infer the 
changes from the physical laws but from the complex evolutionary and reproductive history of each 
organism. Obviously, all objects involved in infodynamic interactions are also physical objects 
subjected to dynamic interactions with the rest of the world. Apart from arbitrary, infodynamic 
interactions are also teleonomic, the purpose in most of the cases being directly or indirectly related 
to reproduction (which also includes surviving), the universal goal of all living beings. 

Living beings survive and reproduce in a physical environment that, as noted, is consistently driven 
by a universal set of physical laws. It is not surprising that living beings behave in concert with that 
legal consistency in order to survive and reproduce, and that somehow nature consistency had been 
finally captured in genetic, epigenetic and neurological terms. Or in other words, it should not be 
surprising that we had finally become aware of the fundamental laws of logic, and capable of 
developing formal systems in accordance with the physical world. 

Perhaps confused by this natural harmony between our formal abilities and the formal consistency of 
the physical world, we could have magnified the ontological status of mathematical objects 
(Platonism). But let us recall that the same mathematical objects are also essential to many erroneous 
physical theories. They are also useless to account for most chemical, geological and biological 
phenomena, let alone psychological, or sociological ones. Furthermore, if the above arguments on the 
hypothesis of the actual infinity were really conclusive, and this hypothesis were finally proved to be 
inconsistent, then Platonism would no longer make sense because the sequence of natural numbers 
could only be potentially infinite. Or in other terms, natural numbers, the simplest mathematical 
objects, could only be the result of successive mental recursive operations. 

Platonism claims that mathematical objects do exist in an even more profound sense than physical 
objects. Notwithstanding, the only method for us to test the existence of an object is by means of its 
dynamic or infodynamic interactions with other objects. Non-spacetemporal objects (e.g. abstract 
objects) are inaccessible for this objective physical test of existence, and therefore no causal relation 
can be established with them, which inevitably remind us of Benacerraf’s epistemological argument 
against Platonism. To solve this inconvenience, Platonism makes another claim related to the actual 
existence of mathematical objects, namely that we can access them by means of a cognitive ability 
usually called intellectual (or mathematical) intuition. We will now examine this hypothetical ability 
from the perspective of neuroscience. 

To paraphrase Zeki [18], the organization and laws of the brain dictate all human activity, and 
therefore, there can be no real theory of mathematics unless it is neurobiologically based. The kind 
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of mathematical intuition that Platonism calls on to defend the contact between spacetime and non-
spacetime objects may seem incompatible with neuronal processing of information.  

We tend to think about vision, hearing, or any perceptual experience, as if our brain worked like a 
camera, capturing the external reality in a shot. But what the brain does is more complex and counter-
intuitive: it reacts to stimuli segregating and processing them in different parts of the brain in order 
to integrate the information, and to give rise to a unitary conscious experience. It does such a thing 
without us even noticing it.  

The brain, in brief, fabricates all perceptions. As a tireless artisan, it is constantly processing sensory 
outputs, categorizing them, and making generalizations and abstractions that allow us to represent 
reality. Plato believed that objects are derived from abstraction, but neuroscience has taught us that it 
is the other way round. This capacity of abstraction and concept formation is primitive, allowing us 
to attain knowledge by means of binding information and constructing the object of perception.  

The importance of this finding cannot be underestimated, because otherwise there would not be 
neurons enough to represent all that exists. In other words, if knowing consisted of looking things up 
in a sort of mental repertoire in which each single object had to be previously registered, the pages 
we needed for such a catalogue would be endless, whereas our physical memory and space is limited. 
We may discuss whether or not numbers are infinite but there is no doubt that the number of neurons 
each of us have is quite finite. Fortunately for us, the process of abstraction saves a lot of energy, 
neuronally speaking. 

For instance, when we look at an orange, our preconscious experience is not single but fragmented. 
The brain processes separately its colour, size, shape, and smell before giving rise to the conscious 
experience of "seeing an orange” in which all these features are perceived altogether (except if one 
suffers from a serious brain injury). This is how “an orange becomes all the oranges that exist in the 
world”, and this is how abstraction and generalization take place in the neurophysiological realm 
[19].   

Let us bring another example to illustrate why anatomic acquisition of knowledge is so efficient. 
Imagine a set of, say, fifty alphabetical symbols. With such a small number of symbols we could 
create many languages, in which we could write and tell a vast number of stories. Now, imagine that 
every time we wanted to tell a story we had to start from scratch creating different alphabets (different 
sets of letters), in each language. It would be very costly in terms of time and energy.  On the contrary, 
reusing and combining the same letters seems to be a wiser strategy.  

To skip the problem of having a limited memory, evolution selected brains that identify common 
features shared by same objects, without having to previously register all of them in order to identify 
a single one. As for intuition -an ability that mathematics care about-, it probably results from the 
intrinsic activity in the brain, i.e., the default mode network discovered by Raichle and his colleagues 
[20], which is believed to play a major role in brain function. We certainly know that intuition, 
whether mathematical, artistic or naturalistic, is part of the brain knowledge acquiring machinery. 
Therefore, it is subjected to the same organization and rules that are being revealed by an 
overwhelming amount of experimental studies.  
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