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Abstract 

We present, in this paper, an exceptional Lienard differential equation. In spite 

of the presence of strong and high order nonlinearity term, the proposed 

equation is explicitly integrable. The general solution is expressed in terms of 

trigonometric functions. Also the general solutions of related quadratic Lienard 

type equations are periodic and may exhibit harmonic oscillations. The 

presented equation includes many nonlinear equations like the cubic-quintic, and 

cubic Duffing equations, Mickens truly nonlinear equations and the Ermakov-

Pinney equation as special cases so that the explicit general solution of several 

nonlinear equations may be easily obtained for the first time. 

Keywords: Lienard equations, general periodic solutions, Ermakov-Pinney 

equation, Duffing equations, Mickens truly nonlinear equations.  

 

Introduction 

The Lienard equation 

  0)( =+ xfx&&                                                                                                    (1) 

where )(xf  is a nonlinear function of x , and the overdot designates a 

differentiation with respect to time, is one of the most investigated equation in 

mathematics and physics for specific expressions of )(xf . In physics, the 

equation of the form (1) may describe the dynamics of conservative systems. It 

is also known that nonlinear evolution equations may reduce to the form (1) 

under traveling wave transformations [1]. The special class of (1), that is 

  0)( =++ xgxax&&                                                                                              (2) 
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where )(xg  is a nonlinear function of x , has been and continues to be the object 

of an intensive study in the literature, since several equations like the celebrated 

Duffing oscillator equation [2], the famous Ermakov-Pinney oscillator equation 

[3] and the exceptional Mickens truly nonlinear oscillator of the form [4] 

 03
1

=−+ xxx&&                                                                                                  (3) 

belong to this class (2). These equations are very exceptional among the class of 

nonlinear differential equations as they have exact and explicit general solutions, 

when we know that this fact is not usual in the world of nonlinear differential 

equations. Another celebrated equation, but belonging to the class of quadratic 

Lienard type equations 

 0))(()( 2 =++ xvfxxhx &&&                                                                                         (4) 

is the Mathews-Lakshmanan equation highlighted in 1974 [5]. Later, Akande et 

al. [6] have shown the existence of several equations of the form (4) that may 

exhibit oscillations of the harmonic form as the Mathews-Lakshmanan 

oscillator. The problem now in this paper is to show the existence of a Lienard 

equation of the form (2), explicitly integrable with a general solution expressed 

in terms of trigonometric functions, including the Mickens truly nonlinear 

oscillator equation, the Duffing equations and the Ermakov-Pinney equation as 

special cases, and leading the related quadratic Lienard type equations to exhibit 

periodic solutions of the harmonic form, as implications. To do so, we state the 

general theory showing the existence of such an equation (section 2) and discuss 

its implications (section 3). A conclusion of the work is finally carried out. 

2  General theory 

2.1  Proposed equation 

Let us consider the Lienard differential equation stated in [4, 7] 

   ( ) 0
22

1 11 =+−+ −−−− qq x
qb

xaqx αα&&                                                                         (5) 

corresponding to the first-order differential equation 

     bxaxx q =+ α2
&                                                                                                  (6) 

Substituting 2+= qα , and 
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where a , b , α  and q  are arbitrary parameters. 

The equation (7) is the proposed  Lienard nonlinear differential equation. Now 

we may integrate (7) to give the general solution. 

2.2  General solution 

The use of (6) leads to the quadrature defined by  
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where K  is an arbitrary constant of integration, from which one may secure the 

exact and explicit general solution of (7) as 
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That being so, we may discuss of the implications of the equation (7). 

3 Discussion 

It is worth to notice that for 2> −q , all the solutions (9) are periodic and 

expressed in terms of elementary functions, that is to say, in terms of 

trigonometric function. Some specific examples may be now given to illustrate 

the capacity of the equation (7) to include some well-known equations of the 

literature. 

3.1 Illustrative examples 

Substituting  2=q , into (7) leads to the famous Ermakov-Pinney equation 
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which has been recently investigated in [7]. Its exact and explicit general 

solution obtained from (9) may read 
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which is in agreement with the result found in [7]. The choice 
3

4
−=q , reduces 

the equation (7) to the Mickens truly nonlinear oscillator equation 
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where the exact and explicit general solution is 
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Choosing 
3

2
−=q , leads to the Mickens oscillator of the form 
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where the general solution takes the expression 
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Consider now some Duffing type equations. For 4−=q , the celebrated cubic 

Duffing equation is obtained as 

  03 =++ xaxax&&                                                                                            (16) 

From the solution (9), we may obtain the exact and explicit general solution of 

the (16) in the form  
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which is a complex-valued solution. Usually the solution of the cubic Duffing 

equation is expressed as a Jacobi elliptic function. However, in an earlier paper 

[8] Monsia and coworkers have shown that when the coefficient of the cubic 

term is negative, a general non-periodic hyperbolic solution may be secured for 

the cubic Duffing equation. Here we find also a non-periodic solution in the case 

where the coefficient of the cubic term is positive. The application of 6−=q , 

allows one to obtain the quintic Duffing equation 
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known in the literature to have no exact and explicit general solution. Here we 

find, from (9), that its exact and explicit general solution may be written in the 

form 

 ( )[ ] 2
1

)(2sin)(
−

+±= Ktaitx                                                                             (19) 

The general solutions of the quadratic oscillator equation, the heptic Duffing 

equation and of several others equations may be easily obtained using the 

present theory. Now the related quadratic Lienard type equations may be 

investigated. 

3.2 Quadratic Lienard type equations 

To derive the quadratic Lienard type equations related to (7) we have to use the 

point transformation 

 pxu =                                                                                                          (20) 

where p  is an arbitrary parameter. In this situation, the first and second 

derivatives of x  in terms of u  may be expressed as 
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where 0≠p . From this, we may ensure the quadratic Lienard type equation 
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which has the general solution  
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An interesting case of (23) is obtained when 1
2

2
=

+q
p

, that is to say, when 

22 −= pq . In this case the equation (23) reduces to  
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where the exact and explicit general solutions are 

 ( )[ ]Ktap
p

tu +±= sin
2

2
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For p  positive, the solutions (26) are periodic and may exhibit harmonic 

oscillations. The angular frequency depends on the amplitude 
2

2 p
A = , which is 

a characteristic of nonlinear oscillator equations. 

Conclusion 

A Lienard differential equation with strong and high order nonlinearity term is 

presented in this work. The proposed equation is exactly and explicitly 

integrable. The general solution is a power law of trigonometric functions. As 

implications, the general solution of several nonlinear differential equations may 

be easily obtained for the first time, and the related quadratic Lienard type 

equations are found to exhibit periodic solutions of the harmonic form. 
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