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A. Abstracl

F. WILCZtrK lias ptrbiished an article on the concept of time-crystals (picasc lotik into [1] ). This article is to be
understood as an attempt to drawn a picture mathematically, which approaches the contents of WILCZEK's
article.
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7. fnffoduction.

The concept of a crystai is mainly connected with two mayol'properties:

o Symmetry and

o Spontaneous break of symmetry.

With regard to symrnetry a certain class of transformations is essential:

r Transpositions are highlighted by individual increments of steps.

An idealizecl crystal linearly transposed by a multiple of ttre distance between its elernents will preserve its layout
beyond the transposition; but under this conclition only. According to transpositions crystals are characterized as
afflicted with reduced degrees of symmett'y (in comparison witlt the symmetry of a continuum). The situation is
similar to rotation-symmetry of square and cycle. In this respect the crystal's symmetrv also is called broken in
relation to that of continua. Because the degree of crystal-symrnetry normally changes abnrptly due to critical
external influences (like temperature e.g.), ttre break is also called spontaneous.

o Spontaneous symmetry-breaks are decisive for crystals.

A symmetrv-break occllrs e.g. when a fluid or gas cools down and finally cntcrs the crystal-state by a so-called
phase-tt'ansition. Within this process the crystal will obtain a lower degree of syrnmetry as ailowed by pirysical
laws before this situation.

Crystals can be divided into two classes:

r Spatial crystals keep their symmetric properties in spatial transpositions and preserve them independently on
elapsed time as long as this is compatible with the physical conditions.

o Time-crysttrls show their essential symrnetric properties in space-time transpositions only.

In spatial crystals a spontaneous symmetry-break will occur, if from an energy point of vieu, the new
crystallization becomes more preferable. During a phase-transition energy will not be preserved. If ttte state of a
lower energy-level breaks the symmetry of a crystal and a new crystallization has been settled, energy is again
maintained and the captured state will exist as long as thc actual situation does allow. This explains stability of a
spalial crystal after a phase-transition. But this is still no longer valid for time-crystals. Here energv is
preserved even in spontaneous symrnetry-breaks ancl therefore an energy related measllre to explain this kind of
breaks is no longer suitable.
But there exists a more general conception appropriate to deal with spontaneous symmetry-broaks, which is also
applicable fbr time-crystals.

o The reason why extended networks (connections of many parts) most often are tempted to resist a
reorganisation and tries to keep its actual stability, based on the fact that most disordering influences act
locally and long-range forces will them overrule.

o But materitrl-states will not last forever, thus finally (sooner or later) a symmetry-break will occur and a new
order rvill be established.

A network of parts may be identified as a time-crystal, if the following characteristics become apparent:

1^1. The network's symmetry will only be realizecl in space-time, rcgularities considered in space alonc may
change fluently by observations at different moments in time.

t^2. Most properties of the network are directly boundcd to its regularities.

This is mainly extracted fi'om the article of F. WILCZtrK published in [1]. The following is to be understood as
arr attempt to approach the conceptual characteristics (1^1./2.) of time-crystals by a pictrrre mathematically
drawn.
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2. A Fasion of SIERPINSKI-Gushef and PASCAL-Trianele.

The following conception mainly based on a fusion of an IFS-developed SIERPINSKI-gasket and patterns
according to divisibility of numbers in a PASCAL-triangle relative to primes. Both basic objects (gasket and
triangle-patterns) will be merged to form a geometrical model, which is to be understood as a mathematical
picture comparable with WILCZEK conception.

2. 1. SIERPINSKI-Gnshe1.

Unit-square (Q) in a (u,v)-plane maybe specifiecl by:

2.L^L Q={(u.v)l [0<u<1] 
^ 

[0<"<1]].

If contractions:

2.L^2. wa"b": ((([u+a.]/z) n (fv+b"l/2) n (a.,b. € [0,1]) n (e € [0,1])»

are iteratively applicci on (Q), orre will obtain the following congruent sub-squares of (Q):

' (([Qo"5" = w.,,t,n(Q)] =+ [Q:,.,,bnLJQo,,1r,,])

' (([Q.,*nir,5n=w.,b,(Q.n5n)J + [Q.,,1r,, =a,b,LJQ.,anb,b,,1 + [Q :.nbnU(.,b,UQ",onb,b,,)])

This will leacl to tire following pictures:

re2.7^L.b.

If (u) and (v) from Equation (2.1^1.) are expressed in binary extension by:

2.1^3. qr: .-r,xÜ=-);a,z-j1; A (v = i;-,yt(j=-)1bj2-jl) A (a,,b, e {0,1})

and Equation (2.1^2.) becomes restricted in the fbllowing way:

. wo"r,"=(([u+a,]/2) n(lv+b.ll2)n (a.,b. € {0,1}) A (e € {0,1}) n (a"+b. < 1),

all sub-squares from set {Quroobruo} in Figures (2.1^1.1a/b]) are exciuded, where tlie addition of (a") and (b.)
cause at least one carry (KUMMtrR's carry condition). One will get instead of Figures (2.1^1.[a/b]):
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Tirese are the first (2) steps of arr Iterated Function System (IFS) appropriate to create finallv a 2-adic stmcture
of SItrRPINSKI-gasket. Subsequently the patterns will be considered from more general point of i,iew.

With unit-square (Q) i" (u,v)-plane in Equation (2.1^1.) and a binary expansion in Equation (2.1^3.) one carl
provide a number-theoretical description of the SIERPINSKI-gasket (S):

. 5={(u,v) C Ql : expansions([u= (O.asar...)o-riA [v:(0.b6b1...)n=r]) *- ([a"+b. < 1] *- [e e {0,1,2....}])}.

This can be expressecl in IFS-form:

2.1^4. S={"U*..r,.(S)l *([au,b" €{0,1}] n [a"+b"( 1<-€ € {0,1}]}.

The binary representation allows one to pursue, how the iteration of Equation (2.1^4.), applied to an arbitrary
point in the square (Q), vields a sequence of points ttrat tends closer and closer to the SIERPINSKI-gasket. If the
maps (w66), (w0r) and (wrs) within IFS are applied again and again on ((u.v) : 0.arar...,brbr...) with arbitrary
(a"--) and (b.--), points are obtained with coordinates, whose leading binary decimals will rnore and more
satisfy the condition (a.tb. < 1). Starting from (Ao = Q) and running the IFS, one will generate the sequence:

. A, = w6s(Ar-r)Uwor(Ar-r)Uwro(Ar-r),

where the coorclinates (z) of a point (Ar) satisfics (ar*b, S 1) in the leading (z) binarv decimals. Furthcrmore
tlie sequeuce will tend towards tlie SIERPINSKI-gasket (S = A-). The first steps are shown in the next figure:
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Figure 2.1^3.a. Fisure 2.L^3.b. Figure 2.1^3.c.

Orre will observe, that tiris exactly matches with Figures (2.7^2.la.lb.]) with a step-3 Figure (2.1^2.c.) in
addition:
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Figure 2.1^2.c.

if the coordinates used in Figures (2.1^2.1a./b./c.l) are preceded by a decimal point. In this case the patterns
found on the (2by 2)-, @by !- and (8 by 8)-grid would exactly match the steps (Ar) of the IFS. But
introducing a decimal point in Figures (2.L^2.1a. /b./c.]) means looking on a rescaled version of the PASCAL-
triangle.
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2. 2. PASC,4L-Triunsle.

The PASCAL-triangle is an arithmetic triangle, an triangular array of numbers composed of the coefficients

obtained by expansion of the polynomial (L+z)x:

o (t+z)o = 1

(l+z)1 = 1*z
(l+z)2 = 1+22+zz

(L+z)3 = 1+32+322+23

The Figure (2.2^1.a.) contains the coefficients for the (8) expansion-steps organized in the following triangular-
scheme:
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Fisure 2.2^L.a. Figure 2.2^L.b.

The computation of the numbers in Figrue (2.2^L.a) used the fact, that the entries in each row are determined by
the entries of the previous row as demonstrated by Figure (2.2^1.b.).

o (7+z)" = ao+a1z+.. .-la-nz'

(7+z)"*1 = bo*brz*.. .-lbn*tz'*7 = (t+z)"(l+z) = ao*afi*...* a,.z'+a1,2 +a122+...+arz'*7

= ao*(aofa )z+...+(a, r+'4)2" +anzx+ 
t +

[bo: ao] A [b1= (ao+a1)] A ... A [b, = (au+a1)] n [b,*, = a,].

The major question is now, how one can find out whether or not the coefTicients are divisible by a prime (p) in a
direct non-r'ecursive computation. A solution lbr the problem was found by tr. tr. KUMMER. in 1852. In order to
follow KUMMER's idea, it will be more convenient to transpose the PASCAl-triangle into a new coordinate-
system (n,k):

;0123456

2.2^2.

In the new coordinate-system at position (n,k) is now located a binomial coefficient with a value of:

o (n+k)^k = (n+k)!/(n!.k!).
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In Figure (2.2^2.) entries of the triangle are coloured white or black depending on the fact whether or not the
appropriate binomial coefficients are divisible by (2). In orcler to find a pattern-formation for a divisibility of ttre
binomial coefficients with regard to any other prime, it is useful to start with the prime-factorization for an
arbitrary integer (r):

2,2^1. r : 1u_rlfl("=.)[pu'.].

Het'ein primes (p") are different from each other and exponents (r,) are naturai numbers. Srrbsequently one will
take into consideration a set the following form:

. P(r) = i(n,k)l(n+k)^k is not divisible by r).

In order to understand the patterrr-formation according to a certain (r), it is sufficient to consider a sub-set of
tho appropriate prime-power from Equation (2.2^1.):

2.2^2. P(p') = t(n.k)l (n+k)^k is not divisihle hy p'].

KUMMtrR realized that the soiution for thc set is encoded in the addition of (n) and (k) in their p-adic
representatiorr. A p-adic representation of an integer (q) looks like:

a e: ag*a1p-l-arp2+...+a,r,pn' + g = (ärrän -t... arao)p .

KUMMER observed now that the nrrmbers of carries c,,(n,k) in the just mentioned addition of (n) and (k) is
decisive for a solution of Equation (2.2^2.). He formulated the followirrg statement:

. If r = cp(n,k) = number of carries in p-adic addition of (n) and (k),

tlten one will obtain:

. P(p') = {(n,k)p A (r = c,,(n,k))l(n+k)^k is divisible by prirne-power p'but not by p'*t}.

2. 3. D ivisib ilitt o f B ireomial-C o etficients bv Primes.

The global pattern-formation in:

o P(p) : {(n,k)l(n+k)^k is not divisible by p}

shall subsequently be formally described.
At first an appropriate IFS is to be constructed by considering the unit-square (Q) and subdividing it into (p2)

congruent sub-squares:

. Q.,6 with a,b € {0,1,2,...,p-1},

which are obtained by introducing corresponding contractions:

. (Qur : w.u(Q)) *- (w..5(u,v) = (fu+al/n n [v+b]/p) ).

This is to be considered as a generalization of what had already been specified for the case (p : 2) in Figures
(2.7^1.1a/b.l). A set of admissible transformations will Lre defined next by imposing the restriction:

. afb < p-1.

This yields a total number of (N : p(p+1) contractions, each with a contraction-factor (p-1).
Additionally may be introduced:

. wp(A) : (a+t<p-r;LJ*"r,(A)

corresponding to the (N) contractions, where (A) is any sub-set of the plane. With the initial set (Ao = Q) one
may start the iteration:
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. (A, = Wo(Ar-r)) +- (N=1,2,...)

and Figure (2.3^L.) shows the first (2) steps for the choice (p - e),

In order to keep track of the iteration, each of the (p2) sub-squares of (Q) is subdividecl into (p2) even smaller
ones, and so on repcatedly. Having indexed the first subdivision of (Q) by (Q"r,), one continues to label tlie srrb-
squares of ttre second subdivision by (Qor.,.i) and so on. For the example of (p:3) from Figure (2.3^1.), the square

Qro.r, is identified in the following way:

o The pair (1,1), made from the leading digits in the index of Orrr.r, determine the centre -square in the first
srtbdivision and the pair (0,2) clctermines the upper left corner-square therein.

In a similar way the square (Qo,,-r...u0,1,,,_r...bo) is to be understood as a square of the z-th generation, where the
double p-adic addresses are given by the pair (ar.-r...a6,b--r...bo). This natural addrcssing-svstem helps to keep
track of all iterations of W,, , e.g.:

o (Qn,,.-,...ap,b.,.-1...b6 : wa,-,...au,b,-,...b"(Q)) <- (a"*b. < p-1)'

In other words can be said, (Ar) is the collection of all those sqrrares of the z-the subdivision of (Q) into (p2')
strb-squares, whose addresses (ar-1...as,br-r...bo) satisfy the condition (a.+b" < p-1), i.e.:

2.3^L. Ar : (a.+b.< p,r)uQä,.-1...2r.6,1r.,.-1...bn.

2.4.

Now the sub-squaret (Q*,,_r....0,b*_....b0) will be related to the entries of thc PASCAL-triangle. In order to enable
this, one has to generate first a geometric model of divisibilitv-pattern in the PASCAl-triangle. For this reason
the first quadrant of the plane is equipped with a square-lattlce in such a way, that each square of the lattice has
side-length (1). Thus each square is indexecl by the index-pair (n,k) ancl is called (R".u),

o R..k= {(,,,r)l[n< u < n+1] A [k <v< k+1]].

The gcornetrical model of [P(p)] will be obtained by selecting all squares (R,.p) fcir which (p) cloes not divide
[(n+k)^k]:

. P(p) ={R..rl(n+k)^k is not divisible p}.

This infinite pattern will be related to the evohrtions of Sections (2.1,.12.1:3.). i.e. to the sequence of the patterns
(Ar), each with a length of (p-') and whose union will finally result in (Q). In order to recognize the relation
betrveen (A, ) anct [P(p)], tire latter will be considered though a sequence of filters ( [0, p"]x [0, p"]) of length (p").
For (e = 7,2,...) that part from the geometrical model [P(p)] is picked-up whic]r falls in t]re corresponding filter:
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. P'(p) : P(p)O([0, p"]x[0, p"]).

The next F'igure (2.4^7.) display the filters (Pr(p = 3) A P2(p = 3)):
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Fieure (2.4^1.

If one compares [P1(p)j and [P2(p)] from Figure (2.1^t.) with the patterns (A1) and (A2) from Figure (2.3^1.) one

will find them to be identical, although (A1) and (A2) are in the unit-sqlrare (Q) while [Pr(p) ]fit into a square of
side-length (p) and [Pz(p) ] into a squal'e of sicle-lengtt, (p'). In other words, druing rescaling the pattern [P.(p)]
by a fhctor (p-") one will obtain an obiect (S"), which is iclentical with (A.):

. A" = S. = p-'.P.(p).

From IFS in Section (2.3.) it is known, that (A") is the collection of all those squares from e -th subdivision of (Q)
into (p2") sub-squares,l,l.hose adclresses (a"-1...as,b"-r...bo) satisfy the conclition (a"+b" < p-1).This collcction
for (e -m) will converge to the attractor of the IFS and in tire rescaled geometric models (S") under the same
conclition (e---+m) will do ttre same. Therefore it became obvious, that the rescalecl geometric models have tr lirnit-
set, which represents ttre rescaled geometric model of PASCAL-triangle-pattern modulo (p), called P(p).

2.5. Pattern-Formations and fractal Dimensions of the srometric Models P(pt.

In Figure (2.5^L.) the geometric models S(p) are shown, which result from running the IFS corresponding to
P(p e {2,3,5}):

The geometrical model S(p) in Figure (2.5^7.) are self-similar fractals with self-similarity-dimensions of:

Figure (2.5^L.
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Self-Similarity Dimension
s(2) loe{3}/loe{2} = 1.585
s(3) loe{6}/los{3} = 1.631
s(5) los{15}/loe{5} = 1.683.

The black-pixel-patterns of S(p) are built according to the conditions:

Black Pixels accordins to:
s(2) {(n,k)l (n+k)^k is not divisible bv 2}
s(3) {(n,k)l (n+k)^k is not divisible bv 3}
s(5) {(n,k)l (n+k)^k is not divisible bv 5}
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3. Conclusion.

All patterns of the geometric model are in line with (1^1.). This becomes obvious in case of a specific example (can
be modified by certain detaiis in order to confirm the previous statement in general):

' Considering the symmetry alnong binomial coelTicicnts [(n+k)^k] of (k620+ krzl+...+k. ,2"-r+k,,2")
(from locations (n,k) in square-lattice (n,k)) uncler condition P(p) = {(n.k)l(n+k)^k is not divisible by
prime - p], one will notice, that the pixel-regularity realized in pattern of step (n : j), most ciften difTers in
some confusing way from regularities of other steps (n I j). The reason for this is, the situation resembles
giances into space only. Onlv if all these single patterns - for (n € N) - are put togcther into one common, all
steps inclucling pattern (similar to a look into space-time), the svmmetry mentioned above will become
obvious.

The following can be said about the geometric model in relation with (1^2.):

o The symmetries of the patterns are completely determined by the divisibility [(n+k)^t<] at locations (n,k) in
square-lattice (n,k) relative to a primc p.

o A symmetry-break occurs only if tlie divisibility-condition changes. Thus stability of a pattern as its fractal
dimension as well is only guaranteed by a certain divisibilitv-condition.

Looking all over the contents of chapter ( 1. ) one will notice fruther characteristics of the geometric model:

o Local similarities exist, in Figure (2,5^1.) e.g. between mod(3 ) ancl mod(5). but thev are not capable tcr

neither determine nor destroy the overall-symmetries of the patterns. They are overruled bv the large-scale
relations in form of overall divisibilitv-conditions. The latter are decisive and responsible alone for the
stabilities of the patterns. The divisibilitv expressed in a pattern is too resistant for being disturbed by weaker
local regularities.

o No prefererrce exists among patterns of the geometric model. The patterns are not srrbjected to any further
kincl of overriding principles (like liighest/lowest energv-level. highest/lowest order-level....).

These characteristics of the geometric model may let it becorne snitable as an appropriate mathematical picture
corresponding to the contents of chapter ( 1. ).
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