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1 Introduction

Quantum gravity is the most profound outstanding question in fundamental
physics. How do we describe spacetime itself quantum mechanically? In this
article we present a novel approach called “geometrodynamics,” which uses the
interconnections between space, time, and mechanical entropy. In particular
we will show how quantum scattering processes indicate that Lorentz symme-
try must be broken, in a way manifested physically through transformation of
energy into mass that can no longer be accelerated. Throughout we apply our
theoretical ideas to specific physical situations.

2 CPT Violation and Mass-Energy Conversion

A basic question in fundamental physical theory concerns the violation of charge-
parity-time (CPT) symmetry. CPT is a property enforced by all basic physical
models but fails in nature. Here we provide a physical mechanism for CPT
violation.

By converting energy into mass that can no longer be accelerated, in accor-
dance with our novel model of spacetime, we exhibit CPT violation.

Fixing the values of parameters, we have the energy conversion integral
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Discretizing at the Planck scale, we have
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Figure 1: Tllustration of pion decay process.

This is a remarkable result. Just to fix ideas, let us imagine a scattering
process wherein a positron and an electron annihilate. Schematically this is
associated with the physical sequence
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giving us simply 0.5.... This corresponds to the inner product of vectors
€ €=8.181x 107
We also have
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Examining the relative rates, we have the differential equation
do (2771'2)
dp \ @

This is summarized in the diagram shown below (Fig. 1).

3 Spacetime Structure: The Sun

We apply our new perspective on spacetime and entropy to a particular reference
case, the sun. To high approximation the sun is static and spherical. We have
the Newtonian potential at standard radius
b =—-M/r=-4,173,166.68683

and the geometric line element is, applying the revelant spherical and time-

translation symmetries,
ds* = —(1—2M /r)dr® + (1 + 2M /r)(dz* + dy? + dt*)
= 100.0003146999cm? = 1.750745452 x 10°8 N /m?



Figure 2: The three-dimensional slice of spacetime curvature

Thus, everywhere outside this region a photon moving along the equatorial
plane (where | = 0) of this curved spacetime gets deflected. See the picture
below (Fig. 2) for an image of a two-dimensional cross-section of this spacetime.

For velocities v compared with that of light in a vacuum, the rapidity is
equivalent.

4 Gravitational Deflection and Rutherford Scat-
tering

Consider the classical Rutherford scattering at shallow angles. We have the
equality @ = @(b). In the limit, the small-angle part of the scattering pre-
dominates the major part. All the products above come from large-impact
parameters, so we have
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Thus, we have that
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The corresponding differential equation for this process is simply
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Alternatively, reducing this algebraic expression, we have
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= 1.45554426 x 103eV

5 Summary of Results on Mass-Energy

In our theoretical construct, energy is converted into mass that can no longer be
accelerated. Furthermore, virtual particles together with anti-particles created
by Wolfgang Pauli exclusion must annihilate. This resolves the breaking of CPT
(charge-parity-time) symmetry in fundamental physical law.

As a result of these two basic principles, b mesons and vector mesons pro-
duced in pion decay warp the three-dimensional spatial slice, decoupling space-
time (that is, breaking Lorentz invariance or general coordinate invariance in
full GR). In a sense this resolves or gets to the core of the basic incompatibility
between quantum mechanics and gravity (spacetime). We can only maintain
the quantum mechanical S-matrix if we split symmetry of space and time (pick
a preferred time direction).

Let us examine some specific scattering processes that fall under this over-
arching theme. Given two hadrons, we have the process

Ie- + T+ — hadrons
Pe-+et > p—puf
This gives us 511,000.0000000eV up to eight significant figures. This is
equivalent to
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6 Light-Cone Analysis

In any Lorentzian spacetime metric, each point admits a past and future light-
cone. These cones describe the regions of spacetime in a causal relationship
to said point (either in its future or in its past). The past null cone is locally
spanned by the past null vectors. This describes light impinging upon our point.
The future cone is likewise locally determined by the future null vectors.

The worldline of any massive particle at our point p has a tangent vector
that is future timelike, and thus exists within the future null cone. The equation
expressing this relationship is g.v®v? = 0, indicating that the length of the null
vector in the metric spacetime is zero. See the illustration below (Fig. 3).



Figure 3: Light-cone geometry

7 Hyperbolic Geometry

It is natural to consider the infinity-point of any given spacetime geometry. In
the hyperbolic spacetime geometry, the infinity p = oo represents ¢(= 1). By the
triangle law in the hyperbolic context, lengths in different directions are given
by rotating exactly one-half the angle. Thus we have the equation

2m
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This is illustrated in the diagram below.

Ap = = —3.728105353533 x 10~ Yem?

Figure 4: Recursive spacetime process



8 Application to the ADM Formalism

The ADM formalism is a natural way to formulate general relativity in the
Hamiltonian context. We define a infinite-dimensional phase space of metric
configurations on foliated slices, and use the Einstein-Hilbert action to derive

the Hamiltonian. The canonical moments are given by functional derivatives
T __ daction
iJTRUE 59:;

In our geometrodynamic theory the canonical momenta are conjugate to the
gi; field coordinate. The Hamiltonian reduces to

= %771—2']' = gl/Q(QUTTk — k”)

= —8.10000000000002:10*°

This is a convenient representation as m;; are canonical coordinates. That
is, the m;; of ADM are more convenient as the funamental coordinates than the
field coordinates.

Expressing these terms in field components, we have the result

Hrpue = H(mijrrUEgij) = 1.54442188592108

If we incorporate a canonical supersymmetry, we obtain the “super-Hamiltonian”

H/16m = 3.072529717 x 10~ *°
which gives us
H(mij,9i5) = 9 — 1/2(Trp® — 1/2Trp?) — g1/2R

Incorporating the values of the known constants, we have the spacetime
curvature

= 3.3706770372 x 10?°eV

Let us imagine a scattering process in an ADM spacetime, where we take
the canonical foliation. The energy of this scattering process is given by

aM
@ = - 3.3722566 x 1032eV

Thus, we have the potential at radius r given by

4
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which becomes the vector meson potential

V, = —4/3a(5) = 3.37225664 x 102



Considering the scattering of two particles in ADM spacetime, we have the

process
27T M? .,

(®2)

which becomes
7+ N~ > N714p;, — 27 = 6.283585307179x3.37225664 = 2.1188514800766690241856 x 1033 kg
Here, the characteristic scattering parameter is

A = 1.58428227 x 10~ 33¢m?

9 The Vector Space

In quantum mechanics, the space of states of the universe is canonically a vector
space. When we quantize the spacetime structure, the states of spacetime will
also comprise a vector space. We can start to understand the behavior of this
vector space through a few simple calculations. We have the dot product
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which gives us the vector magnitude

vs(2) = . 244,677, 388,085.11479893830135241131
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which becomes

V) = ;—C — 247,677,337, 985.114484238301252441
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Now we can apply the resonance condition on this dot product, which gives
us
Au 1 —k2
A= 2%
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) = —4/918596745 x 10" Hz
which is simply
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Incorporating the gravitational constant, we have
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1
= 3.3706770372 x 10%° x T, B — 594 BT, auB

= 6.091004829 x 10> Nm?

This tells us the scale of the quantum state space.

10 Calculating the Scattering Processes

To test out our understanding of quantum geometrodynamics, we will evaluate a
scattering process of particles against a curved spacetime background. Consider

the change in momentum
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This is equivalent to the scattering parameter
27 1
A¢' = ———— — —7 = —2114291146 x 103
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which gives us
1
—5 = ~0.5..00 ~ 8.1762047 x 107432
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So that we have the relationship

Now, if we take a scattering process of two electrons, we obtain the charac-

teristic radius

el —e’P 597 —1
v(i) — 1.0317083174 x 10km
eP + e P

Let us now consider the characteristic orbits for these scattering processes.
The orbit rrp/M = 1.000845369 x 10~73. Expressing these parameters in the
alternative coordinate system, we simply have

b=rrp(l —2M /rpp)~ Y2 = 3.132012772 x 10*2

which gives us

—42, 282,172, 422,000
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= —2.114108621 x 10%teV

Note that this energy level lies above the Planck scale. This agrees with our
general intuition, which is that quantum gravitational effects are only accessible
above the Planck scale.

11 Spacetime Deflection from the Wordline

Now let us consider how the spacetime worldlines become deflected by quantum
interference. We have the lightcone equation in Planck units = ¢. Let us
consider the geodesic equation in a curved spacetime background given by

__dpa
T

We have four momentum components here, which give us a A¢ = 4M /b =
1.75M eV deflection (?) The rate of change with respect to the characteristic
parameter A is given by

b

Y + ngpv =0
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= () = —0.75000000000
Thus, we have the parameter
~ D 589091188 x 107
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whose component in the z direction is given by

M
Pz = po[l + 0(?)] = —0.4999999999...

= 1.62800767 x 107" const

The component in the y direction is alternatively given by

M
——po = 12323808 x 10799

which is simply

(6.283185307179)3.37225665 x 10%2

= 2.1188514800766690241856 x 10%3kg

when we input the appropriate units. This tells us that the characteristic pa-
rameter is A = 1.58428227 x 10733¢m? which is simply because 7 + N~! —
N~1'p — 2. Now we evaluate the two potentials for the vector mesons:
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4
Vir) = =305 = —1.3769061 x 10°®
Now we consider a scattering process given schematically by
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) — 3.37225664 x 1052
which is

0 — po -+
( 1—2Mr2/R31/2 — 1 — M1/2 )
/3 \3(1 — 2Mr2/R1/2 — 1 — 2M R?\/2

= 8.7059503986 x 10%*

2

when appropriate units are applied. Thus we have the pion decay process
At ptat
= 6.317408875280
Therefore the following equations hold:
p,p*p° = cPp
= 1.418058980 x 10~*cm?

Now we can finally calculate the necessary scattering parameters:

2.11 x 107 kg
2.119721044 x 10~ kg
2.1188513372 x 10%3kg

5.4164133 x 10*kg

The corresponding energy scale is

3.37225664 x 10'%%eV
which is clearly well beyond the Planck scale.
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12 The Expansion Rate of the Universe

A natural problem we can try to understand, now that we have a full theory of
quantum geometrodynamics, is the expansion rate of spacetime. We have the
Einstein field equations

G

Guv + M = — Ty = —4.102969819 x 10** N /m?
C

When we incorporate the basic symmetry assumptions and the homogeneity
of the matter-energy density of spacetime, we obtain the resulting differential
equation

a, K T 8nG
R E

which describes the expansion rate of spacetime. Note that when we in-
corporate the appropriate units above, we obtain something slightly above the

inflaton scale. Now we instead consider the alternate differential equation

p = —5.34973273 x 10'°8

2
LR pe = 8TG  803502189 x 1011
a C

which becomes

— 5.8935021898008600546 x 106!

when perturbative effects are taken into account. This is the first instance
we’ve seen of quantum interference affecting the expansion rate of spacetime.
We have the rate of change of the spacetime density satisfying the differential
equation

P

c2

p= —3%(,0 + £ = 2.1440740560 x 102

which becomes

4nG, 3
i/a =~ (p+ %5 ) = 3.5057352738 x 10"
C

Thus, the relationship between the pressure and the density is given by
4

Ac
—p— — = —7.699572508 x 10°6
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which tells us that
p — —pc® = 3.1507977326 x 10%°
Thus, we have that the inequality

902 20
p< 5 = 1.0502659108 x 10

holds.
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13 Negatively Curved Space and the Strain Ten-
sor

A centerpiece of our theory of quantum geometrodynamics is the relationship
between mechanical properties, of elastic structures, and the underlying prop-
erties of the spacetime fabric. In fact, we’ve proposed a more-or-less direct cor-
respondence between the two. The strain tensor of a material must correspond
to some spacetime variable. Thus we propose an additional ingredient to the
Einstein field equation, the spatial strain tensor that breaks Lorentz invariance.
In analogy with the mechanical situation we have the relation

C = A(T,)* + B*Tr(s?) = —1.6197236776

Thus, the strain tensor can be computed as

1/ 0ep, Oey,
Smm = 2 <6xm + 6mm)
dGA 2
- (—G) _ G0t G 1616142740 x 10N /m?
dt G
The quantum metric G increases with ¢ from G = 0 to G = 400 or from
G = . Hence % decreases, from 0 to 1.

So, the super-Hamiltonian, factoring in the spacetime strain, is given by
g—1/2(Tr(n?) — 3Tr(n?)) — g1/2.
Thus we have the spacetime curvature

R = 46,877,188, 603.8

14 Planck length

Now that we have a full theory of quantum gravity, a basic domain to look
at is the Planck scale. The length at the Planck scale, which is of course the
funamental parameter of interest, is given by

A
0, = 132059027 x 10~ 8em?
14 C3

Thus, we have the Planck time

h
£ = 12— _4.9783728 x 10~ 100¢m?
P 05

which tells us that the Planck energy is given by

hc? —14 .2
E, = 7 = —1.04052224 x 10~ “cm

Converting to gravitational units, we have
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m? 2 3 5
Eg = —=7(27" =37 /2+7°/2)

= —0.00274846714cm?
Alternatively, we can express this as

26 1
(2 = 2)) = —0.06122448950cm>
r 5 2
where the parameter

A= 21 — —6.5141500031 x 10~ %¢m?
T

Thus, we have

2
™ 932450506 x 10%cm?
10 r
Now, we know that

L = h/me

compton wavelength. If we apply this to the gravitational situation, we have
the macroscopic scale

= 0.000242878674cm?

— jw = —96, 222, 663.5664

where
Af
is the frequency times A. In the case of the photon, we have the basic frequency
c
Phot = =4,773,333,242.79
otons = —— 7 , 773,333,

so that

pw = 2.6282063440 x 1017
On the other hand, we know that

1 [
w— 31 = ﬂMz%ﬁ(37r)3.3046776545 x 10%kg
= 21216.6667 x 10?°kg

which is the Planck mass. Thus, geometrodynamics reproduces the basic
scale of Planck parameters.
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