
Recycling Gibbs Sampling

Luca Martino⋆, Vı́ctor Elvira†, Gustau Camps-Valls⋆

⋆ Image Processing Laboratory, Universitat de València (Spain).
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Abstract—Gibbs sampling is a well-known Markov chain
Monte Carlo (MCMC) algorithm, extensively used in signal
processing, machine learning and statistics. The key point for the
successful application of the Gibbs sampler is the ability to draw
samples from the full-conditional probability density functions
efficiently. In the general case this is not possible, so in order to
speed up the convergence of the chain, it is required to generate
auxiliary samples. However, such intermediate information is
finally disregarded. In this work, we show that these auxiliary
samples can be recycled within the Gibbs estimators, improving
their efficiency with no extra cost. Theoretical and exhaustive
numerical comparisons show the validity of the approach.
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I. INTRODUCTION

Many applications in statistical signal processing, machine

learning and statistics, demand fast and accurate procedures

for drawing samples from probability distributions that exhibit

arbitrary, non-standard forms [1]–[6]. One of the most popular

approaches are the Markov chain Monte Carlo (MCMC)

algorithms [1], [7]. MCMC techniques generate a Markov

chain (i.e., a sequence of correlated samples) with a pre-

established target probability density function (pdf) as invari-

ant density [8].

The Gibbs sampling technique is a well-known MCMC

algorithm, extensively used in the literature in order to gener-

ate samples from multivariate target densities, drawing each

component of the samples from the full-conditional densi-

ties [9]–[14]. In order to draw samples from a multivariate

target distribution, the key point for the successful application

of the standard Gibbs sampler is the ability to draw efficiently

from the univariate conditional pdfs [7], [8]. The best scenario

for Gibbs sampling occurs when specific direct samplers are

available for each full-conditional, e.g. inversion method or,

more generally, some transformation of a random variable [?],

[7], [15], [16]. Otherwise, other Monte Carlo techniques,

such as rejection sampling (RS) and different flavors of

the Metropolis-Hastings (MH) algorithms, are typically used

within the Gibbs sampler to draw from the complicated full-

conditionals. The performance of the resulting Gibbs sampler

depends on the employed internal technique, as pointed out

for instance in [17]–[20].

In this context, some authors have suggested using more

steps of the MH method within the Gibbs sampler [21]–

[23]. Moreover, other different algorithms have been proposed

as alternatives to the MH technique [10], [17], [24], [25].

For instance, several automatic and self-tuning samplers have

been designed to be used primarily within-Gibbs: the adap-

tive rejection sampling (ARS) [26], [27], the griddy Gibbs

sampler [28], the FUSS sampler [20], the Adaptive Rejection

Metropolis Sampling (ARMS) method [14], [18], [29], [30],

and the Independent Doubly Adaptive Rejection Metropolis

Sampling (IA2RMS) technique [19], [31], just to name a few.

Most of the previous solutions require performing several

MCMC steps for each full-conditional in order to improve

the performance, although only one of them is considered

to produce the resulting Markov chain because the rest of

samples play the mere role of auxiliary variables. Strikingly,

they require an increase in the computational cost that is not

completely paid off: several samples are drawn from the full-

conditionals, but only a subset of these generated samples is

employed in the final estimators. In this work, we show that the

rest of generated samples can be directly incorporated within

the corresponding Gibbs estimator. We call this approach the

Recycling Gibbs (RG) sampler since all the samples drawn

from each full-conditional can be used also to provide a better

estimation, instead of discarding them.

The consistency of the proposed RG estimators is guar-

anteed, as will be noted after considering the connection

between the Gibbs scheme and the chain rule for sampling

purposes [7], [15]. RG fits particularly well combined with

adaptive MCMC schemes where different internal steps are

performed also for adapting the proposal density, see e.g. [14],

[18], [19], [30]. The novel RG scheme allows us to obtain

better performance without adding any extra computational

cost as shown by numerical simulations. We test RG for

learning the hyperparameters of a Gaussian Process with

automatic relevance determination (ARD) kernel [32].

II. PROBLEM STATEMENT AND BACKGROUND

In many applications, the goal is to infer a variable of

interest, x = [x1, . . . , xD] ∈ R
D, given a set of observations

or measurements, y ∈ R
P . In Bayesian inference, we obtain

the posterior pdf

π̄(x) = p(x|y) =
ℓ(y|x)g(x)

Z(y)
, (1)

where ℓ(y|x) is the likelihood function, g(x) is the prior pdf

and Z(y) is the marginal likelihood (a.k.a., Bayesian evi-

dence). In general, Z(y) is unknown and difficult to estimate

then we assume that we are able to evaluate the unnormalized

target function,

π(x) = ℓ(y|x)g(x). (2)



The analytical study of the posterior density π̄(x) ∝ π(x)
is often unfeasible and integrals involving π̄(x) are typically

intractable. For instance, one might be interested in computing

I =

∫

RD

f(x)π̄(x)dx, (3)

where f(x) is an integrable function with respect to π̄. In order

to compute the intractable integral I , numerical approxima-

tions are typically required. Our goal here is to approximate

this integral by using a Monte Carlo (MC) quadrature [7], [8].

Namely, considering T independent samples from the posterior

target pdf, i.e., x(1), . . . ,x(T ) ∼ π̄(x), we build the estimator

ÎT =
1

T

T∑

t=1

f(x(t))
p

−→ I. (4)

This means that for the weak law of large numbers, ÎT

converges in probability to I . In general, a direct method for

drawing independent samples from π̄(x) is not available, and

alternative approaches, e.g., MCMC algorithms, are needed.

A. The Standard Gibbs (SG) sampler

The Gibbs sampler is arguably the most used MCMC

algorithm in signal processing, statistics and machine

learning [7], [9], [10], [12]. Let us define x¬d :=
[x1, . . . , xd−1, xd+1, . . . , xD] and introduce the following

equivalent notations

π̄d(xd|x1:d−1, xd+1:D) ≡ π̄d(xd|x¬d).

In order to denote the unidimensional full-conditional pdf of

the component xd ∈ R, d ∈ {1, . . . , D}, given the rest of

variables x¬d, i.e.

π̄d(xd|x¬d) =
π̄(x)

π̄¬d(x¬d)
=

π̄(x)∫
R

π̄(x)dxd

. (5)

The density π̄¬d(x¬d) =
∫

R
π̄(x)dxd is the joint pdf of

all variables, except xd. The Gibbs algorithm generates a

sequence of T samples, and is formed by the steps in Alg. 1.

Algorithm 1 The Standard Gibbs (SG) algorithm

1: Fix T , D

2: for t = 1, . . . , T do

3: for d = 1, . . . , D do

4: Draw x
(t)
d ∼ π̄d(xd|x

(t)
1:d−1, x

(t−1)
d+1:D)

5: end for

6: Set x(t) = [x
(t)
1 , x

(t)
2 , . . . , x

(t)
D ]

7: end for

B. Monte Carlo-within-Gibbs sampling

The main assumption for the application of Gibbs sampling

is the ability to draw efficiently from these univariate full-

conditional pdfs π̄d, which is not possible in general. Thus,

other Monte Carlo techniques are needed for drawing from

π̄d. For instance, depending on the specific scenario, the

alternatives are: the adaptive rejection samplers (ARS) [27],

[33]–[35] when they can be applied, and additional MCMC

samplers as the standard Metropolis-Hastings (MH) method or

its adaptive/automatic versions [17]–[19], [24], [28], [30], [36],

[37]. The application of other MCMC method within Gibbs

can require the generation of intermediate points but only one

of them is used for the next iteration of the Gibbs sampler

[18], [21]–[23]. In this work, we show that these auxiliary

samples can employed inside the final estimators.

III. CHAIN RULE AND THE GIBBS SAMPLING

For the sake of simplicity, let us consider a bivariate target

pdf that can be factorized according to the chain rule,

π̄(x1, x2) = π̄2(x2|x1)p1(x1)

= π̄1(x1|x2)p2(x2),

where p1 and p2 denote the marginal pdfs and, π̄2 and π̄1,

are the conditional pdfs. Let us consider the first equality.

Clearly, if we are able to draw from the marginal pdf p1(x1)
and from the conditional pdf π̄2(x2|x1), we can draw samples

from π̄(x1, x2) following the chain rule procedure in Alg. 2.

Note that, consequently, the T independent random vectors

[x
(t)
1 , x

(t)
2 ], with t = 1, . . . , T , are all distributed as π̄(x1, x2).

Algorithm 2 Chain rule method

1: for t = 1, . . . , T do

2: Draw x
(t)
1 ∼ p1(x1) and x

(t)
2 ∼ π̄2(x2|x

(t)
1 )

3: end for

A. Standard Gibbs sampler as the chain rule

Considering the previous bivariate case, the standard Gibbs

sampler consists in the following two steps (a) x
(t)
2 ∼

π̄1(x2|x
(t−1)
1 ), (b) x

(t)
1 ∼ π̄2(x1|x

(t)
2 ) and then set x(t) =

[x
(t)
1 , x

(t)
2 ]. After the burn-in period, i.e., t ≥ tb, we

have x(t) ∼ π̄(x). Therefore, recalling that π̄(x1, x2) =
π̄2(x2|x1)p1(x1) = π̄1(x1|x2)p2(x2) for t ≥ tb, each com-

ponent of the vector x(t) = [x
(t)
1 , x

(t)
2 ] is distributed as

the corresponding marginal pdf, i.e., x
(t)
1 ∼ p1(x1) and

x
(t)
2 ∼ p2(x2). Therefore, after tb iterations, the standard

Gibbs sampler can be interpreted as the application of the

chain rule procedure of Alg. 2.

B. Alternative chain rule procedure

An alternative procedure is shown in Alg. 3. This chain

rule draws M samples from the full conditional π̄2(x2|x1) at

each t-th iteration, and generates samples from the joint pdf

π̄(x1, x2).

Algorithm 3 An alternative chain rule procedure

1: for t = 1, . . . , T do

2: Draw x
(t)
1 ∼ p1(x1)

3: Draw x
(t)
2,m ∼ π̄2(x2|x

(t)
1 ), with m = 1, . . . .M

4: end for

Note that all the TM vectors, [x
(t)
1 , x

(t)
2,m], with t = 1, . . . , T

and m = 1, . . . ,M , are samples from π̄(x1, x2). This scheme



is valid and, in some cases, it can present some benefits w.r.t.

the traditional scheme in terms of performance, depending

on certain statistical features of the joint pdf π̄(x1, x2). For

instance, the correlation between variables x1 and x2, and the

variances of the marginal pdfs p1(x1) and p2(x2).
At this point, a natural question arises: is it possible to

design a Gibbs sampling scheme equivalent to the alternative

chain rule scheme described before? The answer is in the next

section.

IV. THE MULTIPLE RECYCLING GIBBS SAMPLER

Based on the previous considerations, we design the Mul-

tiple Recycling Gibbs (MRG) sampler which draws M > 1
samples from each full conditional pdf, as shown in Alg. 4.

Algorithm 4 Multiple Recycling Gibbs (MRG) sampler

1: Choose a starting point [z
(0)
1 , . . . , z

(0)
D ]

2: for t = 1, . . . , T do

3: for d = 1, . . . , D do

4: for m = 1, . . . ,M do

5: Draw x
(t)
d,m ∼ π̄d(xd|z

(t)
1:d−1, z

(t−1)
d+1:D)

6: Set x
(t)
d,m = [z

(t)
1:d−1, x

(t)
d,m, z

(t−1)
d+1:D]

7: end for

8: Set z
(t)
d = x

(t)
d,M

9: end for

10: end for

11: return {x
(t)
d,m} for all d, m and t

For a given test function f(x) in the integral of Eq. (3), the

MRG estimator is eventually formed by TDM samples, i.e.,

without removing any burn-in period, as

ÎT =
1

TDM

T∑

t=1

D∑

d=1

M∑

m=1

f(x
(t)
d,m). (6)

Observe that in order to go forward to sampling from the

next full-conditional, we only consider the last generated

component, i.e., z
(t)
d = x

(t)
d,M . However, an alternative to step 8

of Algorithm 4 is: (a) draw j ∼ U(1, . . . ,M) and (b) set

z
(t)
d = x

(t)
d,j . Note that choosing the last sample x

(t)
d,M is more

convenient for an MCMC-within-MRG scheme.

The MRG sampler is equivalent to the alternative chain rule

scheme described in the previous section, so that the consis-

tency of the MRG estimators is guaranteed. The ergodicity of

the generated chain is also ensured since the dynamics of the

MRG scheme is identical to the dynamics of the SG sampler,

although they differ in the construction of final estimators.

The MRG approach is convenient in terms of accuracy and

computational efficiency, as also confirmed by the numerical

results in Section V. MRG is particularly advisable if an

adaptive MCMC is employed to draw from the full-conditional

pdfs, i.e., when several MCMC steps are performed for sam-

pling from each full-conditional and adapting the proposal. We

can use all the sequence of samples generated by the internal

MCMC algorithm in the resulting estimator.

V. NUMERICAL EXAMPLE: LEARNING

HYPERPARAMETERS IN GAUSSIAN PROCESSES

In section, we test the proposed approach for the estimation

of hyperparameters of the Automatic Relevance Determination

(ARD) kernel function for Gaussian processes (GPs) [32,

Chapter 6], [38]. The MATLAB code of this numerical ex-

ample is provided at http://isp.uv.es/code/RG.zip.

Let us assume observed data pairs {yj , zj}
P
j=1, with yj ∈ R

and

zj = [zj,1, zj,2, . . . , zj,L]⊤ ∈ R
L,

where L is the dimension of the input features. We also denote

the corresponding P × 1 output vector as y = [y1, . . . , yP ]⊤

and the L × P input matrix as Z = [z1, . . . , zP ]. We address

the regression problem of inferring the unknown function f

which links the variable y and z. Thus, the assumed model is

y = f(z) + e, (7)

where e ∼ N(e; 0, σ2), and that f(z) is a realization of a

GP [38]. Hence f(z) ∼ GP(µ(z), κ(z, r)) where µ(z) = 0,

z, r ∈ R
L, and we consider the ARD kernel function

κ(z, r) = exp

(
−

L∑

ℓ=1

(zℓ − rℓ)
2

2δ2
ℓ

)
, with δℓ > 0 (8)

and ℓ = 1, . . . , L. Note that we have a different hyper-

parameter δℓ for each input component zℓ, hence we also

define δ = δ1:L = [δ1, . . . , δL]. Using ARD allows us

to infer the relative importance of different components of

inputs: a small value of δℓ means that a variation of the ℓ-

component zℓ impacts the output more, while a high value

of δℓ shows virtually independence between the ℓ-component

and the output [32, Chapter 6]. Given these assumptions, the

vector f = [f(z1), . . . , f(zP )]⊤ is distributed as

p(f |Z, δ, κ) = N (f ;0,K), (9)

where 0 is a P × 1 null vector, and Kij := κ(zi, zj), for all

i, j = 1, . . . , P , is a P × P matrix. Note that in Eq. (9) we

have expressed explicitly the dependence on the input matrix

Z, on the vector δ and on the choice of the kernel family κ.

Therefore, the vector containing all the hyper-parameters of

the model is θ = [θ1:L = δ1:L, θL+1 = σ] = [δ, σ], i.e., all

the parameters of the kernel function in Eq. (8) and standard

deviation σ of the observation noise. Considering the filtering

scenario and the tuning of the parameters (i.e., inferring the

vectors f and θ), the full Bayesian solution addresses the study

of the full posterior pdf involving f and θ,

p(f ,θ|y,Z, κ) =
p(y|f ,Z,θ, κ)p(f |z,θ, κ)p(θ)

p(y|Z, κ)
, (10)

where p(y|f ,Z,θ, κ) = N (y;0, σ2I) given the observation

model in Eq. (7), p(f |z,θ, κ) is given in Eq. (9), and p(θ)
is the prior over the hyper-parameters. We assume p(θ) =∏L+1

ℓ=1
1

θ
β

ℓ

Iθℓ
where β = 1.3, and Iv = 1 if v > 0, whereas

Iv = 0 otherwise. Note that the posterior in Eq. (10) is ana-

lytically intractable but, given a fixed vector θ′, the marginal



(a) MSE versus M (T = 100).
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(b) MSE versus T .
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(c) MSE versus E (target evaluations).

! "!! #!! $!! %!! &!!
"!

%

"!
$

"!
#

"!
"

"!
!

'

 

 

() *+,-(."/

() (0+,-(.&/

Figure 1. MSE (log-scale) of different MCMC-within-Gibbs schemes (a) as function of M (T = 100 and D = 2), (b) as function of T for different techniques
(in this case, D = 4), with M = 1 for the MH-within-SG method depicted with a solid line and circles, whereas M = 10 for the remaining curves, (c) as
function of the total number of target evaluations E = MT (D = 4). Namely, for MH-within-SG we have M = 1 and T ∈ {10, 50, 100, 200, 300, 500},
whereas for MH-within-MRG we have M = 5 and T ∈ {3, 5, 10, 20, 40, 60, 100}. The MRG approaches, shown with dashed lines, always outperform the
corresponding standard Gibbs (SG) schemes, shown with solid lines.

posterior of p(f |y,Z,θ′, κ) = N (f ;µp,Σp) is known in

closed-form: it is Gaussian with mean µp = K(K+σ2I)−1y

and covariance matrix Σp = K − K(K + σ2I)−1K [38].

For the sake of simplicity, in this experiment we focus on the

marginal posterior density of the hyperparameters,

p(θ|y,Z, κ) ∝ p(θ|y,Z, κ) = p(y|θ,Z, κ)p(θ),

which can be evaluated analytically, but we cannot com-

pute integrals involving it. Actually, since p(y|θ,Z, κ) =
N (y;0,K + σ2I) and p(θ|y,Z, κ) ∝ p(y|θ,Z, κ)p(θ), we

have

log [p(θ|y,Z, κ)] = −
1

2
y⊤(K + σ2I)−1y

−
1

2
log
[
det
[
K + σ2I

]]
− β

L+1∑

ℓ=1

log θℓ,

with θℓ > 0, where clearly K depends on θ1:L = δ1:L

and recall that θL+1 = σ [38]. However, the moments

of this marginal posterior cannot be computed analytically.

Then, in order to compute the Minimum Mean Square Er-

ror (MMSE) estimator, i.e., the expected value E[Θ] with

Θ ∼ p(θ|y,Z, κ), we approximate E[Θ] via Monte Carlo

quadrature. More specifically, we apply a Gibbs-type samplers

to draw from π(θ) ∝ p(θ|y,Z, κ). Note that dimension of the

problem is D = L + 1 since θ ∈ R
D.

We generated the P = 500 pairs of data, {yj , zj}
P
j=1,

drawing zj ∼ U([0, 10]L) and yj according to the model

in Eq. (7), considered L ∈ {1, 3} so that D ∈ {2, 4}, and

set σ∗ = 1
2 for both cases, δ∗ = 1 and δ∗ = [1, 3, 1],

respectively (recall that θ∗ = [δ∗, σ∗]). Keeping fixed the

generated data for each scenario, we then computed the

ground-truths using an exhaustive and costly Monte Carlo

approximation, in order to be able to compare the different

techniques. We tested the standard MH within SG and MRG,

and also the Single Component Adaptive Metropolis (SCAM)

algorithm [36] within SG and MRG. SCAM is a component-

wise version of the adaptive MH method [39] where the

covariance matrix of the proposal is automatically adapted. In

SCAM, the covariance matrix of the proposal is diagonal and

each element is adapted considering only the corresponding

component: that is, the variances of the marginal densities of

the target pdf are estimated and used as a scale parameter of

the proposal pdf in the corresponding component. We averaged

the results using 103 independent runs. Figure 1(a) shows the

MSE curves (in log-scale) of the different schemes as function

of M ∈ {1, 10, 20, 30, 40}, while keeping fixed T = 100
(in this case, D = 2). Figure 1(b) depicts the MSE curves

(D = 4) as function of T considering in one case M = 1 and

M = 10 for the rest. In both figures, we notice that (1) using

an M > 1 is advantageous in any case (SG or MRG), (2)

using a procedure to adapt the proposal improves the results,

and (3) MRG, i.e., recycling all the generated samples, always

outperforms the SG schemes.

Figure 1(c) compares the MH-within-SG with the MH-

within-MRG, showing the MSE as function of the total

number of target evaluations E = MT . We set M = 5,

T ∈ {3, 5, 10, 20, 40, 60, 100} for MH-within-MRG, whereas

we have M = 1 and T ∈ {10, 50, 100, 200, 300, 500}
for MH-within-SG. Namely, we used a longer Gibbs chain

for MH-within-SG. Note that the MH-within-MRG provides

always smaller MSEs, considering the same total number of

evaluations E of the target density.

VI. CONCLUSIONS

In this work, we have shown that the efficiency of the

Gibbs estimators can be improved including some generated

auxiliary samples, without any extra computational cost. The

consistency of the resulting estimators is ensured since the

novel MRG scheme is equivalent to an alternative formulation

of the well-known chain rule method.
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