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ABSTRACT

Passive Millimeter Wave Images (PMMWIs) are being increas-
ingly used to identify and localize objects concealed under clothing.
Taking into account the quality of these images and the unknown
position, shape, and size of the hidden objects, large data sets are
required to build successful classification/detection systems. Kernel
methods, in particular Gaussian Processes (GPs), are sound, flexi-
ble, and popular techniques to address supervised learning problems.
Unfortunately, their computational cost is known to be prohibitive
for large scale applications. In this work, we present a novel ap-
proach to PMMWI classification based on the use of Gaussian Pro-
cesses for large data sets. The proposed methodology relies on linear
approximations to kernel functions through random Fourier features.
Model hyperparameters are learned within a variational Bayes infer-
ence scheme. Our proposal is well suited for real-time applications,
since its computational cost at training and test times is much lower
than the original GP formulation. The proposed approach is tested
on a unique, large, and real PMMWI database containing a broad
variety of sizes, types, and locations of hidden objects.

Index Terms— Gaussian processes, large scale classification,
random Fourier features, variational inference, PMMWI.

1. INTRODUCTION

Millimeter wave images can be used to recognize and localize hid-
den objects under clothing [1]. This type of images is becoming in-
creasingly popular in threat detection systems located at warehouses
and airports (such as international ones in Los Angeles or San Fran-
cisco). In contrast to active scanners, which direct millimeter wave
radiation to the subject and then interpret the reflected energy, pas-
sive systems use only ambient radiation and that emitted from the
human body or objects [2]. This means safer and less invasive sys-
tems, which are better suited for practical applications.

Sensor modelling and image processing techniques have been
used on PMMWIs. The main concepts related to millimeter images
are introduced in [2, 3]. Compressive sensing and superresolution
are explored in [4,5]. Denoising, deconvolution, and enhancement
techniques have also been applied to this kind of images [6-9].

Unfortunately, the literature on classification using these images
is still scarce. K-means is used to segment PMMWIs in [10]. Gaus-
sian mixture models are applied in [11] to characterize people with
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and without threats. In [12] the authors apply noise elimination and
image segmentation using Local Binary Fitting (LBF). A highly effi-
cient two-step algorithm, based on denoising and mathematical mor-
phology, was proposed in [13]. It achieves an acceptable detection
rate on noisy and low contrast images. A comprehensive compari-
son between classical methods (Logistic Regression, SVM, Random
Forest, Boosting) is provided in [14]. In that work, the large size of
the data set imposed constraints on the kernel used for SVM, and
prevented the application of GPs.

Kernel machines [15, 16] are among the most popular ap-
proaches for supervised learning. Due to its solid Bayesian treat-
ment, GP [17] is a current state-of-the-art kernel method, which
has also been used for image classification [18, 19]. For a problem
with n training instances, kernel machines store and manipulate
kernel matrices of size n x n, which makes them scale as O(n?) in
training and O(n?) for each test instance. These two orders hamper
their applicability to large scale problems in terms of computational
limitations and impossibility of real-time prediction respectively.

In this paper we develop a new method that allows for large scale
PMMWI Gaussian Processes classification. Our approach relies on
linear approximations to kernel matrices based on random Fourier
features (RFF) [20]. The use of GPs with RFF for regression prob-
lems has been presented in [21-23]. To deal with the non-conjugate
observation model typical of classification problems, we resort here
to the variational inference approach [24, Section 10.6]. Computa-
tional complexity at test turns out to be independent on the training
set size. Cost at training is also much lower than original GP. These
capabilities make our approach suitable for real-time applications.

The rest of the paper is organized as follows. The proposed
method is derived from standard GP theory and random Fourier fea-
tures in Section 2. Section 3 presents our PMMWI data set, its pre-
processing, and the experimental setting. Section 4 shows compet-
itive empirical results for our approach, which outperforms direct
application of GPs and allows for real-time prediction. Section 5
concludes the paper with some remarks and future outlook.

2. GAUSSIAN PROCESSES AND RANDOM FOURIER
FEATURES

Gaussian Processes (GPs) [17] are popular Bayesian models for su-
pervised machine learning tasks, such as regression and classifica-
tion. In the latter case, we are provided with an input-output data set
{(%4,y:) }iey With x; € R? and y; € {0,1}. Following a function-
space view, GPs codify this relationship by means of latent variables
{fi = f(xs) € R};;. These variables are jointly normally dis-
tributed as NV (0, (k(x:,%X;))1<ij<n), With k : R? x R — R the
kernel function. The outputs y; depend on f; by means of the sig-



moid observation model p(y;:|f:) = ¥(f;) = (1 + exp(—f:)) ™"

As any other kernel method, GP for classification (GPC) is com-
putationally prohibitive when dealing with large scale problems. The
training step scales as O(n>), whereas the computational complexity
of the prediction is O (n?) for each test instance [17]. In the case of a
standard desktop computer, this places its computational feasibility
limit around n = 10* training examples.

2.1. Random Fourier features

The work [20] presents a general methodology (based on Bochner’s
theorem [25]) for theoretically approximating a positive-definite
shift-invariant kernel k. This is achieved by explicitly projecting the
original d-dimensional data onto O(D) random Fourier features,
whose standard linear kernel approximates k. This linearity allows
us to reduce n X n matrix inversions to O(D) x O(D) ones, which
decreases the computational cost to O(nD?) during training and to
O(D?) for each test instance. For large scale applications, D will
be much lower than n, which implies a significant benefit.

In this work we use the well-known Gaussian kernel k(x,x’) =
v -exp(—||x —x||*/(20?)), which can be linearly approximated as
k(x,x') =~ z(x)Tz(x"), with

z(x)T = /7D~ (cos (0 'wlx) ,sin (0 'wx),...

..yco8 (07 'whx) ,sin (0T 'whx)) € R*P. (1)

As indicated in [20], the error in this approximation exponentially
decreases with the number D of Fourier frequencies w; & RY,
which must be independently sampled from A/(0, I). In matrix no-
tation, we approximate the kernel matrix K € R™*™ with the ex-
plicitly mapped data Z = [z; - - - 2,]T € R"*P as K ~ ZZT.

In order to approximate a GP classifier with Gaussian kernel,
we will consider a Bayesian linear model working on these new fea-
tures. Hyperparameters v and o in eq. (1) will be optimized within a
variational approach in order to maximize the marginal likelihood of
observed data. Notice that although we could include the estimation
of wi,...,wp in the Bayesian framework, we concentrate here on
the computing capabilities of the proposed approach and assume the
frequencies are sampled from N(0, I) and fixed.

2.2. Modelling and Inference

We consider the standard binary-classification logistic regression
model defined over the explicitly mapped Fourier features z;:

po(yi = 1|8) = (1 + exp(—B7z:)) ", )

where @ = (01 = /7,02 = 0) and z; is given by eq. (1).
Weights 3 € R?P are assigned a normal prior distribution
p(B) = N(B|0,I). Thus, the joint p.d.f. reads

pe(y,8) = pe(y|B)p(B). 3)

To obtain the maximum likelihood (ML) estimate of 0, 8, we in-
tegrate the above joint distribution on 3 and maximize on 6 the
marginal distribution pe(y). The posterior distribution pg(By) is
then calculated. However, the sigmoid likelihood in eq. (2) makes
these computations analytically intractable, and we resort to the vari-
ational inference approximation [24, Section 10.6].

First, we use the variational bound [24]

log (1-+¢) <A@ - )+ T v log (1465) . @)

where z,& € Rand A(€) = (1/2¢) (1 +e €)' —1/2). For a
fixed z, it is easy to check that this bound is minimum when &2 =
x2. This produces the following lower bound for the joint probability
distribution in eq. (3):

logpo(y,B) = —3 7 (27(20)Z+ 1) 8+ V126 + C(&), &

where v =y — (1/2) - 1,x1 and A = diag(A(&1), ..., A(&n)).

Notice that this lower bound is quadratic in 3, which enables
us to analytically work with it. Namely, using the exponential func-
tion on eq. (5), integrating out 3, and maximizing on 6 (recall Z =
Z(8)), we obtain the following approximation of 8:

6 = arg max (sz (ZT(2A)Z + 1)~ ZTv — log |ZT(2A)Z + I|) .

(6)

To obtain the posterior pe(8|y), we fix € in eq. (3) and find

the same problem with the sigmoid function. We again resort to

the quadratic variational bound given by eq. (5), which provides the
following approximate posterior normal distribution for 3:

pe(Bly) = qe(B) = N (Blug, Xp),
S =(ZT2ANZ+1)"", pg=3Zv. (7

Finally, for a given 6, the bound in eq. (5) is optimal when

& =(B"2:)")qe(mry) Yi=1,...,m, ®

which yields

& = \/(zgzgzw)"’ +2]3pz; Vi=1,...,n.  (9)

Our method is named RFF-GPC. At training time, it is fed with
labelled data and runs iteratively to calculate 8 and the approximate
normal posterior g, (3) (see Algorithm 1).

Algorithm 1 Training RFF-GPC

Input: Dataset D = {(x;,y:) ey C RY x {0,1}.
Randomly sample Fourier frequencies w; in eq. (1) from N'(0, I).
Initialize qg4(3) to N(0, I (that is, its prior distribution).
Initialize 6
repeat
Update each &; using eq. (9).
Update 0 using eq. (6).
Update the posterior q,(/3) using eq. (7).
until convergence
return Optimal estimator 6 and the posterior qs(8).

At test time, the probability of class 1 for a previously unseen
instance x. € R? is:

pw:nz/%w:ummmwz

~ o (alpg - (1+ (n/8)21Zp2.) ) |

with ¢ the sigmoid function. The computations involved in these al-
gorithms scale as O(nD?) for training stage, and O(D?) for predic-
tion on each test point. Unlike standard GPC, the latter is indepen-
dent on the number of training instances. This significant reduction
makes our proposal suitable for large scale real-time applications.



Fig. 1: Examples of PMMWIs with hidden threats before prepro-
cessing (left) and after it (right). Red boxes on the right highlight
object locations, which correspond to lighter areas of the body.

3. IMAGE PREPROCESSING AND EXPERIMENTAL
SETTING

3.1. General preprocessing

‘We have available a PMMWIs database of 3309 images of size 125X
195. They show people in different positions who may hide (up to
two) objects of varied sizes and shapes at different locations. Un-
fortunately, acquired images suffer from spatially variant noise, and
their general quality is poor. These problems specially manifest at
the contour of the individuals, which can be confused (even by a
human thorough gaze) with hidden threats. This prevents classical
models from achieving competitive detection results, see also [14].
To better identify threats, the image signal to noise ratio must be in-
creased, and the contrast enhanced. This is addressed by a combina-
tion of linear (local mean) and non-linear (local median) smoothing
filters. Figure 1 shows examples of raw and processed images in the
database (see [14] for more images).

Given a new image, our goal is to automatically discern whether
it contains some threat or not. We will not fit the machine learning
algorithms directly over the global images, but extract relevant fea-
tures from local patches. Namely, for every 2 X 2 non-overlapping
block we consider three regions of areas 39 x 39, 19 x 19, and
9 x 9 (these areas have been selected taking into account the tar-
geted threat sizes, neither too big nor too small) centered at one of
its four points. We only consider active pixels, i.e. those whose
39 x 39 region is completely contained in the image. To each one of
these blocks we assign a feature vector constructed by concatenating
Haar traits [26] extracted from its three associated regions. On each
region we use 115 Haar filters, which are appropriately chosen for
the shapes of hidden objects. This yields a 345-dimensional feature
vector for each block, which are considered positive (having threat)
if their 39 x 39 region overlaps a hidden object by at least 50%,
see [14] for additional details. In the sequel, we will refer to these
blocks (together with their feature vector) as learning instances. In
total, we have 3476 such instances for each image.

3.2. Experimental setting

To test the proposed model we perform a five folds cross validation.
We ensure that each partition contains the same number of images
with none, one, and two threats. In the training data sets we only
include a positive instance if it (more precisely, its 39 x 39 associ-
ated region) completely covers the threat. Moreover, since adjacent
negative instances have equivalent feature vectors, we only keep one
from every 2 X 2 group of them. Table 1 summarises the number of
available training instances for the experiments.

Table 1 also reveals that the number of negative instances is ap-
proximately six times the number of positive ones in each training
data set. This imbalance could bias the algorithms against the minor-
ity class. To avoid it we train six classifiers per fold, each one using

Table 1: Number of negative and positive instances in the training
data set for each fold.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Negative | 1896222 1895130 1898030 1897209 1898825
Positive 299838 302417 299829 299644 298212
Total | 2196060 2197547 2197859 2196853 2197037

all positive instances and a random sample (without replacement and
of equivalent size) of the negative instances in that fold. This means
a training data set with n = 6 - 10° instances approximately.

Standard GPC cannot cope with this large scale setting. In order
to comparatively evaluate their performance against RFF-GPC, we
consider a (balanced) subsample of size n = 10" for each experi-
ment, thus taking GPC until its computational limit. Once the six
models are trained, predictions (i.e. probabilities of class 1) for test
instances are collected and the mean is computed.

For GPC we make use of the full 345-dimensional feature vec-
tors. However, in the case of RFF-GPC we will need to previously
reduce this dimensionality.

3.3. Preprocessing for RFF-GPC

A key parameter in our method is the number D of random Fourier
features used. It can be checked, both empirically and theoreti-
cally [20, Claim 1], that the approximation K ~ ZZT exponentially
improves with D. Likewise, it exhibits an exponential deterioration
with the number d of original features in the data set [20].

In practice, for d = 345 like in our case, we would need a value
of D greater than 10°. However, D should not exceed 5 - 10% if
we want the training O(nD?) to be computationally feasible in a
standard desktop computer. This would make RFF-GPC even more
computationally prohibitive than standard Gaussian Processes.

In order to overcome this problem, we need to significantly re-
duce the dimensionality of the data set before applying RFF-GPC,
but preserving as much information as possible. For this, we resort
to Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) (see [27] for an interesting comparison). The first
one extracts projections that keep most of the variability of the orig-
inal data [24, Chapter 12], whereas the latter provides features that
best linearly separate both classes [24, Section 4.1.4]. We decided to
include 15 principal components (a PCA analysis reveals that they
already explain the 97.69% of original variance) and 5 linear dis-
criminant directions. Therefore, we reduce the dimensionality to
d’ = 20. With this, we can consider more reasonable values for D,
which will be fixed at D = 500 in our experiments. In Sections 4
and 5 we discuss future work related to this parameter.

4. EXPERIMENTAL RESULTS

First, we compare prediction time between RFF-GPC and GPC. Fig-
ure 2 shows elapsed time to predict one image, i.e. 3476 patches. We
show the evolution in terms of training data set size. To do this, we
extracted balanced subsamples from the largest training data set in
each experiment. We observe that, whereas GPC clearly exhibits
an increasing dependence on the training set size, RFF-GPC is not
affected by this quantity. This is the expected behaviour from the-
oretical test orders O(n?) and O(D?) respectively. RFF-GPC out-
performs GPC at any training size, being more than 100 times faster
at the full models (n = 6 - 10° and n = 10 respectively).
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Fig. 2: Elapsed prediction time per image for GPC and RFF-GPC.
Notice the logarithmic scale in both axes.
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Fig. 3: Comparative classification results for GPC (left column) and
RFF-GPC (right column). First and second rows show the ROC
curves (and AUC) at patch and image levels respectively. Third row
explictly depicts the evolution of TPR, TNR, and their cross point.

The second experiment compares the classification performance
of GPC and RFF-GPC at both patch and image levels. For the lat-
ter, each test image is associated to the highest probability of threat
among all its patches. We use the full models, i.e. n = 10? for GPC
and n ~ 6 - 10° for RFF-GPC. In Figure 3 we show the ROC curves
at patch and image levels. They represent the trade-off between true
positive (TP) and false positive (FP) rates when considering differ-
ent thresholds over the test probabilities of class 1 (having threat).
The TPR-TNR evolution and their cross point at image level are also

True Positive Rate

provided. We observe that both methods behave similarly, with RFF-
GPC slightly outperforming GPC at image level.

We also carried out a preliminary experiment to assess the qual-
ity of our approach when using a higher number of random Fourier
features D (see future work in Section 5). We used RFF-GPC with
D = 1750 and n = 1.5 - 10° training instances (both values can
be still further increased). This significantly improves previous re-
sults, see Figure 4. Namely, AUC metric and TPR-TNR cross point
improve from 0.69 and 0.63 to 0.72 and 0.65 respectively. These
results suggest that increasing and wisely combining the values of
D and n is a promising future work.

It is worth noticing that our novel approach is competitive with
the state-of-the-art results over this data set presented in [14]. The
new method beats other kernel machines like SVM, and only Ran-
dom Forest (RF) performs slightly better. Namely, at image level, TP
and TN rates cross at 0.68 for RF (see [14, Figure 6]) while, as we
have already indicated, the crossing point for our method is at 0.65.
The future use of prior models on the Fourier frequencies w; and
higher values of D and n are expected to surpass RF performance.

To sum up, our results are competitive with state-of-the-art ones.
We already outperform classical GPC allowing for a much faster pre-
diction (which is a remarkable benefit for real-world applications).
More complex modelling of the classification problem will certainly
lead to better performance.
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Fig. 4: ROC curve (and AUC) and TPR-TNR evolution at image
level for RFF-GPC with higher value of D.

5. CONCLUSIONS AND FUTURE WORK

In this work we presented a new kernel-based approach to classify
PMMWIs using a large scale training data set. The method works
at patch level by extracting multiscale Haar features which are then
summarized using PCA and LDA projections. The huge number of
samples prevents us from using classical GPC methods on the com-
plete data set. We resort here to the use of random Fourier features
to linearize a non-linear kernel. A variational Bayes scheme is used
to make inference tractable. All the model parameters are estimated.
The proposed approach outperforms classical GPC, it is suitable for
real-time applications, and produces competitive results with current
state-of-the-art methods.

Since detection results are negatively affected by the poor qual-
ity of images, we are currently working on the use of image process-
ing techniques to improve acquired images. Furthermore, we are
also investigating the optimal relationship between the number of
projected features d’, Fourier frequencies D, and training examples
n. The optimal estimation of Fourier frequencies in a probabilistic
sense is also currently under study.
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