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Abstract:

This study will first define the “equation of life" via the principle of least action. Then the paper will show
how this “equation of life" can be used to derive smaller equations, involving transcription and translation, for
[computer] modeling and simulation of a cell. The conclusion will provide a terse description of its uses in the
realm of Systems Biology.

1. Introduction

In the past, scientists have tried to derive models which attempt to adequately represent life. A couple of groups
in academia, the JJ Tyson lab at Virginia Tech and the Molecular Networks Dynamics at Budapest University,
or notable examples of scientists who have made efforts to simulate life [1,2]. Using the same underlying
mechanisms [3], they have been able to produce workable eukaryotic cell models of cycling cells that are
dependent upon certain variables like protein concentrations.

To aid in the endeavor of modeling cells, it might be appropriate to define the scientific laws which dictate
processes like transcription and translation. When scientific laws are appropriately described and stated, they
can be used to predict natural phenomena [4]. Ideally, mathematics is used to best summarize scientific laws for
certain processes in particular fields, such as Physics, Chemistry, etc. There would be many possible uses for an
“equation of life" when comes to modeling cell environments.

If an individual can derive an “equation of life," (s)he will be better able to predict the concentration of transcripts
and proteins which dictate simulations or models of cell life. This paper will first describe the "equation of life"
as a principle of least action. Then the following sections will show this equation can be used to derive known
and unknown expressions of transcription and translation via functional differentiation. The conclusion of this
study will focus on the possible usage of the equation in terms of modeling and simulations.

2. Deriving the "equation of life"

Lagrangian mechanics, which was established by Joseph-Louis Lagrange, is a formalism of classical mechanics,
based upon stationary actions [5]. It considers the position of a set of masses for two given instances, times t1
and t2:

(2.1) S[q] =
∫

dtL(q(t), ∂q(t)
∂t , t),

where S is the principle of least action, L is the Lagrangian, and q is some quantity/item. For this paper, spatial
dimensions will be considered in the principle of least action, thus:

(2.2) S[q] =
∫

dtdx3L(q(t,−→x ), ∂q(t,−→x )
∂t , t,−→x ).

Before proceeding, it is wise to discuss the types of transformation processes that will be utilized in this study.
There are four different transformation processes described in this paper. Covariant index is the lower-case
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index which represents a forward transform from one space to another space while the contravariant index
is the upper-case index which represents a backward transform from one space to another space [6,7]. For
example, the rate of synthesis for a transcript via gene and/or coupling constant sj

i has two transforms: the
forward transform is j-index while the backward transform is the i-index. The first process involves the mapping
from the gene space to the transcript space while the latter process represents the mapping from transcript space
to back to the gene space. Also, transformations can either be isomorphic or heteromorphic [8,9,10]. The
former process involves a one-to-one mapping while the latter process involves a differing number of mapping.
Consider splice variants: one gene gi may be responsible for the synthesis of multiple splice variants tj.

To derive the "equation of life" in terms of principle actions, one must define the Lagrangian terms within the
ultimate expression. The Lagrangian for the "equation of life" is defined as follows:

(2.3) L = Ltranscription + Ltranslation ,

where Ltranscription and Ltranslation are the Lagrangian terms for transcription and translation, respectively. The
Lagrangian of transcription can be expressed as:

(2.4) Ltranslation = γiτ
jσ

j
j − δ jτ jτ

j − κ j∂τ j∂τ
j,

where γi is the antisense DNA sequence of the i-th gene, σi
jis the rate of synthesis for j-th transcript via the

i-th gene, τ j is the j-th mRNA transcript, τ jis a small antisense RNA molecule (i.e., TSSaRNA, microRNA,
etc.) of the j-th transcript, δ j is the rate of degradation of the j-th mRNA transcript, and κ j is the coefficient of
[extracellular] diffusion of small screted RNA τ j. Note: σi

j and δ j also serve as coupling constants of various
RNA species tj with antisense DNA sequence of gene γi and transcript τ j, respectively. On the other hand, the
Lagrangian of translation can be expressed as:

(2.5) Ltranslation = τ jρ
kσ

j
k − δkρkρ

k − κk∂ρk∂ρ
k −Loligo ,

where σ j
k is the rate of synthesis for k-th protein via the j-th transcript, ρk is the k-th protein, ρk is the ribosomal

protein complexes, disordered peptide sequences of the proteasome, etc. of the k-th protein, δk is the rate of
degradation of the k-th transcript, and κk is the coefficient of [extracellular] diffusion of protein ρk. Note: σ j

k and
δk also serve as coupling constants of various protein ρk with transcript τ j and protein ρk, respectively. Loligo
is the Lagrangian of hetero- and homo-oligomerization: it is dependent upon a set of protein rk and utilizes
principles of “mass conversation" among the proteins being studied. Assume a particular protein ρk exists also
as a homo-oligomerization, then:

(2.6) Loligo =
∑n−1

a=1 (r2aρka+1 − r2a−1ρkρka )
(∑a

b=1 ρ
kb
− ρka+1

)
+

n−1∑
a=1

κka+1∂ρka+1∂ρka+1
,

where n is the number of homo-oligomerization, rodd and reven is a rate of association and/or dissociation. On
the other hand, a particular protein ρk could exist as a hetero-oligomer, thus:

(2.7) Loligo =
(
r2ρ{1,...,n} − r1

(∏n
a=1 ρa

)) (∑n
a=1 ρ

a − ρ{1,...,n}
)

+κ{1,...,n}∂ρ{1,...,n}∂ρ
{1,...,n},

where ρ{1,...,n}represents the total hetero-oligomer, κ{1,...,n}is the coefficient of diffusion for that quaternary protein
structure, and n is the total number tertiary protein structures in the hetero-oligomer.
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The total principle of least action for a particular gene gi and subsequent transcripts τ j and proteins rk becomes:

(2.8)

S[γi, τ j, ρk] =

∫
dtdx3

(
γiτ

jσi
j + τ jρ

kσ
j
k − δ jτ jτ

j

−δkρkρ
k − κ j∂τ j∂τ

j − κk∂ρk∂ρ
k −Loligo ).

Ultimately, the "equation of life" is defined as the total principle of least action for all genes, transcripts, and
proteins. In other words, an individual must consider the sum of all genes, transcripts, and proteins, or:

(2.9)

S[γi, τ j, ρk] =

∫
dtdx3

∑
i

∑
i

∑
k

(γiτ
jσi

j + τ jρ
kσ

j
k − δ jτ jτ

j

−δkρkρ
k − κ j∂τ j∂τ

j − κk∂ρk∂ρ
k −Loligo).

Mathematica was used to solve the subsequent smaller equations to the basic “equation of life."

3. Deriving the transcript and protein equations for non-dividing cells

Non-dividing cells are simply known as cells which either are arrested or leave some form of cell division (i.e.,
mitosis, meiosis) [11,12]. An example of cells that are arrested in cell division, or quiescent, are stem cells
while mature/adult cells exemplify cells that leave (a series) of cell division[s] [13,14]. Both quiescent and
mature/adult cell types leave the cell cycle [indefinitely] and enter the G0 phase (figure 1). The environment
inside these entities is relatively stable, thus one should not see the periodic appearance of proteins, such as
cyclins, that are critical for dividing cells. It is expected that the expression of genes in non-dividing cells is
indefinite for quiescent states and permanent for mature adult conditions.
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Figure 1: The different phases of the cell cycle. The diagram above shows the different phases of the cell cycle.
Initially, cells prep early for division, or enter G1 phase, by doubling their DNA/chromosome content that will
occur in the S phase. Then cells prep late for division, or enter G2 phase, by segregating their DNA/chromosome
content that will occur in the M phase. If a cell wants to arrest or leave the cell cycle, it must enter the G0 phase.

To ascertain transcription in quiescent or mature cells, one must generate the equation for transcript τ j in a
non-dividing cell. It is assumed that non-dividing cell possesses a first order transcript propagator within its
Hamiltonian, or:

(3.1) H
(
γi, τ j, ρk

)
= Πττ

j −L
(
γi, τ j, ρk

)
,

where:

(3.2) Πτ =
∂τ j

∂t .

The above suggests the new principle of least action, in terms of the Hamiltonian H, becomes:

(3.3)

S[γi, τ j, ρk] =

∫
dtdx3

∑
i

∑
j

∑
k

(
∂τ j

∂t
τ j − γiτ

jσi
j − τ jρ

kσ
j
k + δ jτ jτ

j

+δkρkρ
k + κ j∂τ j∂τ

j + κk∂ρk∂ρ
k + Loligo ).

The functional differentiation of this equation with respect to the contravariant transcript τ j, specifically, pro-
duces:

(3.4)
∑

i
∑

j

(
∂τ j

∂t − κ j∆τ j − γiσ
i
j + δ jτ j

)
= 0

and

(3.5) κ j = 0,

Reducing the above equation to a particular transcript τ j produces the following 1st order ordinary differential
equation:

(3.6) ∂τ j

∂t − γiσ j + δ jτ j = 0.

One of the solutions of the prior equation for a particular transcript τ j using the generating function technique,
or GFT, [15] is:

(3.7) τ j(t) =
a10e−tδ j

A +
γiσ

i
j

δ j
.

If one lets A equal –1 and a10 equal
γiσ

i
j

δ j
, then the solution becomes:
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(3.8) τ j(t) =
γiσ

i
j

δ j
−

γie
−tδ jσi

j

δ j
.

Assuming the initial concentration of transcript τ j is 0.0, then the plot of the above solution is simply:

.

With respect to the starting time point 0.0, there is an appreciable lag in the concentration of transcript tj hitting
its steady-state level.

Unlike products of transcription, proteins may be secreted from cells. The process of cellular secretion generally
requires special organelles called porosomes located at the cellular membrane [16]. Contents within secretory
vesicles are released into the environment upon fusing of the vesicles with porosomes. In terms of the “equation
of life," the rate of diffusivity for a particular protein ρk, or κk, is dependent on secretory vesicle-porosome fusion
events. If the protein remains in the cell, then κk is approximately 0.0.

Next, an individual must derive the equation for protein monomer and oligomer inside a cell. The protein
propagator for both dividing and non-dividing cells is as follows:

(3.9) H(γi, τ j, ρk) = Πρρ
k −L

(
γi, τ j, ρk

)
,

where

(3.10) Πp =
∂ρk
∂t .

Therefore, the principle of least action, in terms of the Hamiltonian, for protein ρk becomes:

(3.11)

S [γi, τ j, ρk] =

∫
dtdx3

∑
i

∑
j

∑
k

(
∂ρk

∂t
ρk − γiτ

jσi
j − τ jρ

kσ
j
k + δ jτ jτ

j

+δkρkρ
k + κ j∂τ j∂τ

j + κk∂ρk∂ρ
k + Loligo ).
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By performing the functional differentiation of this action with respect to contravariant protein ρk, specifically,
(s)he will generate the following expression:

(3.12)
∑

j
∑

k

(
∂ρk
∂t − τ jσ

j
k + δkρk − ∆ρkκk +

δLoligo

δρk

)
= 0.

Let:

(3.13) κk = 0,

and

(3.14) Loligo = 0

thus, the ordinary differential equation for a particular protein ρk in the form of a monomer is also a 1st order
expression:

(3.15) ∂ρk
∂t − τ jσ

j
k + δkρk = 0.

Using the Runge-Kutta [iterative] method to solve for protein ρk, one would obtain the following plot:

.

Note: there is an even larger lag in protein ρk hitting its steady-state levels with regards to the starting time point.

Next, one must determine the Lagrangian density for the homodimer of a particular protein rk. By working with
the expression (2.6) and setting n = 2, one obtains the following Lagrangian:

(3.16) Loligo =
(
r2ρk2 − r1ρ

2
k

) (
ρk − ρk2

)
+ κk2∂ρk2∂ρk2

.

If one plug (3.16) into (3.12), sets κk2 equal to 0.0, and allows ρk2 to be the homodimer of protein rk, then
(s)he will generate two 1st order nonlinear differential equations after performing functional differentiation with
respect to both contravariants ρk and ρk2 :

(3.15) ∂ρk
∂t − τ jσ

j
k − r2ρk2 + δkρk + r1ρ

2
k = 0,
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and

(3.16) ∂ρk2

∂t + r2ρk2 − r1ρ
2
k = 0.

It is important to state that one must also apply a unique protein propagator, hence establish a separate Hamil-
tonian and principle of least action for the homodimer ρk2 . The individual generates the following plot if (s)he
uses the Runge-Kutta method to solve for both the monomer and homodimer for a particular protein ρk:

.

Note the appreciable lags in transcript τ j, monomeric protein ρk, and homodimeric protein ρk2 when approaching
their relative steady-state levels.

4. Deriving the transcript and protein equations for dividing cells

The hallmark feature of dividing is the oscillatory behavior of intracellular concentration of a transcript and the
extracellular concentration of a secreted protein. To produce an oscillating solution, one must use a second-order
transcript propagator; thus, the Hamiltonian of for transcript τ j is defined as:

(4.1) H
(
γi, τ j, ρk

)
= Π2

τ −L
(
γi, τ j, ρk

)
,

where:

(4.2) Πτ =
∂τ j

∂t .

The principle of least action regarding the Hamiltonian of transcript τ j is as follows:

(4.3)

S[γi, τ j, ρk] =

∫
dtdx3

∑
i

∑
j

∑
k

(
∂τ j

∂t
∂τ j

∂t
− γiτ

jσi
j − τ jρ

kσ
j
k + δ jτ jτ

j
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+δkρkρ
k + κ j∂τ j∂τ

j + κk∂ρk∂ρ
k + Loligo ).

After setting κ j equal to null, the functional differentiation of the principle of least action apropos the contravari-
ant transcript τ j, specifically, produces:

(4.4)
∑

i
∑

j

(
∂2τ j

∂t2 − γiσ
i
j + δ jτ j

)
= 0.

If one is trying to derive the solution for a particular transcript τ j, (s)he must use the next equation:

(4.5) ∂2τ j

∂t2 − γiσ
i
j + δ jτ j = 0.

The general solution to a particular transcript τ j using GFT is:

(4.6) τ j (t) = 1
2

(
(a10 − a20) Aeit

√
δ j +

(a10+a20)e−it
√
δ j

A +
2γiσ

i
j

δ j

)
.

Assuming A is equal to negative unity or -1.0, a20 is equal to 0.0, and a10 is equal to
γiσ

i
j

δ j
, then the solution

becomes:

(4.7) τ j (t) = −
γiσ

i
j

(
cos

(
t
√
δ j

)
−1

)
δ j

.

Next, one must solve for the concentration of the secreted monomeric protein ρk. Using the same Hamiltonian
(3.7), (s)he will be left with the principle of least action (3.10). Since an individual is dealing with a monomer
protein, expression (3.13) is true, and the following equation is left after performing functional differentiation
with respect to the contravariant protein ρk, specifically:

(4.8)
∑

j
∑

k

(
∂ρk
∂t − τ jσ

j
k + δkρk − ∆ρkκk

)
= 0.

Note: the delta symbol is a Laplacian operator, thus the protein rk is dependent upon three spatial dimensions
{x,y,z} or radius r besides time t. By limiting the above expression to a particular protein ρk, one must solve the
following 2nd order partial differential equation:

(4.9) ∂ρk
∂t − τ jσ

j
k + δkρk − ∆ρkkk = 0.

Implementing the Runge-Kutta method to solve (4.9) produces the following plot assuming the initial
[derivative] values for transcript τ j and protein
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ρk:

.

Note: |r| from the cell is set at 0.0 for the top plot. Both the transcript τ j and secreted monomeric protein ρk

oscillate from the starting time point 0.0. Also, the peaks and troughs of secreted monomeric protein ρk lag just
behind the peaks and troughs of transcript τ j.

5. Conclusion

By using some concepts in cell biology and classical mechanics, one can generate the "equation of life." The equation
can be utilized in various ways to help model important elements inside and outside the cell. For instance, an individual
can stimulate transcription for dividing and non-dividing cells. Also, (s)he can model intracellular and secreted protein
concentrations in the same set of cells. Ultimately, one should be able to simulate more sophisticated environments,
such as transduction and transfection.
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