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Abstract

In this paper we will propose a directed dependency graph obtained from a cor-
relation matrix. This graph will include probabilistic causal sub-models for each
node modeled by conditionings percentages Ax o, Where X; and Q; will corre-
spond respectively to a child node and parents nodes set. The directed dependency
graph will be obtained using the highest successive conditionings method with a
conditioning percentage value of 90% to be exceeded.
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1 Introduction

In this report, we will propose a directed dependency graph obtained from a correlation
matrix. This graph will have probabilistic causal sub-models for each node of the graph
which will be evaluated by the conditioning percentage[4].

The article will begin by making a reminder on the notion of conditioning percentage
for the General case and Gaussian case [4]. In what follows, we will expose the exist-
ing relationship between the conditioning percentage and the correlations in order to
show that all the operations can be done from the correlations and not only from the
variances-covariances [4] to obtain the directed dependency graph .

We will then define the directed dependency graph and we will explain how to ob-
tain the graph from the highest successive conditionings method with a conditioning
percentage value to be exceeded. We will also define the notion of directed depen-
dency graph density to compare the graph obtained from a correlation matrix and the
associated fully connected graph.

The report will end with the application of the learning algorithm of the directed depen-
dency graph obtained from a correlation matrix for the Harman23 and Ability matrices
that can be found in the R software.



2 General conditioning percentage

We use the inequalities 2(X3]X1,X2) < h(X3]X;) < h(X3) to define the conditioning
percentage [4].

Definition:  Given a set of variables Q = X;_\ _,, the variable X; € Q, the subsets
Q c Q\X; and Q, = Q\{X;,Q} we can define the conditioning percentage Ax q, of
variables Q1 which act on the variable X; as follows:

h(X;) = h(X;|Q)
h(Xj) = h(X;l1, Q)

Axjjo, =

0< /lXj|Ql <1

From inequalities 1(X;|Q;, Q) < h(X;|Q;) < h(X;), if we have the equality: h(X;) =
h(X;|Q1,€Q) then A(X;|Q;, Q) = h(Xj|Q;) = h(X;). In this case, X; L Q; UQ, and
Axja, = 0. (Where the symbol L corresponds to the independency symbol)

If h(X;) # h(X;|Q1,€) and A(X;) = h(X;|Q;) then X; 1 Q; and Ax o, =0

3 Gaussian conditioning percentage

Definition:  Given a set of Gaussian variables Q = X;- .. ,, the Gaussian variable
X; € Q, the subsets Q; c Q\X; and Q, = Q\{X;,Q,} we can define the Gaussian
conditioning percentage Ax q, of the Gaussian variables Q, which act on the Gaussian
variable X as follows:

L In(27.e.Ky) - %ln(Zn.e.KXz_pl)
J J

h(X;) = h(X;|Q) 2
In(27.e.Ky) - 5 In(2m.e.Kyei, ,)

I T (X)) — h(X Q1 Q0)

1
2

In what follows, we will consider the gaussian conditioning percentage.



4 Conditioning percentage and correlations

We will now establish the relation between the conditioning percentage and the corre-
lations

ln(kxjglgl) ln(l - IN(;;I_;QI .k&%.kxﬁgl)

/lX-|Q = = = ~ ~_ 7
e ln(KX/2|Ql,Qz) 1n(1_Kﬁ(,-;n,,sb-K(glzl,gz)z-KXi;Qth)

We have:
KX%\QI
%ln(2n.e.KX2)—%1n(27r.e.KX2_‘Ql) In( K )
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5 Directed dependency graph

Definition:

The directed dependency graph is a directed graph to which we attribute for each node
a random variable and the conditioning percentage linked to the edges going from the
set of nodes € to the node X;:

h(X;) - h(X;|Q)
h(X;) = h(Xj|Q1,2)

/lleﬁl = = ClEQ[lﬂPX/lQ] (Xj, CJI)] +

0< /lX/|Ql <1

h(X;)

W > 0 are posmve constants

1
Where C[ = W > 0 and C2 =
for each node if h(X;) + h(X;|Q4,Q,).

If/lXj|Ql =0, h(Xj) = h(X]‘Ql) and h(X]) * h(Xj|Q],QQ) then Xj 1O
Ifﬂlegl =0and h(XJ) = h(Xj|Q1) = h(Xj|Ql,Qz) then Xj 1 Qi u,.

For each node X;, we can see that the conditioning percentage Ay o, is an affine
application of the average conditional probability Eq[ln Py o, (x;,w1)], this is the
reason why we can say that we have probabilistic causal sub-models evaluated by
the conditioning percentage for each node of the directed dependency graph. In
what follows, we will compute the conditionings percentage from correlations:

ln(kxﬂgl) ln(l - k;(j;Ql 'Kvéfl'ka;Ql)

ln(kx/2’|91~92 ) In(1- f(;(.f;ﬂl,ﬂz f((}lll,ﬂz)z f(x";Q' )

Ao, = = C 1 Eq[In Py |, (x}, 01)]+C2

For each node, the relation above relates the correlations to the probabilistic causal
sub-model evaluated by the conditioning percentage.



6 The highest successive conditionings method

Among all the dependency graphs learned from the correlation matrix, we will choose
the one using the highest successive conditionings method for each node. This method
allows to obtain the smallest subset of parent nodes that most strongly condition the
child nodes with a conditioning percentage value to be exceeded. For each node X;,
this method can be described by the following optimization problem:

n}gx Ax|x;
max /lX,\X,-,Xk
Xk -

max AX|X,. XX
1

For this optimization problem, we will define a threshold to be exceeded by the condi-
tioning percentage for each node in order to consider the dependencies model as good.
This threshold value will be set to 90% (1 = 0.9).

In what follows, we will propose the learning method applied to the Harman23 and
Ability correlation matrices that can be found in the R software.



7 Directed dependency graph density

Definition:

The directed dependency graph density is the number of the directed dependency graph’s
edges divided by the number of the fully connected graph’s edges assigned to the di-
rected dependency graph.

Example:

for example, the directed depedency graph below has 4 edges

(O—®

and the fully connected graph assigned to the directed dependency graph has 12 edges
the directed dependency graph density is therefore equal to:

4
Density = - 0.3333333



8 Directed dependency graph obtained from the Har-

man23 correlation matrix

In what follows we will consider the Harman23 correlation matrix which can be found
in R software. In the following, we will use the highest successive conditionings
method. We will set a percentage value of 90%(A = 0.9) to be exceeded. We will
show step by step the operations that allow us to obtain the directed dependency graph

from a correlation matrix.

1.000 0.846 0.805 0.859
0.846 1.000 0.881 0.826
0.805 0.881 1.000 0.801
7 0859 0.826 0.801 1.000
(X1 X6XX0.X5X6.%.%)07 =1 0,473 0376 0.380 0.436

0.398 0.326 0.319 0.329
0.301 0.277 0.237 0.327
0.382 0.415 0.345 0.365
X = Height
X, = Arm.span

X3 = Forearm

X4 = Lower.leg

X5 = Weight

Xe = Bitro.diameter
X7 = Chest.girth

Xg = Chest.width

8.1 Conditioning percentage for the node X;

) ) ln(f(xgpgl) =0.2427854
Xs|X1 T In(R g‘xlxz,x}.xz‘.xs.xf,,xﬁ =u.
ln(f(lex )
N ) ] 5152 =0.2909297
Xs| X2 ln(Kxg\x,.Xz~X3~X4~X5’Xf>'X7)
. ) ln(kxgm) =0.1950563
Xs|X5 = ]n(kxg‘xlVXZ.X3,X4AX5.X6.X7) = VU
o In(Ry2yy, ) = 0.220068
Xs|Xa = ]n(kxg\)(]~X2~X3'X4‘X5‘X6’X7) =Y.
lﬂ(kxép(s)
- — =0.7751195

3 1X1.X2.X3.X4 X5.X6.X7 )

0.473
0.376
0.380
0.436
1.000
0.762
0.730
0.629

0.398
0.326
0.319
0.329
0.762
1.000
0.583
0.577

0.301
0.277
0.237
0.327
0.730
0.583
1.000
0.539

0.382
0.415
0.345
0.365
0.629
0.577
0.539
1.000




In(K
n( X§|X6)

=0.6231575

Axg|xs = R
81X = In(K §\X1<X2,X3~X4~X5>X6'X7)

1n(KX§|X7)

=0.52829

AX X, = -
sl ln(Kxg\xl,xz.x3.x4.x5.x6x7)

The maximum conditioning percentage is Ax,x; = 0.7751195

ln(f(lex X )
A SR YT PR =0.7987161
X3|Xs5,X) ln(Kxngl,X2,X3.X4.X5.X6.X7)
In(f(lex %)
— 81152 _
/le‘Xs,Xz - ln(KX§|X1,X2<X3,X4.X5.X6,x7) =0.8726499
ln(f(lex )
— gl45:43 _
/le‘Xs,Xs - ln(f{X§|X| .X2'X3‘X4'X5'X6>X7) =0.808921
In(K,, s ;)
AXS‘Xs X4 = In(K. - = 08012409
' n( X§|X1.x2,x3,x4,x5,x6.x7)
M) g gaanp)
/le\Xs,Xé - ]n(f(xglxl,szxg,x4.x5.x6,x7) = V.
ln(i{x2|x;,x7)
. =0.8102651

AxyXs X5 = (R
s X7 ln(Kx§|xl,xz,x3,x4,x5.x6,x7)

The maximum conditioning percentage is Ax;x; x, = 0.8726499

x| Xs.X2.%1 = g ’?:;Iszzz;xﬂ =0.9043183
Axi|X5.X2.%5 = g ki;iii:ij:iéx7) =0.9005535
x| X5, X0.Xs = g ki;fi:ii;ﬁ =0.8926957
Al o X = T Kll(K)G) - 0.9255975
Ax|Xs X0 X7 = ln(I?,](n(Kxg‘XSYXT%) =0.9096271

21X) X0 X3.X4.X5.Xg. X7 )

We consider the maximum conditioning percentage Ax,|x; x,x, = 0.9255975 for the
node Xg.

8.2 Conditioning percentage for the node X;

Ao = ") =0.1149814
XX ln(KX%\xl X5.X3.X4.X5.Xg.Xg ) ’

Ao = —o ") hoe6sa81
X71X; In(K, :

21X X X3.X4.X5.Xg.Xg )



o In(Ryzyy, ) = 0.06998806
X7‘X3 - ln(k){%\XIVX@X}X‘t'XS’XﬁXX) = Y.
o (Ko, ) =0.1369166
X7lXs = ln(f(X%\Xl«Xz’XB-X4~X5vX6’X8) o
1rl(Kx2|X )
/l = — 7175 = 092]5957
X7‘X5 ln(KX%\Xl,X2-X3~X4‘X5’X6’X3)
ln(kxz|x )
N _ 71Xs =0.502859
X7‘X(, ln(KX%\M~X2~X3~X4'X5’X6'X8)
ln(kxzmg)
. : = 0.4155402

Ax|%s = R
7|1Xs ]“(Kxg\xl,xz,X3,X4-X5vX5vX8)

We consider the maximum conditioning percentage Ax,x, = 0.9215957 for the node
X7.

8.3 Conditioning percentage for the node X;

Ao o "Ea) o ee0026
Xo|X1 = ln(i(xg\xl,xz.Xg.X4-X5»X7vX8) = V.
Ao o "E) 010434
Xo|X2 = ln(f(xg‘xl4x2,x3.x4.X5,X7va) o
Ao = ——"Fax) 0 1sg0s7
X(,‘X} - ln(KXé\Xl<X2,X3.X4~X5>X7'X8) - Y
(K2, )
_ 674 =
/lXG\XA - ln(f(xg\xl,XZ,X3.X4~X57X7vX8) =0.1236185
Ao = ") (9397567
Xo|Xs = ln(kxé\XIVX2~X3~X4~XS>X7 Xg) - Y.
ln(I?sz( )
1 - 67 =0.4481922
Xo|X7 ln(Kxg\Xl,Xz-X3~X4~X5'X7'X8)
ln(kxzp( )
TV e - 04087

21X X.X3.X4.X5.X7.Xg )

We consider the maximum conditioning percentage Ax,x, = 0.9377567 for the node
Xe.

8.4 Conditioning percentage for the node X5

. _ ln(kxgm) =0.1833009
Xs|X, ln(f(xg\xl,Xz’XBvX4‘X5'X7’X8) .
ln(kx X )
/le‘Xz = ln(f( gl 2 =0.1103222

2
X21X) X X3.X4. X X7 Xg )
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ln(f(lex )
XX = R s : =0.1128758

21}, X, X3, X4 X6 X7 X )

1n(kX§IX4)

/le‘sz - ]n(kxg‘xl~X2~X3VX4.X6,X7,X8) =0.1526023

gy, = o) 689035

Xs|Xe = ln(i(Xg\Xl~X2-X3~X4~X(,»X7,X3) o

ln(KX§|X7)

/lXS‘X7 - ln(kxg‘xl’XZ,X3,X4.X6,X7,X8) = 05509529
ln(f(xglxx)

/1X5‘Xg = IH(K - = 0.3644881

X21X| X X3.X4. X X7 Xg )
The maximum conditioning percentage is Ax;|x, = 0.6289935
ln(ffxg

AXs|Xe. X1 = (R
51X6,X1 ln(Kx§|x,.XZVX3~X4~X6X7»X8)

|X6vX1)

=0.6906199

In(K. )
Axs|Xe.Xo = In(K L =0.6611338

203 Xy X X X X X )

ln(f(lex )
78 == 3o =0.6659439
Xs|X6,X3 ]n(KX‘Szlxl-X2~X3,X4VX6,X7.X8)

In(f( )
Ao, = —r—— M 0,6987019

In(K,»
( X21X|.X).X3.X4.X6.X7.Xg )

In(K. )
Axs[Xe X7 = b =0.8819717

In(K >
( x5|xl,x2,x3,x4,x6.x7,xg)

In(K
Ay, XeXs = 177 n( x§|X6‘X8)
51X6,X8 1n(KX§|X1,Xz,x3.x4.X6‘X7‘X8)

=0.7282387

The maximum conditioning percentage is Ax;x, x, = 0.8819717

ln(Kxg\x6,x7.xl )

AXs|Xe X0 X0 = e em—" 0.9417737
A M) goa7784
X5|X6,X7.X2 = ln(kxglxl.Xz,X3,X4,x6.x7,x8) =V
ln(sz\xé,x7<x3 )
/lXS‘X(JyX%X} = ln(k"zmvaz,Xg,X4,x6,x7.x8) =0.9190013
A _ M) g590041
X5|X6,X7.X4 = ln(kxngl»szX3<X4,X6.X7.X3) =Vu.
"Frimrnn) o 9250194

/lX Xo,X7,Xg = “
5|X6.X7,X3
5| X6.X7 ln(KX§IX1,XzyX34X4,X6,X7.Xg)

We consider the maximum conditioning percentage Ax;|x,x,x, = 0.9417737 for the
node Xs.
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8.5 Conditioning percentage for the node X,

ln(KX_/ZJX] )

/1X4\X1 = ln(f(xf\xl,xz,x3,x5.x6,x7,x8) =0.8620462
g, = o) 381854
X2 = ln(i{xﬁ\x,,xz.x3.x5.xﬁ.x7,x8) T
ln(klex )
A = —= a2 =0.6606284
XX ln(Kxf\xl XXy X Xg X7 Xg )
g = B 135746
XalXs = ln(f(xi\xl,xz,x3,x5.xé,x7,x8) e
g = o) 07375554
XalXe = ln(i{xﬁ\x,,xz.x3.x5.xﬁ.x7,x8) e
ln(klex )
A = —= a7 =0.07280901
XalXs ln(Kxf\xl X, X3.X5,Xg,X7.Xg )
ln(kxilxx)
/1X4‘Xg =@ =0.09205062

X21X|.X).X3,X5,X.X7.Xg )

The maximum conditioning percentage is Ay, |x, = 0.8620462.

ln(f(lex )
4 =z i =0.9534023
X4|X1,.X2 ln(KXA%le,X2,X3.X5.X6~X7,Xg)
ln(f(lexl&)
/1X4\X1,X3 = ln(f(x2|xlx s Xty Xg) =0.9516869
§1X1.X2.X3.X5.X6.X7.
ln(f(lex )
z TG PR =0.864842
X4|X1,Xs5 ln(KX§|X| VX2<X3,X5,X6.X7.X8)
ln(f(lex ¥ )
4 == e =0.8625307
X4| X1, X6 ln(KXA%le,XQ,X3.X5.X6‘X7,X8)
ln(f(lexlﬁ)
/1X4\X1,X7 = ln(f(x2|xlx e Xg) =0.8748237
1 1X1.X2.X3.X5.X6.X7.
In(K 21, xg)
/1X4\X1,X8 = ln(KXZ L =0.8659659

31X X.X3.X5.Xg.X7.Xg )

We consider the maximum conditioning percentage Ay, x, x, = 0.9534023 for the node
Xy.

8.6 Conditioning percentage for the node X;

A, = ) 64763
Xl ln(i{x%\x,,xz.x4.x5.xﬁ.x7,x8) T
ln(i(x.z‘lxz)
Axy|x, = : =0.9283618

In k 2
( X31X) X)Xy X5.Xg.X7.Xg )
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In(K )
/le\th = ln(f( X§|X4 =0.6364122

2
21X X X4 X5 X X7.Xg )

Ao, = o Fng) - 0.09672463
b = ln(KX%\XIvxg,x4,x5.x6.x7.x8) e

Ao = ) - 006656138
X3|Xs = ]“(RX§\X1~x2,x4,x5.xf,,x7,x8) = V.

A, )x, = Ky = 0.03585373
XslX7 = ]“(kxg\xl,xz,x4,x5_x6,x7,x8) o

In(K,2,, )
Ay = TR - 0.07859793

X21X].Xp. X4 X5 X X7 Xg )

We consider the maximum conditioning percentage Ax,x, = 0.9283618 for the node
X.

8.7 Conditioning percentage for the node X,

ln(kX%P(] )

=0.6645944

/lX X g
2 ln(KX%\Xl,X3,X4.X5.X6,X7,X8)

In(K )
Agx, = i = 0.7909034

In(K
( X31X| X3.Xg.Xs5.Xg.X7 X3 )

In(K )
Do, = o = 0.6058329

2
X21X| X3.X4.X5.X.X7.Xg )

ln(kxgl)%)

AlXs = ok = 0.08053883

X21X|.X3.X4.X5.X.X7.Xg )

In(K )
Ay, = X% = 0.05936856

In(K
( X31X|X3.Xg.Xs5.Xg.X7.Xg )

In(K )
Ay, = L - 0.04218238

In K 2
( X21X| X3.X4.X5.X.X7.Xg )

ln(kX%P(g)

= 0.09987233

/lX Xg — 7
21X ln(KX%\Xl,X3,X4.X5.X6,X7,X8)

The maximum conditioning percentage is Ay, x, = 0.7909034.

ln(klex X )
A = —= 23] =0.9341878
XXX ln(Kx% 1X) X3 X, Xs Yo Xy Xg )
ln(f(lex X )
P = — 23 =0.8960546
X2l Xy ln(KX% [X) X Xy X Xg X X5 )
p __ MRawmn) 995610
Xa|X5, X5 = ln(f(x%p(l,x3,x4,x5,x6.x7,xg) =079
In(K )
SRNT 07962427

AX X3,X6 — K
213X ln(Kx%p(,.x3.x4.x5.x6.x7.xg)
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In(KX%|X3.X7)

x5, %; = IO — 0.8026673
MEann) o 850087

Ay =
21X3,X3
ln(KX% [X) X Xy X Xg X g )

We consider the maximum conditioning percentage Ay, x, x, = 0.9341878 for the node
X,.

8.8 Conditioning percentage for the node X;

Ao, = ) 2425306
X = ]n(i(xz\xz,x3,x4.xi‘x(,x7,x8) e
1 546
ln(kqug)
78 =iz 1 =0.61644
Xl ]n(lez\xz.x3.x4.x5.xﬁ,x7,x8) 0.616
ln(klex )
A = —= L =0.7904523
XX ln(Kxf\x2<x3.x4.x5 XXy Xg)
A = ) 1495081
Xl = ]n(i(xz\xz,x3,x4.xi‘x(,x7,x8) e
1 546
ln(kXZP( )
A = —= 175 =0.1018088
XilXs ]n(Kx]Z\xz.x3.x4.x5 XoXpXg)
ln(klex )
A = —= L =0.05606627
Xilx ln(Kxf\x2<x3.x4.x5 Xg.X7,Xg )
ln(kX%IXs)
At = i ~0.09311882

21Xp.X3.X4.X5.X.X7.Xg )

The maximum conditioning percentage is Ay, x, = 0.7904523.

ln(f(lex )
7 =R L =0.9398735
X |X4,X2 ln(KX%|X2,X3,X4.X5.X6.X7,X8)
ln(f(xlglxébxs)
AX]‘XA,X3 = ]n(klex . ) = 08833257
11X2.X3.X4.X5.X6.X7.Xg
ln(kX2|X4X )
7 =z o =0.818055
XX Xs ]“(Kx?~ ¥ X3,y Xs X X7 5 )
ln(f{x2|x xg)
A = N2 (8250753
X1 |X4,X 1n(1<x%|X21X3'X4_X5'X6'X7>X8)
ln(f(xlglxwﬁ)
/lXI‘X4,X7 = ln(f(lex e ) = 0.7914728
11X2.X3.X4.X5.X6.X7.Xg
In(K )
/1X] [X4.Xs = ]n(f(x L =0.8027596

2
21X2.X3.X4.X5.X6.X7.Xg )

We consider the maximum conditioning percentage Ay, x, x, = 0.9398735 for the node
Xi.
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X 1L {XZ,X4}

Xo [ {X1,X3)
X5 [ {X2}

Xy f (X1, X0}
Xs f {X1, X6, X7}
X | {Xs}

X7 [ {Xs}

XS 7‘/- {XZ’XS»X6}

Ax x2.x, = 0.9398735
Ax,|x,.x; = 0.9341878
Ay, jx, = 0.9283618
Ax,|x, = 0.9534023
Axs1x, xo.x, = 0.9417737
Ax|x; = 0.9377567
Ay,|x; = 0.9215957

A%, X, = 0.9255975

15
Density = 36" 0.2678571
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9 Directed dependency graph obtained from the Abil-
ity correlation matrix

In what follows we will consider the Ability correlation matrix which can be found in
R software. In the following, we will use the highest successive conditionings method.
We will set a percentage value of 90%(A = 0.9) to be exceeded. We will show step
by step the operations that allow us to obtain the directed dependency graph from a
correlation matrix.

1.0000000 0.4662649 0.5516632 0.3403250 0.5764799 0.5144058

0.4662649 1.0000000 0.5724364 0.1930992 0.2629229 0.2392766

7 ] 0.5516632  0.5724364 1.0000000 0.4450901 0.3540252 0.3564715
(XXX XuX5.X6)* = 0.3403250  0.1930992  0.4450901  1.0000000 0.1839645 0.2188370
0.5764799 0.2629229 0.3540252 0.1839645 1.0000000 0.7913779

0.5144058 0.2392766 0.3564715 0.2188370 0.7913779 1.0000000

X, = General
X5 = Picture
X3 = Blocks
X4 = Maze
Xs = Reading
X6 = Vocab

9.1 Conditioning percentage for the node X

, ) ln(i(xg\x,) =0.3038817
XelX1 ~ In(K g\xl<x2,X3.X4~Xs) o

) ) In(Kyoy,) =0.05829067
Xo|X2 = ln(kxg\xpxzy)‘}-)%xs) =y

. ) lﬂ(kxg\xs) =0.1343647
X(,‘XS - ln(kxé‘xl,XZ,X}XAvXS) o

m(i{xg\ﬁ)
/lX(,‘X4 = ]n(f(x S

g\xl Xp.X3.X4.X5 )

In(K

21 )

X5
A =—2>0=  =0097311
Xs[Xs ]“(Kxg\xl Xp.X3.X4.X5 )

We consider the maximum conditioning percentage Ax,x, = 0.97311 for the node X.

16



9.2 Conditioning percentage for the node X;

ln(KXg\X] )

/lX5‘X] = ln(lzxg\xkxz_)(},)g‘xé) = 03670778
ln(f(X?‘Xz)
Ax;s|x, ln(kxg\xl,xz,x3,x4.xé) =0.06509369
Ao = —"Fas) 0016866
Xs|Xs T In(R g\X1<X2~X3-X4~X5) -
ln(i(Xz\X4)
/lXS‘X4 = ln(kx%\xl,xz,x})(“_x(‘) =0.03128545
Ao = ") e043806
Xs|Xs = ln(Kxg\Xsz,Xg.Xz‘-Xs) o

The maximum conditioning percentage is Adx;|x,

ln(klex X )
= ]n(sz—“ =0.9945806

Ax
51 X6, X1
glxl -X2~X3~X4~X6)

ln(f(lex X))
_ 5|X6:X2 _
/1X5‘X6,X2 - ]n(Kxngsz,X3.X4.X6) =0.9084487

ln(KX2|X X )
= ]H(K,(zs—“ =0.9089063

/lX | X6, X
shXe.Xs |leX2~X3~X4~X6)

ln(kxg

ln(Kxg X)Xy X3.X4 Xg )

|X6~X4)

Axs|Xexs = =0.8946795

We consider the maximum conditioning percentage Ax;|x, x,
Xs.

9.3 Conditioning percentage for the node X,

Ao = K)o iene3
X = ln(f(xf\xl,xz,x}xs‘xﬁ) e
ln(f(xi\xz)
/1)(4‘)(2 = ]n(kxi\xl,x})(}x&xﬁ) = 0148435
Ao = ") e63035
Xl = ln(f(xf\x,,xz.x}.xs‘xﬁ) e
Ao = ) aaakas
XalXs = ln(f(xf\xl,xz,x}xs‘xﬁ) e
In(K,2, )
Ay, = ST - 0.191692

]n(Kxi\xl X5.X3.X5.Xg )

=(0.8943826.

=0.9945806 for the node

The maximum conditioning percentage is Ay, |x, = 0.8623935.

17



/1X4‘X3,X1 =

/lXA\Xs,Xz =

/1X4\X3,X5 =

/1X4‘X3,X6 =

We consider the maximum conditioning percentage Ay, x, x, = 0.9258143 for the node

Xy.

ln(f( )
N ,9958143
n( Xflxl,xz.x3,x5,x6)
In(K. )
_ MR (8900614
ln(Kxf XX, X3.X5.Xg )
ln(kXZIX}X;)
—=—t20 = ().8662743
ln(sz XX X X X )
ln(f( )
W’ _ 8826522

In(K
n( x§|xl,x2,x3,x5,x6)

9.4 Conditioning percentage for the node X;

R = —"Fan) ) sen6ag
X31X, ]n(f(xz‘x Xy Xy X5 Xg) .
3141:42:44.45.46
ln(f(xz‘xz)
B = B ) 02070259
3141:42:44.45.46
e "Rew) aisaia
Xs|Xa ln(kxg\xl«xwﬁt-xsx(\) '
ln(f(Xz‘X )
X31Xs ln(Kxg\xl,xz,m.XsXs)
ln(kxz‘x )
2 = 8T _0.1940932
X31X6 ln(Kxg\xl,xz.X4.X5~X6)
The maximum conditioning percentage is /1X3\Xz
ln(k)@ %2.% )
/1X3‘X2yxl = m = 08060573
21X, X Xy Xs.
ln(KX2|X x,)
/l — ~3—2‘4 = 0838182
X31X2,Xs ln(Kx§|X1,x21x4,x5.X(,)
ln(kxzp( x)
X31X2.Xs ln(Kx§ I¥1 X3, Xy Xs Xg )
. o "Ranx) o 00385
X3]X2. X6 ~ ln(kx§|xl,xz,x4-xs-xs) o

=0.5670259.

The maximum conditioning percentage is Ax,|x, x, = 0.838182.

/lxs X2 X4 X1 =

/lxz |X2.X4.X5 =

ln(Kxg %)

ln(Kx§ IX) X Xy X5 X )

=0.9855479
I“(kx§|xz.x4.x5
ln(kX§

)
=0.9095238

1X].Xp.X4.X5.Xg )

18



/lxs [X2.X4.Xs =

hi( Kxg X5, X4.Xg
In ( sz
3

)
=0.9117135

X1 .Xp.X4.X5.Xg )

We consider the maximum conditioning percentage Ayx,x, x,x, = 0.9855479 for the
node X3.

9.5 Conditioning percentage for the node X,

Axy|x,
Axy|x;, =
/lXZ‘X4

/le‘Xs -

Axy|xs =

ln(i(X%\X] )

_ =0. 1722
ln(KX%\X1<X3~X4~X5~X6) 053017
ln(sz\)@ )
_ 2 =0.8586699
ln(Kxg\xl X3.X4.X5.Xg )
In(K )
M 008218523
n( xg\xl,x3,x4,x5.xﬁ)
In(K,2p.)
T 0.1549267
ln(Kx%\xl,x3,x4.x5.X6)
In(K )
SN 0.1275109
ln(Kx%\xl X3.X4.X5.Xg )

The maximum conditioning percentage is Ay, x, = 0.8586699.

/le\Xs,Xl =

/lxz\xz,XA =

/lXZ‘X%XS =

/le\Xs,Xs =

ln(KX%P(SXI )

_ =0.9659894
ln(Kx% X1.X3.X4.X5.Xg )

ln(k)<2|)(3~’(41)

_ 2 =0.8739891
ln(Kxg [X],X3.X4.X5.X6 )

l“(f(x§|x3.x5)
ln(kx§|xl,x3,x4,x5,xa) =0.8720691

In(K )

T () 8632458
ln(Kx% X1.X3.X4.X5.Xg )

We consider the maximum conditioning percentage Ay, x, x,

X>.

9.6 Conditioning percentage for the node X

/lxl X, =

Ax|xs =

Ax|x, =

Ax |xs =

ln(kxlz‘x2)
]“(kx]z\xz,x3,x4,x5.xﬁ) = 0.34696

ln(lez\X )

_ £l =0.5136137

In(K f\X2<X3~X4~X5~X6)

"Raw) o 1740261
ln(kx]z\x2,x3,x4.xs‘xﬁ) e

ln(kxz‘x )

175 —

]n(kxlz‘xz~X3~X4.X5.X6) =0.5717525

19

=0.9659894 for the node



ln(kXZ\XG)
/le‘XG = ]n(kxz\x7,xi,x4,x§_xﬁ) = 04350263

The maximum conditioning percentage is A, |x, = 0.5717525.

N ~ lﬂ(kx%Iszz) =0.8174173
X1|Xs5,X> = ln(kxﬁxz,x}&v"sxﬁ) o
ln(f(xz|x AX3)
Al = i 3; 5 =0.8997852
e
In(K )
X21X5.Xy =0.6976076

P =
11X5,Xs
ln(lez X5,X3.,X4.X5.Xg )

(K2 v )
N 0.5910925

/l = =
X1 X5 Xs ln(Kxf X5 X3.X,.X5.Xg )
The maximum conditioning percentage is Ay, |x; x, = 0.8997852.

ln(Kxf Xs.Xs.Xy )

A Xs.X.%, = T 0.9628853
A - ) g 0931183
X1 |Xs5,X3,X4 = ln(kaIXz,Xg,x4,x5,x6) =u.
In(K. 2xs x5, )
/lXI |X5.X3.X6 = ln(f(xz L =0.9054526

i |x2,X3,X4,X5.X(,)

We consider the maximum conditioning percentage Ayx,|x; x,x, = 0.9628853 for the
node X;.

20



X, [ {X0, X3, X5} Ax,oxsx, = 0.9628853
X [ {X1.X35} Ay, = 0.9659894
X5 [ {X1, X0, Xa} Ay, xo, = 0.9855479
Xi [ {X1.X35} Ay x, = 0.9258143
Xs | {X1.Xo} Axoxx, = 0.9945806

Xo | {Xs} Ax,px, = 0.97311

13
Density = 30" 0.4333333

10 Conclusion

In this paper, we have shown how to obtain a directed dependency graph from a correla-
tion matrix. The method was detailed using two practical examples with the Harman23
and Ability correlation matrices.
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