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Abstract

The best-known profile function is tl&aussian function, which can be used, for instance, to
fit successfully optical absorption bands or neutsoattering patterns. However, peaks<of
ray powder pattern can hardly be fitted well witltls a simple function. Whereas combined
functions are widely in use for such purpose, wpliag Cauchy functions to fit our well
resolvedGuinier powder diffraction data. Th&auchy function of second order is well suited
and will be described in more detail as a didaettercise in crystallography as well as
mathematics. In addition, a profile function with @xotic non-integer exponent based on the
golden mean is supplemented. This contribution bellcontinuously revised before its final
publication to react ofFewster’'s new diffraction theory that will change the neaitin future.
As an example beyond crystallography the authteditGerman Covid-19 data to correlate
virus infection peak maxima with causal events.
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1. Introduction

Profile functions of different full width at half aximum were used as so called line functions
to decompose optical spectraXeray powder diffraction patterns. Normalized totynthey
will be simply multiplied with the line intensityot represent the full information. Fit
parameters are the location of the line, its intgn@nd the width, respectively. In this
exercise, we don’t consider combined functions sedutoday irRietfelt refinement, but the
series ofCauchy functions of ever steeper profile, where thet fimrsmber of the series (order
one) is alternatively known akorentzian profile function. Mitra [1] recently described
theoretical models of diffraction line profiles detail. However, we used the second order
Cauchy function successfully to decompose the highly Ikesb X-ray powder diffraction



patterns, taken with our double-radi@sinier diffractometer with imaging plate (IP) detector
[2] [3].

BaronAugustin-Louis Cauchy was a French mathematician and physicist (* AB3.1789 in
Paris, T May 23. 1857 in Sceaux, France). In thigtrdoution, we deal with two findings of
this great researcher, ti@auchy profile functions beside th€auchy integral formula to
verify their half-peak widths. In addition, we cdbtite a sort of Cauchy line functions with
non-integer order.

2. Cauchy Functions

Cauchy line profile functions, of ordern are represented by the following equation:

P==- {1+ (=92, ) (1
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where w is the effective half-width ana@ the fictive one, witha = %z YEowe = 2w
represents the full width at half maximufV{HM).

Peak (line) maximum is given foE t,
B

Pn,max - (2)
It yields further fom = 1.: B=1r, c=1 3)
n=2: B=2h, c=++v2—-1=0.64359425... (4)
The constant can be verified, if we s&t =ty —t,for Pya/2.
Doing this, we can find the constanfor the third ordeCauchy function, because = bpeto
Ps(max) _ B _ B 1 _ B 1
2 T2 a [1+(t1/2_t")2]3 T a [14c2]3 (5)
Solving for ¢ gives c =+/32-1=0.509825
For theCauchy functionsP(t) respectivelyP,(t) we get
w
PO = e ©
Py(t) = = (7)
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Integration of theCauchy function of first order yields with the substitni x = t —¢,
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Therefore, this integral is normalized to unity.

Integration of theCauchy function of second order yields

© 0 d
J e ey 4 = By (9)

=% a (1+[( 0 (1+x2)?
when simplifying with the substitutiom = (t —t,)/a anddx = dt/a or dt = a- dx

The solution gives

dx X T
f_oo(sz)z = [2(1+x2) +2-atan(0)]*g = (10)

Thus the integralf”. P,dt =B ["._ (sz)z = B-Z=2-Z=1is also normalized to unity.
The integral widthw; results from the relation
Prax Wi =1giving w; = 1/P 0y (12)
We get fom =1 w; = g wr = 1.570796 - FWHMP (12)
n=2 w; = % -wp = 1.220331 - FWHMP (13)
n=3 Wi = —=- wy = 1.155394 - FWHMP (14)

Cauchy functions were illustrated in thgyures landFigure 2below.
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Cauchy function of second order
Fx) = (cafue)/[1+4% ™ (x-xc)*/we’]?

Peak(maximum) = 4.097249

c = sqgr(sqr(2)-1) - c/u
= C1/Wg

= 0.643594

4 ¢ = 4%c/n
= 0.8194496
W = FWHM
> 3 Normalization:

Peak Integral = 1

FWHM = ©.2000
Integral width = 0.2441
= 1/peak(maximum)

Figure 1. Cauchy function of second order with a chod&WwHM = 0.2 and normalized to
unity peak integral. The function is symmetric arduhe center at chosegs 5.
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Figure 2. Cauchy functions of orden = 1 to 3 with the sameéWHM = 0.2

3. Gaussian Profile Function in Comparison with the Cauchy Function of Second Order

This profile function with the smallest width inetbase compared t@auchy functions was
treated for the sake of completeness. This nornsalilslition represents the most important
continuous probability distribution and has beesgérently described in the literature. It is

defined as follows

1 1 t-t
exp — = (=2)*

f&) =

oV2m

First, we will show that the below given integrsinormalized to unity
1 co 1

According toEvesons [4] one may write in a higher dimension

1 oo 1 0o 1 1 poo 1
12 = exp(=5x*) dx [_ exp(=;y*) dy = - [_ exp—7(x* +y?) dxdy

Using now polar coordinates one yields

(15)
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1*=—[ [, exp(=;r?)rdedr = [ exp(—;r?)rdr = —[exp(—;7%)]72, = 1 (18)

Thus, the integral is

(19)



For purposes of programming applying the least igueefinement routine, we reformulate
the equation to get the full width at half maximuvg thereby the area under the integral
must remain unity. We get the following equation

_ o _ cp(x=x)?
fGo) = 2 exp (-2, (20)
where the constants arec; = em@) ﬁ = 0.93943728 and c, =4-1In(2)

\/(Zn) wi

Figure 3compares the normalize@aussian function with theCauchy function of second
order, both with the same peak height but diffefeWHM. The Cauchy function shows
reducedFWHM compared to th&aussian, but smeared broader out in the base to give the
same unit integral area (see alsgure 9. Therefore, be cautious with a statement like ‘th
Gaussian has smaller half-width thaGauchy functions’, because this is only true near the
base of the function.

We use both functions alternatively in o@rofile-C2G.bas program (pre-published in
Researchgate.net), replacing the scattering anglé fr x, and the measuredray intensity
for y, respectively5]. If you want to use the program to 6itv-VIS data, then you have to
choose thé&aussian option.

Gaussian function

F(x) = (c/we)*exp(-c* (x-xc)2/we?)

¢ = 2¥sqr(2*1In(2))/sqr(2*m)

= 0.93943728

Peak(maximum) = 4.697186
= 51/WF

4t ¢, = 4*%1n(2)
Wp = FWHM
> 37 Normalization:

Peak Integral = 1

FWHM = @.2@00 (0.1744)
Integral wWidth = @.2129
= 1/Peak(maximum)

Cauchy function
/

of second order
. . . T X

Figure 3. NormalizedGaussian profile function (blue) in comparison withGauchy function
of second order (red) with the same peak heiglolysty then differenEWHM.



4.4 4.6 4.8 5 5.2 5.4 5.6

Figure 4. Enlarged image detail from Figure 2
Gaussian blue,Cauchy function of second order red, the arrow showsthstion at-\WHM.

4. Convolution of Gaussian respectively Cauchy Functions

Results of such calculation can be useful wheragiparatus contribution to the broadening of
an X-ray reflection is to be calculated out, for exaenf determine the true crystallite size.
Two peaks represented by the same function typédearonvoluted and deliver on the back
transformation of thé&ourier transform the following result for the width atlfhenaximum
considering the combined peak.

Cauchy function of order 1: Ww; + w, [21

i . V2 _ V2 V2
Cauchy function of order 26]: wYe = w4+ wy (22)
Gaussian function[7]: w? =w?+ w? (23)

The convolution of the functiorf§t) andg(t) reads as

fO*g® = [ f@gt—1)dr (24)

The Fourier transform of the convolution product represents gnoduct of theFourier
transforms of both starting functions

F=[" e t[[” f(0)g(t —v)dr]dt = F(w)G(w) (25)



F(0)6(w) = exp (- M) (26)
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In this way the convolution resulted in

t—t,

fx) x g(x) =ﬁ xp[— 2(6 )] (97

leading forw = ¢ to the final result
w? = wi + wi (see 23)
For the first ordeCauchy function we write now(t) (Lorentzian) and substitute = t —¢,

w

L() = mss (28)
then apply thé-ourier transform
o—ikx

FLEY = [ e € =1 [ s (29)
From Cauchy’s integral formula it followg8]:
Casek < 0: the contour integral is taken counter-clodevi

PN = 5 T de = B = e (0

Case k > 0: the contour integral is taken clockwask minus to the integral!)

FLG)} = 2§ dz = -2 e powie (31)

z—iw Z+lW b4 —-2iw
Finally we get F{L(x)} = eIk (32)
Then we obtain for the product of two functions
F{L1()JF{Ly(x)} = e~ HWatwa), (33)

Because this product represents the convolutiontwaf Lorentzian type functions, the
convoluted function has a half-width of

w=w+w,
This result confirm&quation 21

The proof for the half-width of convolute@auchy functions of order two according to
Equation 22by a sophisticated decomposition of the integramiibe supplemented soon.
Many years ago, we had analytically verified thiédiy of this relation[6].



5. Cauchy-Type Line Profile Function with Exotic Non-Integer Order

Tentatively, we can try to work also with a noneiger order for the&Cauchy line profile
function, for instance choosing an order betwean®3. A proposal is

@~? = 2.6180339887 ... , wherep = % = 0.6180339887 ... is the golden mean.

The quality to be exotic will only be used in cotitevith Cauchy functions, not generally
quoting the importance of this most irrational nemln biology, cosmology, music, art,
finance, and medicine.

This function is represented by

_ Bc | 2, (tZtoy2y-n g — -2
Fop= -~ {1+c- (53" n=97% (34)
wherB ~ % = 0.772554 .., ¢ = V299 —1 = 0.5505601 ... (35)

However, the integral a®, is somewhat smaller than 1
J= P, dt=0998.. ~ 1 (36)

One can apply instead &f = % an expanded form fd8 to approximate the integral more

exactly to unity
1

Gl (37)

3+m

~ L -1 4 (P y2
B~2n[3(p +(3+7l') +

With this expansion that represents not the exalatisn, the integral intensity deviates only
marginally from 1

“ P, dt = 0.99965 ... (38)
—0 P

Such profile function near th&aussian may find application in special cases concerning
statistics, deciphering secrets of our cosmos pragehes in financial research.

5. Conclusions

The fundamental line profile functions fof-ray powder diffraction or neutron powder
scattering have been summarized as an exercisesraall odds in previously published
contributions misleading the reader have been toedvoid. We extended theéauchy line
profile series with a function of non-integer ordeased on the golden mean. This
contribution is continuously being revised alsolight of Fewster’'s new diffraction theory
[9], before a final publication will be envisaged. As example beyond crystallography
Germany’s active Covid-19 infection cases weredittvith Cauchy respectivelyGaussian
functions[10].
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