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Abstract. We compare various formalisms for neutral particles. It is found that they contain
unexplained contradictions. Next, we investigate the spin-1/2 and spin-1 cases in different
bases. Next, we look for relations with the Majorana-like field operator. We show explicitly
incompatibility of the Majorana anzatzen with the Dirac-like field operators in both the original
Majorana theory and its generalizations. Several explicit examples are presented for higher spins
too. It seems that the calculations in the helicity basis only give mathematically and physically
reasonable results.

1. Weyl Formalism.

The Weyl formalism is just a massless limit of the Dirac equation:

[iγµ∂µ]Ψ(x) = 0 . (1)

Of course, it can be re-written in the 2-component forms:

[p0 + σ · p]χ(x) = 0 , [p0 − σ · p]φ(x) = 0 . (2)

However, if we apply the Noether theorem to the Lagrangian

L =
i

2
[Ψ̄γµ∂

µΨ− ∂µΨ̄γµΨ] (3)

we obtain the current operator

Jµ = Ψ̄γµΨ , (4)

as in the massive case. So, it is doubtful that we can use the massless limit
of the Dirac equation for neutral particles.

In Refs. [2]-[6] we considered the procedure of construction of the field
operators ab initio (including for neutral particles). The Bogoliubov-
Shirkov method has been used.

In the present article we investigate the spin-1/2 and spin-1 cases in
different bases. The Majorana theory of the neutral particles is well



known [7]. We look for relations of the Dirac-like field operator to the
Majorana-like field operator. It seems that the calculations in the helicity
basis give mathematically and physically reasonable results.

2. The Spin-1/2.

Usually, everybody uses the following definition of the field operator [8] in
the pseudo-Euclidean metrics:

Ψ(x) =
1

(2π)3

∑
h

∫ d3p

2Ep
[uh(p)ah(p)e−ipµ·xµ

+ vh(p)b†h(p)e+ipµ·xµ

] , (5)

as given ab initio. The momentum-space 4-spinors ( u− and v−) satisfy
the equations: (p̂−m)uh(p) = 0 and (p̂+m)vh(p) = 0, respectively; the h is
the polarization index. It is easy to prove from the characteristic equations
Det(p̂ ∓ m) = (p2

0 − p2 − m2)2 = 0 that the solutions should satisfy the
energy-momentum relations p0 = ±Ep = ±

√
p2 + m2 for both u− and v−

solutions.
The general scheme of construction of the field operator has been given

in [9]. In the case of the (1/2, 0)⊕ (0, 1/2) representation we have:

Ψ(x) =
1

(2π)3

∫
dp eip·xΨ̃(p) . (6)

We know the condition of the mass shell: (p2 − m2)Ψ̃(p) = 0. Thus,
Ψ̃(p) = δ(p2 −m2)Ψ(p). After simple transformations we obtain

Ψ(x) =
1

(2π)3

∑
h

∫ d3p

2Ep
θ(p0)

[
uh(p)ah(p)|p0=Ep

e−i(Ept−p·x)+

+ uh(−p)ah(−p)|p0=Ep
e+i(Ept−p·x)

]
During the calculations we had to represent 1 = θ(p0) + θ(−p0) above
in order to get positive- and negative-frequency parts. We did not yet
assumed, which equation does this field operator (namely, the u− spinor)
satisfy, with negative- or positive- mass and/or p0 = ±Ep. We should
transform uh(−p) to the vh(p) 4-spinor. The procedure is the following
one [1, 2].

In the Dirac case we should assume the following relation in the field
operator: ∑

h=±1/2
vh(p)b†h(p) =

∑
h=±1/2

uh(−p)ah(−p) , (7)



which is compatible with the “hole” theory and the Feynman-Stueckelberg
interpretation. We need Λµλ(p) = v̄µ(p)uλ(−p). By direct calculations, we
find

−mb†µ(p) =
∑
λ

Λµλ(p)aλ(−p) . (8)

Hence, Λµλ = −im(σ · n)µλ, n = p/|p|, and

b†µ(p) = +i
∑
λ

(σ · n)µλaλ(−p) . (9)

Multiplying (7) by ūµ(−p) we obtain

aµ(−p) = −i
∑
λ

(σ · n)µλb
†
λ(p) . (10)

The equations are self-consistent.
The details of the helicity basis are given in Refs. [10, 11]. However, in

this helicity case we have:

Λhh′(p) = v̄h(p)uh′(−p) = iσy
hh′ . (11)

So, someone may argue that we should introduce the creation operators by
hand in every basis.

It is well known that “particle=antiparticle” in the Majorana theory [7].
So, in the language of the quantum field theory we should have:

bµ(Ep,p) = eiϕaµ(Ep,p) . (12)

Usually, different authors use ϕ = 0,±π/2 depending on the metrics and
on the forms of the 4-spinors and commutation relations. So, on using (9)
and the above-mentioned postulate we come to:

a†µ(p) = +ieiϕ(σ · n)µλaλ(−p) . (13)

On the other hand, on using (10) we make the substitutions Ep → −Ep,
p → −p to obtain

aµ(p) = +i(σ · n)µλb
†
λ(−p) . (14)

The totally reflected (12) is bµ(−Ep,−p) = eiϕaµ(−Ep,−p). Thus,

b†µ(−p) = e−iϕa†µ(−p) . (15)

Combining with (14), we come to

aµ(p) = +ie−iϕ(σ · n)µλa
†
λ(−p) , (16)



and
a†µ(p) = −ieiϕ(σ∗ · n)µλaλ(−p) . (17)

This contradicts with the above equation unless we have the preferred axis
in every inertial system.

Next, we can use another Majorana anzatz Ψ = ±eiαΨc with usual
definitions

C = eiϑc

(
0 iΘ

−iΘ 0

)
K , Θ =

(
0 −1
1 0

)
. (18)

Thus, on using Cu∗↑(p) = iv↓(p), Cu∗↓(p) = −iv↑(p) we come to other
relations between creation/annihilation operators

a†↑(p) = ∓ie−iαb†↓(p) , (19)

a†↓(p) = ±ie−iαb†↑(p) , (20)

which may be used instead of (12). Due to the possible signs ± the number
of the corresponding states is the same as in the Dirac case that permits us
to have the complete system of the Fock states over the (1/2, 0)⊕ (0, 1/2)
representation space in the mathematical sense.1 However, in this case we
deal with the self/anti-self charge conjugate quantum field operator instead
of the self/anti-self charge conjugate quantum states. Please remember
that it is the latter that answers for the neutral particles.

We conclude that something is missed in the foundations of both the
original Majorana theory and its generalizations in the (1/2, 0) ⊕ (0, 1/2)
representation.

We define the self/anti-self charge-conjugate 4-spinors in the momentum
space [12]:

CλS,A(p) = ±λS,A(p) , (21)

CρS,A(p) = ±ρS,A(p) . (22)

Such definitions of 4-spinors differ, of course, from the original Majorana
definition in x-representation:

ν(x) =
1√
2
(ΨD(x) + Ψc

D(x)) , (23)

1 Please note that the phase factors may have physical significance in quantum field theories as opposed to the
textbook nonrelativistic quantum mechanics, as was discussed recently by several authors.



Cν(x) = ν(x) that represents the positive real C− parity field
operator. However, the momentum-space Majorana-like spinors open
various possibilities for description of neutral particles (with experimental
consequences, see [13]). For instance, “for imaginary C parities, the
neutrino mass can drop out from the single β decay trace and reappear
in 0νββ, a curious and in principle experimentally testable signature for a
non-trivial impact of Majorana framework in experiments with polarized
sources.”

Thus, in the accustomed basis the explicit forms of the 4-spinors of the
second kind λS,A

↑↓ (p) and ρS,A
↑↓ (p) are:

λS
↑ (p) =

1

2
√

Ep + m


ipl

i(p− + m)
p− + m
−pr

 , λS
↓ (p) =

1

2
√

Ep + m


−i(p+ + m)

−ipr

−pl

(p+ + m)


(24)

λA
↑ (p) =

1

2
√

Ep + m


−ipl

−i(p− + m)
(p− + m)
−pr

 , λA
↓ (p) =

1

2
√

Ep + m


i(p+ + m)

ipr

−pl

(p+ + m)


In this basis one has

ρS
↑ (p) = −iλA

↓ (p) , ρS
↓ (p) = +iλA

↑ (p) , (25)

ρA
↑ (p) = +iλS

↓ (p) , ρA
↓ (p) = −iλS

↑ (p) . (26)

The λ− and ρ− spinors are connected with the u− and v− spinors by
the following formula:

λS
↑ (p)

λS
↓ (p)

λA
↑ (p)

λA
↓ (p)

 =
1

2


1 i −1 i
−i 1 −i −1
1 −i −1 −i
i 1 i −1




u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)

 , (27)

provided that the 4-spinors have the same physical dimension.
We construct the field operators on using the procedure above with

λS
η (p). Thus, the difference is that 1) instead of uh(±p) we have λS

η (±p);
2) possible change of the annihilation operators, ah → cη. Apart, one can
make corresponding changes due to normalization factors. Thus, we should



have ∑
η=±1/2

λA
η (p)d†η(p) =

∑
η=±1/2

λS
η (−p)cη(−p) . (28)

We find surprisingly:

d†η(p) = −ipy

p
σy

ητcτ(−p) , cη(−p) = −ipy

p
σy

ητd
†
τ(p) . (29)

The bi-orthogonal anticommutation relations are given in Ref. [12]. See
other details in Ref. [14, 15]. Concerning with the P ,C and T properties
of the corresponding states see Ref. [15] in this model.

The above-mentioned contradictions may be related to the possibility of
the conjugation which is different from that of Dirac. Both in the Dirac-
like case and the Majorana-like case (cη(p) = e−iϕdη(p)) we have difficulties
in the construction of field operators.

3. The Spin-1.

We use the results of Refs. [17, 16, 18] in this Section. The polarization
vectors of the standard basis are defined [19]:

εµ(0, +1) = − 1√
2


0
1
i
0

 , εµ(0,−1) = +
1√
2


0
1
−i
0

 , (30)

εµ(0, 0) =


0
0
0
1

 , εµ(0, 0t) =


1
0
0
0

 . (31)

The Lorentz transformations are (p̂i = pi/|p|):

εµ(p, σ) = Lµ
ν(p)εν(0, σ) , (32)

L0
0(p) = γ , Li

0(p) = L0
i(p) = p̂i

√
γ2 − 1 , Li

k(p) = δik + (γ − 1)p̂ip̂k .

(33)

Hence, for the particles of the mass m we have:

uµ(p, +1) = − N√
2m



−pr

m + p1pr

Ep+m

im + p2pr

Ep+m
p3pr

Ep+m

 , uµ(p,−1) =
N√
2m



−pl

m + p1pl

Ep+m

−im + p2pl

Ep+m
p3pl

Ep+m

 ,



(34)

uµ(p, 0) =
N

m



−p3

p1p3

Ep+m
p2p3

Ep+m

m + (p3)2

Ep+m

 , uµ(p, 0t) =
N

m


Ep

−p1

−p2

−p3

 . (35)

N is the normalization constant for uµ(p, σ). They are the eigenvectors of
the parity operator (γ00 = diag(1 − 1 − 1 − 1)):

P̂ uµ(−p, σ) = −uµ(p, σ) , P̂ uµ(−p, 0t) = +uµ(p, 0t) . (36)

It is assumed that they form the complete orthonormalized system of the
(1/2, 1/2) represntation, ε∗µ(p, 0t)ε

µ(p, 0t) = 1, ε∗µ(p, σ′)εµ(p, σ) = −δσ′σ.
The helicity operator should act as:

(S · p)

p
εµ
±1 = ±εµ

±1 ,
(S · p)

p
εµ
0,0t

= 0 . (37)

The eigenvectors are in the helicity basis:

εµ
+1 =

1√
2

eiα

p



0
−p1p3+ip2p√
(p1)2+(p2)2

−p2p3−ip1p√
(p1)2+(p2)2√

(p1)2 + (p2)2


, εµ

−1 =
1√
2

eiβ

p



0
p1p3+ip2p√
(p1)2+(p2)2

p2p3−ip1p√
(p1)2+(p2)2

−
√

(p1)2 + (p2)2


(38)

εµ
0 =

1

m


p

E
p p1

E
p p2

E
p p3

 , εµ
0t

=
1

m


Ep

p1

p2

p3

 . (39)

The normalization is the same as in the standard basis. The eigenvectors
εµ
±1 are not the eigenvectors of the parity operator (γ00R) of this

representation. However, the εµ
1,0, εµ

0,0t
are. Various-type field operators

are possible in this representation. Let us remind the procedure to get
them.

Aµ(x) =
1

(2π)3

∫
d4p δ(p2 −m2)e−ip·xAµ(p) =

=
1

(2π)3

∑
λ

∫ d3p

2Ep
[εµ(p, λ)aλ(p)e−ip·x + εµ(−p, λ)aλ(−p)e+ip·x] . (40)



We should transform the second part to ε∗µ(p, λ)b†λ(p) as usual. In such a
way we obtain the states which are considered to be the charge-conjugate
states. In this Lorentz group representation the charge conjugation
operator is just the complex conjugation operator for 4-vectors. We
postulate ∑

λ

εµ(−p, λ)aλ(−p) =
∑
λ

ε∗µ(p, λ)b†λ(p) . (41)

Then we multiply both parts by εµ(p, σ), and use the normalization
conditions for polarization vectors.

In the (1
2 ,

1
2) representation we can also expand (apart of the equation

(41)) in a different way. For example,∑
λ

εµ(−p, λ)cλ(−p) =
∑
λ

εµ(p, λ)d†λ(p) . (42)

From the first definition we obtain:
b†0t

(p)

−b†+1(p)
−b†0(p)
−b†−1(p)

 =
∑
µλ

εµ(p, σ)εµ(−p, λ)aλ(−p) =
∑
λ

Λ
(1a)
σλ aλ(−p) =

=



−1 0 0 0
0 p2

r

p2 −
√

2pzpr

p2
p2

z

p2

0 −
√

2pzpr

p2 −1 + 2p2
z

p2 +
√

2pzpl

p2

0 p2
z

p2 +
√

2pzpl

p2

p2
l

p2




a00(−p)
a11(−p)
a10(−p)
a1−1(−p)

 . (43)

Possibly, we should think about modifications of the Fock space in this
case. Alternatively, one can think to introduce several field operators for
the (1

2 ,
1
2) representation. The Majorana-like anzatz is compatible for the

0t time-like polarization state only in this basis of this representation.
However, the corresponding matrices Λ2 in the helicity basis are different.
Here they are:

b†0t
(p)

−b†+1(p)
−b†0(p)
−b†−1(p)

 =
∑
µλ

εµ(p, σ)εµ(−p, λ)aλ(−p) =
∑
λ

Λ
(2a)
σλ aλ(−p) =

= −


1 0 0 0
0 e2iα 0 0
0 0 1 0
0 0 0 e2iβ




a00(−p)
a11(−p)
a10(−p)
a1−1(−p)

 , (44)



and 
d†0t

(p)

−d†+1(p)
−d†0(p)
−d†−1(p)

 =
∑
µλ

εµ∗
(p, σ)εµ(−p, λ)cλ(−p) =

∑
λ

Λ
(2b)
σλ cλ(−p) =

= −


1 0 0 0
0 0 0 −e−i(α−β)

0 0 1 0
0 −e+i(α−β) 0 0




c00(−p)
c11(−p)
c10(−p)
c1−1(−p)

 . (45)

This is compatible with the Majorana-like anzatzen. Of course, the same
procedure can be applied in the construction of the quantum field operator
for Fµν.

The solutions of the Weinberg-like equation

[γµν∂µ∂ν −
(i∂/∂t)

E
m2]Ψ(x) = 0 . (46)

are found in Refs. [17, 20, 21, 22]. Here they are:

uσ(p) =

(
DS(ΛR)ξσ(0)
DS(ΛL)ξσ(0)

)
, vσ(p) =

(
DS(ΛRΘ[1/2])ξ

∗
σ(0)

−DS(ΛLΘ[1/2])ξ
∗
σ(0)

)
= Γ5uσ(p),

(47)

Γ5 =

(
13×3 03×3

03×3 −13×3

)
, (48)

where DS is the matrix of the (S, 0) representation of the spinor group
SL(2, c). In the (1, 0)⊕ (0, 1) representation the procedure of derivation of
the creation operators leads to somewhat different situation:∑

σ=0,±1
vσ(p)b†σ(p) =

∑
σ=0,±1

uσ(−p)aσ(−p) , hence b†σ(p) = 0 . (49)

However, if we return to the original Weinberg equations [γµν∂µ∂ν ±
m2]Ψ1,2(x) = 0 with the field operators:

Ψ1(x) =
1

(2π)3

∑
µ

∫ d3p

2Ep
[uµ(p)aµ(p)e−ipµ·xµ

+ uµ(p)b†µ(p)e+ipµ·xµ

],

(50)

Ψ2(x) =
1

(2π)3

∑
µ

∫ d3p

2Ep
[vµ(p)cµ(p)e−ipµ·xµ

+ vµ(p)d†µ(p)e+ipµ·xµ

], (51)



we obtain

b†µ(p) = [1− 2(S · n)2]µλaλ(−p) , (52)

d†µ(p) = [1− 2(S · n)2]µλcλ(−p) . (53)

The applications of uµ(−p)uλ(−p) = δµλ and uµ(−p)uλ(p) = [1−2(S·n)2]µλ

prove that the equations are self-consistent. This situation signifies that
in order to construct the Sankaranarayanan-Good field operator (which
was used by Ahluwalia, Johnson and Goldman [21]) we need additional
postulates. One can try to construct the left- and the right-hand side of
the field operator separately each other. In this case the commutation
relations may also be more complicated.

Repeating the above procedures, on using (52) and the Majorana
postulate, we come to:

a†µ(p) = +e+iϕ[1− 2(S · n)2]µλaλ(−p) . (54)

On the other hand, on using the inverse relation, namely, that for aµ(−p),
we make the substitutions Ep → −Ep, p → −p to obtain

aµ(p) = +[1− 2(S · n)2]µλb
†
λ(−p) . (55)

The totally reflected Majorana anzatz is bµ(−Ep,−p) = eiϕaµ(−Ep,−p).
Thus,

b†µ(−p) = e−iϕa†µ(−p) . (56)

Combining with (55), we come to

aµ(p) = +e−iϕ[1− 2(S · n)2]µλa
†
λ(−p) , (57)

and
a†µ(p) = +e+iϕ[1− 2(S∗ · n)2]µλaλ(−p) . (58)

In the basis where Sz is diagonal the matrix Sy is imaginary [19]. So,
(S∗ · n) = Sxnx − Syny + Sznz, and (S∗ · n)2 6= (S · n)2 in the case of
S = 1. So, we conclude that there is the same problem in this point, in the
aplication of the Majorana-like anzatz, as in the case of spin-1/2. Similarly,
one can proceed with (53).

Meanwhile, the attempts of constructing the self/anti-self charge
conjugate states failed in Ref. [12]. Instead, the Γ5Sc

[1]− self/anti-self
conjugate states have been constructed therein.



4. Conclusions.

We conclude that something is missed in the foundations of both the
Weyl theory, the original Majorana theory and its generalizations. Similar
problems exist in the theories of higher spins.
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