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Abstract

The Octonion covariant derivative form applied to an inertial frame of reference velocity
transformation requires Lorentz covariance if the two components in rotational and irrotational
field types are to maintain proper relative sign and equivalent scale post transformation. Similar
to the other Octonion fields different from the magnetic and electric fields, the expected
hyperbolic rotation of electric field into the magnetic field and magnetic field into electric field
are produced by application of the covariant derivative on Octonion potential function algebraic
elements. Also presented are 8-current, 8-work-force and Octonion Poynting vector covariant
forms for inertial frame of reference velocity transformations.

**k*

| first presented the Lorentz covariance provided by the Ensemble Derivative, the Octonion
covariant derivative, back in 2012 in an FQXi essay I titled “The Algebra of Everything”
(ref[1]). Due to maximum length requirements, | could only mention the results in passing. In
what follows, I will derive and expound on this.

General considerations for a velocity transformation

If our Ensemble Derivative (refs[1], [2]) form is generally covariant, we should expect to see
proper Lorentz type rotations of electric field into magnetic field, and magnetic field into electric
field when the observation perspective is in motion relative to the field sources. Repeating our
covariant derivative form for Octonion Algebra operating on potential functions A we have

E(A(V)) =10 dlovi[ Cij T Ak] e * e

Once again, T is the basis transformation between the intrinsic e basis with position u = u; ej and
the g basis with position v = v; gi where ga = Tab €b. Cjj is the cofactor of Tj; and J is the Jacobian
of T. In a stationary system, T and C are the matrix identity and the Jacobian J=1. As shown in
reference [3], in the intrinsic e basis we form the left side application Octonion fields with the
covariant derivative operating on the potential functions A, and drop the scalar portion since it is
not needed, giving the following written in algebraic orientation covariant form (reference [3]):
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FL=

{+Vo(A1) +Vi(Ao) + (Vs(As) — Va(As)) ss + (V2(Az) — V3(Az)) so + (V1(As) — V(A7) s13 } €1
{+Vo(Az2) +V2(Ao) + (Ve(As) — Va(As)) s3 + (V3(A1) — Vi(As)) so + (Vs(A7) — Vi(As)) su } e2
{+Vo(As) +Vi(Ao) + (V1(As) — Va(A7)) 57+ (Vi(A2) — V2(A1)) so + (Ve(As) — Vs(As)) sis } €3
{+Vo(Aa4) +Va(Ao) + (V2(As) — Ve(A2)) s3 + (Vi(As) — Vs(Ar)) ss + (V3(A7) — Vi(Az)) s7 } ea
{+Vo(As) tVs(Ao) + (Va(A1) — Vi(A4)) ss + (V(A2) — V2(A7)) sit + (V3(As) — Ve(As)) s15 } e5
{+Vo(As) tVs(Ao) + (Va(Az) — V2(A4)) s3 + (Vi(A7) — V(A1) s13 + (Vs(As) — V3(As)) sis } e
{+Vo(A7) +V(Ao) + (Va(Asz) — V3(A4)) 87+ (V2(As) — Vs(Az2)) sit + (Ve(A1) — Vi(As)) si3 } €7

Below, to simplify things as done reference [3], we can substitute in Octonion orientation RO
centric rotational field R and irrotational field I definitions repeated here for clarity:

FL=

{-1i + Rsa 85+ Ra3 50 + R76 813 } €1
{12 + Rea 83 + R31 8o + Rs7 s11 } €2
{-Is + R7a 87+ Ri2 89 + Res 15 } €3
{-1s+ Ras 3+ Risss+Rs787 } ea
{~Is + Rai 85 + R72 811 + Ras 815 } €5
{16 + Ra2 83 + Ri7 813+ Rs3 s15 } €6
{17 + Raz 87+ Ras s11 + Re1 813 } €7

Anticipating the possible general form, we will try the following for a prototype transformation
matrix T and resultant cofactor matrix C, where a, b, ¢ and d are yet unspecified beyond the
requirement that T has Jacobian ad — bc = 1.

Prototype T =

O OO OO Oo
OO O OO0 + O
[N
OO OO0 + OO0
[IEN
OO OO + OO O0o
[N
OO0 + OO0 OO0
OO + OO0 O OO0
O + OO OO OO0
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Prototype C =

OO OO0 O0oO + O
[N
OO OO0 + OO0
[N
O OO0 + OO o
[IEN
O OO + OO OO
OO + OO0 O OO0
O + OO OO O0oOOo
OOOOOOCI_)

Calculating the physical fields FL by left application of the Octonion covariant Ensemble
Derivative on potential functions A we have

{

+dVo(A1) +aVi(Ao) +cVi(A7) —bV7(A1) —Va(As)ss +Vs(Aa)ss +Va(Asz)se —V3(Az2)se
—CVo(As)si3 —bVs(Ao)sis —dVs(A7)sis +aV(As)sis

} €1

{

+dVo(Az2) +aV2a(Ao) +cV2(A7) -bV7(Az2) —Va(As)ss +Ve(Ad)ss —Vi(As)se +V3(A1)so
+CVo(As)sit +bVs(Ao)sit +dVs(A7)sit —aV7(As)su

} €2

{

+dVo(As) +aVi(Ao) +cVi(A7) —bV7(As) —CVo(Aa)s7 —bVa(Ao)ss —dVa(A7)s7 +aV(Aa)s
+Vi(Az2)so —V2(A1)se —Vs(As)sis +Ve(As)sis

} C3

{

+dVo(A4) +aVa(Ao) +cVa(A7) —bV7(As) +Va(As)ss —Ve(Az2)ss +V1(As)ss —Vs(A1)ss
+CVo(As3)s7 +bVi(Ao)s7 +dVi(A7)s7 —aV7(As)sy

} (&2

{

+dVo(As) +taVs(Ao) +cVs(A7) —bV(As) —Vi(A4)ss +Va(A1)ss —CVo(Az2)s11 —bV2(Ao)sii
—de(A7)Sll +aV7(A2)Sll +V3(A6)Sls —VG(A3)515

} Cs
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{

+dVo(As) taVe(Ao) +cVs(A7) —bV7(As) —V2(Aa)ss +Va(Az2)ss +cVo(A1)siz +bVi(Ao)siz
+dVi(A7)siz —aV7(Ai1)si3 —V3(As)sis +Vs(Asz)sis

} Ce

{

+bdVo(Ao) —acVo(Ao) +d?>Vo(A7) —C2Vo(A7) —b2V(Ao) +a2V7(Ao) —bd V(A7) +acV(A7)
—V3(A4)s7 +Va(As)s7 +V2(As)sit —Vs(Az2)si1 —Vi(As)siz +Ve(A1)sis

} €7

Our transformation must not break the relative signs in any rotational field or irrotational field
component pair, and we must scale them both with the same magnitude. This requires a = d and
b=c.

Substituting in for d and ¢ in the Jacobian we require to be +1, we have a> —b?=1. Theaand b
solutions for this are

a = cosh(()
b = %sinh()

This is precisely the hyperbolic rotation specified in 4D space-time by the Lorentz
Transformation.

Lorentz covariance for the Octonion electric and magnetic fields

Now change T to represent an inertial frame of reference constant velocity transformation in the
polar e7 direction analogous to the 4D Lorentz transformation but now in our 8D Octonion
system. We have then in familiar terms given for constant velocity magnitude v and speed of
light c:

B=vlc y=1/V1-p?

T[row][column] =

v 0 0 0 0 0 0 P
o +1 0 0 0 0 0 0

o 0 +1 0 0 0 0 0

o 0 0 + 0 0 0 0

o 0 0 0 + 0 0 0

o 0 0 0 0 + 0 0

o 0 0 0 0 0 41 0
“w 0 0 0O 0 0 0 4y

© Richard Lockyer March 2023 All Rights Reserved 4



The Jacobian for this T is +1. The T cofactor matrix for use in the covariant derivative, C is

C[row][column] =

0 0 0 0 0 0 B
0 +1 0 0 0 0 0 0

0 0 +1 0 0 0 0 0

0 0 0 +1 0 0 0 0

0 0 0 0 110 0 0

0 0 0 0 0 +1 0 0

0 0 0 0 0 0 110
B 0 0 0 0 0 0 +y

We of course want to express the velocity transformed results in algebraic orientation covariant
form. Doing the math for the covariant derivative with this T and C with results in field form we
have after dropping the scalar portion:

FL=
{—v[LLi-Ri7B]+Rsass+Rasso+y[Rws+Isf]siz} e
{v[L+R2PB]+tReasstRaisoty[Rs7—IsP]su} ez
{v[L-Rs7B]+y[Rruat1aP]s7+Rizso+t Ressis} es
{y[L+RuP]+tRwssstRisssty[Rsr—TsB]s7} es
{v[Is—-RssB]+Rauss+y[R+12B]su+Rssis}es
{v[l6+RwsP]tRazssty[Rizr—TiB]sizs+Rsssis}es
{—I7+R43 $7 + Ras s11 + Rei s13 } C7

As usual, the right-side application of the covariant derivative Fr is FL with algebraic variant
terms negated. To achieve covariance, the effective rotational and irrotational field components
in the moving system must have the same algebraic orientation status indicators as in the
stationary system. One more beautiful example of algebraic orientation covariance benefits is our
results are automatically sieved, indicating in the moving system what are now the effective
irrotational and rotational field components. We see the mappings are

L—>y[L-RuB] Loy[L+Rnp] L—oy[—-RsB]
L—-y[L+Rup] IL—>y[L-Rs7B] Ie > vy[Is+ R ]
R76—)’Y[R76+IGB] R57—>'y[R57—15B] R74—>’Y[R74+I4B]
Rs7—y[Rs7 -] Rrz—y[Rr+LB] Riv—vy[Ri7—1B]

All other field components, including all in the direction of motion, are unmodified. The
stationary reference frame algebraic variant rotational fields are changed to algebraic invariants
such that they are additive to the irrotational fields by noticing the B scalings are the outcome of
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algebraic variant cross products with  ez. Same for changing the algebraic invariant irrotational
fields to algebraic variants so they can be additive to the algebraic variant rotational fields.

Recognizing Is and Is are the electric field Ex and Ey respectively, and Rz and Rs7 are the
magnetic field components Bx and By respectively, and our velocity is in the z direction, these
results are precisely those provided by the 4D Lorentz transformation in the z direction on the
combined 4D space-time field tensor. Using algebraically covariant differentiation Octonion
velocity transformations properly demonstrates electric and magnetic field Lorentz covariance.

8—current Lorentz covariance

Now for the 8—current under the same constant velocity transformation in the ez direction given
in reference [3] as:

j="%{EF) +(FRE}
Doing the math on the potential function version of the fields we have

{
+YBV20(A7) +YBVoV(Ao) —yVoVi(A1) =yV21(Ao) —YBV*1(A7) +YBV1Va(A1) =yVoV2(Az2) =y V*2(Ao)
—’YBV22(A7) +’YBV2V7(A2) —YVoVs(A3) —’sza(Ao) —YBV23(A7) +’YBV3V7(A3) —YVOV4(A4) —YV24(A0)
—"{BV24(A7) +’YBV4V7(A4) —"{VoVs(As) —’szs(Ao) —YBV25(A7) +’YBV5V7(A5) —YVoVs(As) —YV26(A0)
;YBst(Aﬂ +YBVsVi(As) —=yVoV7(A7) =yV?1(Ao)

Co

{

+V2(A1) +VoVi(Ao) +V1V2(Az2) —VZ3(A1) +ViV3(As) —VZ(A1) +ViVa(As) —V24(Ad)
+V1Vs(As) —V25(A1) +ViVe(As) —V2(A1) +V1V(A7) —V2(Ar)

}61

{

+V2(Az2) +VoVa(Ao) —VZ1(Az2) +ViVa(A1) +V2Vi(As) —VZ(Az2) +V2Va(As) —V24(A2)
FV2Vs(As) —V25(Az) +VaVe(As) —V26(As) +VaVo(Ar) —V21(As)

} €2

{

+V2(As3) +VoV3(Ao) —VZ1(A3) +ViV3(A1) —V2(As) +V2Vi(Az2) +ViVa(As) —V24(As)
FVaVs(As) —V25(As) +VaVe(As) —V26(As) +VaVo(Ar) —V21(As)

} €3
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{

+V2(A4) +VoVi(Ao) —V*1(A4) +ViVa(A1) —=V2(A4) +V2Va(A2) —VZ3(As) +V3Va(As)
+VaVs(As) —V5(A4) +VaVe(As) —V26(A4) +ViV7(A7) —V?(As)

} €4

{

+V2(As) +VoVs(Ao) —V21(As) +ViVs(A1) —=V2(As) +V2Vs(Az) —VZ(As) +ViVs(As)
—V24(As) +VaVs(As) +VsVe(As) —V36(As) +VsV7(A7) —V1(As)

} Cs

{

+V2(As) +VoVes(Ao) —V?1(As) +V1Ve(A1) —V?2(As) +V2Ve(A2) —V?(As) +V3Ve(As)
—V24(As) +VaVes(As) —V?5(As) +V5Ve(As) +VeV7(A7) —V?1(As)

} Ce

{
+yV2(A7) +yVoV7(Ao) =yBVoVi(A1) =yBV?1(Ao) —YVZ1(A7) +YViVa(Ar) =yBVoeV2(Az) —yBV?2(Ao)
—’\{sz(A7) +’YV2V7(A2) —'YBVoVa(As) —’Yﬁvza(Ao) —'sza(A7) +’YV3V7(A3) —YBVOV4(A4) —YBV24(A0)
—’\{V24(A7) +’YV4V7(A4) —'YBVoVs(As) —yBst(Ao) —'szs(A7) +’YV5V7(A5) —YBVOVG(As) —YBV26(A0)
;’YV26(A7) +yV6V1(As) =yBVoV7(A7) =yBV?7(Ao)

€7

The result is seen to be an algebraic orientation invariant as it is in the stationary reference frame.
Filling in the stationary frame of reference definition for j from reference [3] we have

j ={Joy +j7yPl ot jier+j2e2t+jsestjaestjses+jsest+ {J7y HoyP} €7

The result is seen to be hyperbolic rotations of jo into j7 and j- into jo. Stationary frame 8—charge
rotates into 8—current in the moving frame of reference, and stationary frame 8—current rotates
into 8—charge in the moving frame of reference. Inserting stationary frame of reference values 3
=( and y = 1 produces the proper stationary frame of reference j definition as it must.

Running the divergence of the 8—current, we see it remains equal to zero independent of the
definitions for the potential functions. Conservation of 8—charge is a Lorentz invariant.

8—work—force Lorentz covariance

The potential function version for 8-work—force wf gets ugly so for clarity I will only show it in
field definition form after doing the following wf product definition using the potential function
forms for the moving reference frame definitions for j, FL and Fr from above. As given in
reference [3] we have:

wi=—%{j*Fr+FL*j}

© Richard Lockyer March 2023 All Rights Reserved 7



Sorting by algebraic variance the results are

Invariant wf

{

+[ —1li — jala — jals — jala — jsIs — jele — 717 | v

+[ —jol7 + (jiR17 — jsR76 ) + ( jsRs7 — j2R72 ) + (jsR37 — jaR74)] yP
} Co

{ joli + (j2R12 — j3R31) + (jsRis — jaRa1) + (j7R17 — JeRe1) } €1
{ jol2 + (j3R23 — jiR12) + (jeRas — jaR42) + (jsR2s — j7R72) } €2
{ jols + (jiR31 — j2R23) + (j7R37 — jaR43) + (jeRss — jsRs3) } es
{ jola + (jiRa1 — jsRs4) + (j2Ra2 — jsRea) + (j3Raz — j7R74) } €4
{ joIs + (jaRsa — jiRus) + (j7Rs7 — j2R2s) + (j3Rss — JeRes) } es
{ jols + (jiRe1 — j7R76) + (jaRea — j2Ra26) + (jsRes — jsR36) } €6
{

+[jol7 + (JsR7s —j1R17) + (j2R72 —jsR5s7) + (+jaR7a — jsR37)] v
[ H1li 2Lz +j315 +jals +sls +jels + 3717 ] B

} 7

Looking at the algebraic invariant eo term, recognizing 3 represents the velocity in the ez
direction, this is a hyperbolic rotation of the non-scalar inner product j - I work into the work
form given by the inner product of the force and velocity given here in the e7 direction. For the
invariant ez, we see the hyperbolic rotation of the e7 force into the inner product j - I work
scaling the velocity in the e7 direction. The forces orthogonal to the velocity are unchanged.

The algebraic orientation variants for wf are as follows:

wf variance s:

{[—jsRs7 +jsRa7 +j7Rss ] vy + [ joRss + jals — jsIs ] yP } s2 e
{ [j1R57 —j5R17 +j7R15 ] Yyt [joRls +j511 —jIIS ] ’YB } S2 €3
{ [:R37 +jsR17 +j7R31 ] y + [ joR31 + jils —jsli] yP } sz s
{ [*less *j3R15 *j5R31] } S2 €7

wf variance sa

{ [ j3R76 + jsR3s7 — j7R36 ] ¥ + [ —JoRs36 + jsls — jsI3] YP } s4 €2
{ [7j2R76 +j6R72 +j7R26 ] Y+ [jost *j2I6 +j612 ] YB } S4 €3
{[2R37—jsR72 — j7R23 | y + [ —joR2s + jols — sl ] YB } sa €6
{ [1t)2Rs6 — j3R26 + JsR23 | } sa €7
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wf variance se

{ [ j2Res + jsR26 — jeR2s | } s6 €1
{[j1Res +jsRe1 + jeRis ] } se €2
{ [—j1R26 —j2R61 _j6R12 ] } Se6 €5
{[+J1R25 — j2Ris + jsRi2 ] } se €6

wf variance ss

{[sR7 —jsRs7 —j7Res | ¥ + [ —joRes — jsls + jsIs ] yP } ss €4
{ [ +jaR76 — jeR74 + j7R6a | v + [ joRea + jals — jela ] P } ss €5
{ [ +j4R57 +j5R74 —j7R54 ] Y+ [ —j0R54 —j415 +j514 ] YB } Sg Co
{ [ +jaRes — jsRea + jeRsa | } ss €7

wf variance sio

{ [_j3R64 —j4R36 —j6R43 ] } S10 €1
{ [ +J1R6a — jaRe1 + jeRa1 ] } si0 €3
{ [ +_]1R36 +]3R61 j6R31 ] } S10 C4
{ [ +J1R43 — jsRa1 + jaRs1 ] } s0 €6

wf variance si2

{ [ +j3R54 —j4R53 +j5R43 ] } S12 €2
{ [—j2R54 —j4R25 —j5R42 ] } S12 €3
{[+2Rs3 +j3R2s —jsR23 | } sz ea
{[ 2R3 + j3sRaz +jaRas | } s12 €5

wf variance si4

{ [ +j2R74 —j4R72 +j7R42 ] v+ [ +j0R42 +j214 —j412 ] 'YB } S14 €1
{[—1R7 —jaRi7 — j7Ra1 1 ¥ + [ —joRa1 — jula +jali ] yB} s1a €2

{ [+t R22+j2R17—j7Ri2 ] y + [ JoRiz + jilz 211 | YB } s1a €4
{[1Ra2+j2Ra1 + jaR12 ] } sua €7

All y scaled terms in our algebraic orientation variants for wf are of course their stationary frame
of reference algebraic orientation variants. If we adopt the idea that we can make the full wf an
algebraic orientation invariant, we would assign a value of zero to their sums. Doing so first in
the stationary reference frame, there is no counterbalance to zero out our moving frame of
reference algebraic variance, so we must conclude the terms scaling yf also sum to zero. These
are new to our presentation in reference [3], a manifestation of our Lorentz covariance.

Octonion Poynting vector Lorentz covariance

Finally for our constant velocity Lorentz transformation, the Octonion Poynting vector
constructed as done in reference [3]. We find it to be an algebraic orientation invariant as it is in
the stationary frame of reference. In the moving frame of reference, it takes the following form:
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{
+[ (ERs1 — 2Ri2 ) + ( [sRa1 — IsR1s ) + ( [sRe1 — ;R17 ) ]y

+[ [ilz —R12R72 —R31R37 +R41R74 +R15Rs7 +Re1R7s | vB
} €1

{
+[ (iR12 — I3R23 ) + (IaRa2 — IsR2s ) + (I7R72 — [6R26 ) ] v

+[ LI — Ri2R17 — R26R76 + R23R37 + R42R74 + R2sRs7 | yB
} €2

{
+[ ( I2R23 — iR31 ) + ( IsRs3 — I6R36 ) + (IsRas —I7R37) ]y

+[ LIz — Rs3sRs7 — R3sR76 + R17R31 + R23R72 + RasR7a | yB
} C3

{
+[ ( IsRsay — [iRa1 ) + (IsR6s — [2R42) + (I7R72 — I3R43) |y

+[ [al7 —R42R72 — Rs5aRs7 + Ri7R41 + R37R43 + ReaR76 | B
} €4

{
+[ (LiRis — 14Rs4 ) + ( 12R25 — [7Rs7 ) + ( [sRes — IsRs3 ) |y

+[ IsI7 — RisR17 — RsaR74 + R25R72 + R37Rs3 + ResRs | vB
} Cs

{
+[ (Is'R76 — liRe1 ) + ( 12R26 — 14Res ) + ( I3R36 —IsRes ) | ¥

+[ Isl7 — R36R37 — R6aR74 + R17R61 + R26R72 + Rs7Res | B
} Ce

{

H 12 - 12— 12— 12— [ — 16 ] v*B

+[ —Ri72 — R722 — R372 — R74> — Rs”2 — Ru6? | v2P

+[ (LiR17—IsR76 ) + ( IsRs7 — aR72 ) + ( 3R37 — [aR74 ) ][22 — 1]
} 7

The Octonion Poynting vector components orthogonal to our velocity all get modified with a
hyperbolic rotation between the y scaled stationary reference frame value and yp scalings we
recognize within sign from reference [3] within the Octonion stress—energy—momentum “tensor”
component - which also holds the Poynting vector component in the direction of our velocity.
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It is starting to look more like the quotes around “tensor” can be removed, although as stated in
reference [3], we do not transform them directly here as done with true tensors, we count on the
general covariance of the Ensemble Derivative form used to create them.
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