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1. The Green’s function equation

Let us first consider the conductivity matrix on a non-compact manifold in d = 2 dimensions.

The differential equation that describes the behaviour of «,
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can be formally solved by writing
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which leads to the Green’s function equation
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On a torus, the right-hand-side needs to be modified so that the integral over the expression

vanishes. Hence, we can write down a new Green’s function equation
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Note that this extension of the Green’s function equation is consistent with the defining differential

equations as the addition is purely a function of z. Hence, we can formally define G(z —y) =
G(z-y) + R(x), so that
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This implies that
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as the following divergence integral over a torus vanishes (the metric and Z are single-valued):
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2. Symmetry of the conductivity matrix

The next important thing is to understand whether G(x-vy) is symmetric under the interchange
of x and y. Instead of this statement, we will prove a somewhat weaker statement, which will be

sufficient to show that the conductivity matrix is symmetric. Consider the integral
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where all covariant derivatives act w.r.t. y. Since the integrand is a total derivative, and we are
integrating over a compact torus without a boundary (and G(x-y) is single valued by construction),
the integral automatically vanishes.

Consider now another integral, which also clearly vanishes,
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By using Eq. (4), we find that
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The solution for the conserved “auxiliary” current can be written as
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and the conductivity matrix is given by
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To show that ¢% is symmetric, consider
2
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due to the symmetry of the metric tensor ~;; and Eq. (13).
The analysis in other dimensions is trivial due to our ability to eliminate Z from (1) with
conformal transformations and the fact that we didn’t use any special properties of two dimensional

spaces in the proof.



	Symmetry of the conductivity matrix
	The Green's function equation
	Symmetry of the conductivity matrix



