Symmetry of the conductivity matrix

Matthew Stephenson*
Stanford University

1. The Green's function equation

Let us first consider the conductivity matrix on a non-compact manifold in d = 2 dimensions. The differential equation that describes the behaviour of α ,

$$\partial_i \left[Z \sqrt{\gamma} \gamma^{ij} \left(E_j + \partial_j \alpha \right) \right] = 0, \tag{1}$$

can be formally solved by writing

$$\alpha(\vec{x}) = \int d^2y \, G(\vec{x} - \vec{y}) \, \frac{\partial}{\partial y^i} \Big[Z(\vec{y}) \sqrt{\gamma(\vec{y})} \gamma^{ij}(\vec{y}) \Big] E_j, \tag{2}$$

which leads to the Green's function equation

$$\frac{\partial}{\partial x^{i}} \left[Z \sqrt{\gamma} \gamma^{ij} \frac{\partial}{\partial x^{j}} G(\vec{x} - \vec{y}) \right] = -\delta^{(2)} (\vec{x} - \vec{y}). \tag{3}$$

On a torus, the right-hand-side needs to be modified so that the integral over the expression vanishes. Hence, we can write down a new Green's function equation

$$\frac{\partial}{\partial x^{i}} \left[Z \sqrt{\gamma} \gamma^{ij} \frac{\partial}{\partial x^{j}} G(\vec{x} - \vec{y}) \right] = -\delta^{(2)} (\vec{x} - \vec{y}) + \frac{1}{\int d^{2}x' \sqrt{\gamma(x')}} \sqrt{\gamma(\vec{x})}. \tag{4}$$

Note that this extension of the Green's function equation is consistent with the defining differential equations as the addition is purely a function of x. Hence, we can formally define $G(x-y) = \tilde{G}(x-y) + R(x)$, so that

$$\frac{\partial}{\partial x^i} \left[Z \sqrt{\gamma} \gamma^{ij} \frac{\partial}{\partial x^j} R(x) \right] = \frac{1}{\int d^2 x' \sqrt{\gamma(x')}} \sqrt{\gamma(x)},\tag{5}$$

$$\frac{\partial}{\partial x^{i}} \left[Z \sqrt{\gamma} \gamma^{ij} \frac{\partial}{\partial x^{j}} \tilde{G} \left(\vec{x} - \vec{y} \right) \right] = -\delta^{(2)} \left(\vec{x} - \vec{y} \right). \tag{6}$$

This implies that

$$\alpha(\vec{x}) = \int d^2y \,\tilde{G}(\vec{x} - \vec{y}) \,\frac{\partial}{\partial y^i} \Big[Z(\vec{y}) \sqrt{\gamma(\vec{y})} \gamma^{ij}(\vec{y}) \Big] E_j = \int d^2y \,G(\vec{x} - \vec{y}) \,\frac{\partial}{\partial y^i} \Big[Z(\vec{y}) \sqrt{\gamma(\vec{y})} \gamma^{ij}(\vec{y}) \Big] E_j, \tag{7}$$

as the following divergence integral over a torus vanishes (the metric and Z are single-valued):

$$R(x) \int d^2y \frac{\partial}{\partial y^i} \left[Z(\vec{y}) \sqrt{\gamma(\vec{y})} \gamma^{ij}(\vec{y}) E_j \right] = R(x) \int d^2y \sqrt{\gamma} \nabla_i \left(Z(y) E^i \right) = 0.$$
 (8)

^{*} matthewistephenson@icloud.com

2. Symmetry of the conductivity matrix

The next important thing is to understand whether G(x-y) is symmetric under the interchange of x and y. Instead of this statement, we will prove a somewhat weaker statement, which will be sufficient to show that the conductivity matrix is symmetric. Consider the integral

$$I = \int d^{2}y \sqrt{\gamma(y)} \left\{ G(y-x) \nabla_{i} \left[Z(y) \nabla^{i} G(y-x') \right] - G(y-x') \nabla_{i} \left[Z(y) \nabla^{i} G(y-x) \right] \right\}$$

$$= \int d^{2}y \nabla_{i} \left\{ \sqrt{\gamma(y)} G(y-x) Z(y) \nabla^{i} G(y-x') - \sqrt{\gamma(y)} G(y-x') Z(y) \nabla^{i} G(y-x) \right\}$$

$$= 0,$$

$$(9)$$

where all covariant derivatives act w.r.t. y. Since the integrand is a total derivative, and we are integrating over a compact torus without a boundary (and G(x-y) is single valued by construction), the integral automatically vanishes.

Consider now another integral, which also clearly vanishes,

$$I' = \frac{\partial^2}{\partial x^i \partial x'^j} I = 0. \tag{10}$$

By using Eq. (4), we find that

$$I' = \frac{\partial^2}{\partial x^i \partial x'^j} \left[G(x - x') - G(x' - x) + \frac{1}{\tilde{V}_2} \int d^2 y \sqrt{\gamma(y)} \left[G(y - x) - G(y - x') \right] \right]$$
(11)

$$= \frac{\partial^2}{\partial x^i \partial x'^j} \left[G(x - x') - G(x' - x) \right] = 0. \tag{12}$$

Hence,

$$\frac{\partial^2}{\partial x^i \partial y^j} G(x - y) = \frac{\partial^2}{\partial x^i \partial y^j} G(y - x). \tag{13}$$

The solution for the conserved "auxiliary" current can be written as

$$e^{2} \mathcal{J}^{i} = Z \sqrt{\gamma} \gamma^{ij} \left(E_{i} + \partial_{i} \alpha \right) \tag{14}$$

$$= \left[Z(\vec{x}) \sqrt{\gamma(\vec{x})} \gamma^{ij}(\vec{x}) - \int d^2y \, Z(\vec{x}) Z(\vec{y}) \sqrt{\gamma(\vec{x}) \gamma(\vec{y})} \gamma^{ik}(\vec{x}) \gamma^{jl}(\vec{y}) \frac{\partial^2}{\partial x^k \partial y^l} G(\vec{x} - \vec{y}) \right] E_j, \quad (15)$$

and the conductivity matrix is given by

$$e^{2}\sigma^{ij} = \frac{1}{V_{2}} \int d^{2}x \, Z(\vec{x}) \sqrt{\gamma(\vec{x})} \gamma^{ij}(\vec{x})$$

$$-\frac{1}{V_{2}} \int d^{2}x \, d^{2}y \, Z(\vec{x}) Z(\vec{y}) \sqrt{\gamma(\vec{x})} \gamma^{ik}(\vec{x}) \gamma^{jl}(\vec{y}) \frac{\partial^{2}}{\partial x^{k} \partial y^{l}} G(\vec{x} - \vec{y}) \,. \tag{16}$$

To show that σ^{ij} is symmetric, consider

$$e^{2}\left(\sigma^{ij} - \sigma^{ji}\right) = -\frac{1}{V_{2}} \int d^{2}x \, d^{2}y \, Z(\vec{x}) Z(\vec{y}) \sqrt{\gamma(\vec{x})\gamma(\vec{y})} \gamma^{ik}(\vec{x}) \gamma^{jl}(\vec{y}) \frac{\partial^{2}}{\partial x^{k} \partial y^{l}} \left[G\left(\vec{x} - \vec{y}\right) - G\left(\vec{y} - \vec{x}\right)\right]$$

$$= 0, \tag{17}$$

due to the symmetry of the metric tensor γ_{ij} and Eq. (13).

The analysis in other dimensions is trivial due to our ability to eliminate Z from (1) with conformal transformations and the fact that we didn't use any special properties of two dimensional spaces in the proof.