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Abstract 

This article aims to advance the knowledge on teaching and training new artificial 

intelligence algorithms, for securing, preparing, and adapting the healthcare system to cope 

with future pandemics. The study develops a concept healthcare system supported by 

autonomous artificial intelligence that can use edge health devices with real-time data. Two 

case scenarios are constructed for applying cybersecurity with autonomous artificial 

intelligence for (1) self-optimising predictive cyber risk analytics of failures in healthcare 

systems during a Disease X event (i.e., undefined future pandemic), and (2) self-adaptive 

forecasting of medical production and supply chain bottlenecks during future pandemics. 

The research study uses the case of Covid-19 to synthesise data for the algorithms – i.e., for 

optimising and securing digital healthcare systems in anticipation of Disease X. The testing 

scenarios are built to tackle the logistical challenges and disruption of complex production 

and supply chains for vaccine distribution with optimisation algorithms. 
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Introduction 

Artificial Intelligence (AI) ‘is gradually changing medical practice’ with biomedical 

applications and medical AI systems grounded on ‘data acquisition, machine learning and 

computing infrastructure’ [1]. AI is already used in major disease areas e.g., cancer, 

neurology, and cardiology [2]. AI offers the ‘transformative potential’ that is similar in 

significance to the industrial revolution [3]. One aspect of this transformation is ‘the 

provision of healthcare services in resource-poor settings’, and the specific interest is the 

promise of overcoming health system hurdles with ‘with the use of AI and other 

complementary emerging technologies’ [4]. Another aspect of this transformation is the 

‘ambient intelligence... empowering people’s capabilities by the means of digital 

environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, 

and emotions’ [5]. In the future, AI will ‘help mental health practitioners re-define mental 

illnesses more objectively’, by identifying ‘illnesses at an earlier or prodromal stage when 

interventions may be more effective, and personalize treatments based on an individual's 

unique characteristics’ [6]. The transformation empowering technologies include (a) 
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communication systems, (b) sensing nodes, (c) processors, and (d) algorithms, but the use of 

AI has transformed healthcare systems by analysing data in the fog/edge [7].  

There are also concerns on safety and dangers of AI, for example one study investigated the 

adoption of IBM Watson in public healthcare in China [8] and argued that AI is a ‘black box’ 

because we cannot see the learning process and we don’t really know when the AI has some 

problem. The ‘black box’ operations of current AI algorithms ‘have resulted in a lack of 

accountability and trust in the decisions made’, hence, we need ‘accountability. 

transparency, result tracing, and model improvement in the domain of healthcare’ [9]. The 

balance between values and risks is explained as ‘there are some improvements that benefit 

and there  are  some  challenges  that  may  harm’ [10] and the deployment of AI in 

healthcare is facing ‘challenges from both an ethical and privacy standpoint’ [11]. Despite 

the concerns, AI is already used for multi-disease prediction [12] and has already been used 

in combination with healthcare robotics, genetics AI data-driven medicine, AI-powered 

Stethoscope [13] and ‘technologies such as the Internet of Things (IoT), Unmanned Aerial 

Vehicles (UAVs), blockchain, and 5G, to help mitigate the impact of COVID-19 outbreak’ [14]. 

Conversely, the AI ‘algorithms that feature prominently in research literature are in fact not, 

for the most part, executable at the frontlines of clinical practice’ [15]. The main reasons 

behind this are that adding AI in a fragmented healthcare system won’t produce the desired 

results. Healthcare organisations also ‘lack the data infrastructure required to collect the 

data needed to optimally train algorithms’ [15].  

Background of the study 

This article builds upon the design for cyber risk assessment of healthcare systems 

operating with artificial Intelligence and Industry 4.0 [16] and postulates that it is 

possible to forecast cyber risk in digital health systems with predictive algorithms. This 

postulate is evaluated with two case study scenarios, constructed for testing, and improving 

the autonomous artificial intelligence (AutoAI) algorithm functions. The first case study is 

founded on a predictive (forecasting) solution for helping healthcare systems cope with 

unpredictable events (e.g., Disease X). The second case study is founded on forecasting 

production and supply chain bottlenecks in future global pandemics. The first case scenario 

is developed to test the algorithms with real-time intelligence (data) from healthcare edge 



Preprint version 

devices. The second case scenario is constructed in an Industry 4.0 production and supply 

chain system, integrated into a dynamic and self-adapting automated forecasting engine.  

Strong security and privacy protocols are followed in the testing scenarios. The two case 

studies test the performance of the AutoAI as algorithmic-edge computing solutions that 

will enable much greater speed in future responses, facilitated by the increased connectivity 

of humans and devices. Secondly, the case studies will develop a new self-adaptive version 

of AutoAI to compete with the performance of current deep learning algorithms. The 

second case is constructed in the concept of the factories of the future i.e., ‘Industry 4.0’ as 

the core case for improving the future vaccine production and supply chain capacity and 

speed. The two case studies are grounded on the need to accelerate new algorithms to 

operate on new supply chain edge technologies e.g., IoT, drones, autonomous vehicles, 

robots, and 3D printing. An additional motivation is the need to integrate cybersecurity in 

the vaccine cold chain/supply chain and assess the cyber risks from using modern edge 

technologies on complex healthcare systems – often operating with legacy IT systems. We 

can anticipate that vaccine supply chains for Disease X will face many bottlenecks. The 

overall goal of the article is to apply an incremental approach for testing and improving the 

new compact AutoAI algorithms and to work on resolving problems as they emerge. By 

using the algorithms and knowledge developed in existing literature, this article engages 

with the construction of the two scenarios with new and emerging forms of data (NEFD) and 

applies a new model of AutoAI into a real-world predictive (forecasting) scenario. The 

output of the two case study scenarios is a new forecasting engine that can improve the 

vaccine production and supply chain capacity and speed and enhance the capability of 

digital healthcare systems to adapt to a Disease X event.  

Methodology - Data collection  

(1) The first phase of the research applies a quantitative ‘causal-comparative design’ on 

already synthesised (secondary) training data from cyber actions and events that already 

occurred. Then, by applying quantitative ‘correlational research’ the statistical relationship is 

assessed between the primary and secondary failures and measure the actual risk [17]. 

Finding data for scenario constructions is a real challenge, especially secondary data. This 

concern was addressed with stratified sampling and random sampling in the data analysis. 
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This approach will enable testing of the model at different stages. (2) The new AutoAI 

algorithm will need to process large amounts of data to predict and forecast future events. 

This will require large training datasets to ‘teach’ the algorithm how to forecast. The process 

is slow and difficult to adapt to managing fast-changing events. To resolve this, the research 

uses open data from connected devices. By using anonymised data from existing and 

established platforms, the new AutoAI algorithm can be trained with real-time data, based 

on human and technology interactions at scale. This approach secures mass participation and 

large sample sizes. In addition, the training scenario constructions use standard open-source 

intelligence (OSINT) to gather public domain data, including public repositories (e.g., 

shodan.io).  

Two case study scenarios  

Case study a): Applying the novel AutoAI to resolving the cyber risk problem  

Cyber-risk is a growing concern in our society and the risks are becoming more sophisticated 

[18], exposing our healthcare systems and critical infrastructure. The first case study 

constructs scenarios for testing the new AutoAI algorithm for forecasting cyber-risks from the 

digitalisation of healthcare during pandemics. This generated an increased attack surface and 

presented a diverse set of uncertain and unpredictive attack vectors. The increased cyber-risk 

level will integrate cybersecurity experts, artificial intelligence, and big data scientists at the 

forefront of digital healthcare. Therefore, the Covid-19 pandemic created the ideal scenario 

for testing AutoAI algorithms. The first case study scenario is constructed for predicting 

(forecasting) the increased cyber risks surface [19] in digital healthcare systems operating at 

the edge.  

Such a method was needed for risk assessing digital health systems [20] even before Covid-

19, but the pandemic has placed enormous pressure on the health systems around the globe. 

To forecast cyber risks in digital healthcare at the edge, firstly the algorithms will be used to 

measure the cyber-attack frequency and severity. Secondly, for analysing real-time data and 

predicting cyber risks at the edge, the scenario will use statistical methods e.g., confidence 

intervals and time-bound ranges for testing and improving the novel AutoAI algorithm. 

Thirdly, the case scenario applied a dynamic methodology for testing the novel compact 

version of AutoAI algorithms, by deploying the algorithms on edge devices e.g., IoT, and 
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drones. As more digital health devices are connected, the risk surface increases and the risk 

of cascading effect also increases. In the spirit of incremental research, the novel AutoAI 

algorithm can be adapted for use with the FAIR method1. The AutoAI is applied with the FAIR 

method for classifying data into primary (i.e., health system response to a cyber event) and 

secondary (i.e., the failure of other systems as the reactions to a cyber event). In the first case 

study scenario, the AutoAI and the FAIR method are integrated by using a Bayesian 

optimisation as a probabilistic iterative algorithm based on two components (1) a surrogate 

process e.g., a Gaussian process or a tree-based model; and (2) an acquisition function to 

balance the training data ‘exploration’ and ‘exploitation’. This will advance the current state-

of-the-art cyber-risk assessment, which is based on compliance-based qualitative 

methodologies (e.g., heath map/traffic lights systems). The first scenario for testing and 

verifying the novel AutoAI model in a real-world case study scenario improves the state-of-

the-art in cyber risk assessment by intersecting previously isolated disciplines (e.g., IoT, health 

care; neuromorphic computing) with AI algorithms (e.g., ANN, CNNs, classification, 

regression) and analytical methodologies, (e.g., confidence intervals, time-bound ranges) 

with a wide range of source evidence (e.g., spatiotemporal data, high-dimensional data, time-

stamped data).  

Case study b): Applying the novel AutoAI for resolving vaccine production and supply chain 

bottlenecks  

The second case scenario is constructed for preparing the healthcare system for a Disease X 

event. The training set from the first case study is advanced and tested on training data from 

the Covid-19 pandemic. The current application of AI for managing Covid-19 will provide some 

of the secondary training data we need to construct the scenario. The rest of the training data 

is collected from OSINT data sources. This scenario helps improve the algorithm and benefits 

society because it forecast the points of failure and helps the healthcare systems to cope with 

future pandemics. Constructing the second case study scenario analyses how a disruptive 

Disease X event, combined with disruptive new edge systems, and novel AI-based 

technologies, challenges the benefit to the society from technological advancements.  

 

1 https://www.fairinstitute.org/  

https://www.fairinstitute.org/
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These events in combination increase their impact and escalate the existing production and 

supply chain bottlenecks. By integrating AI in healthcare edge analytics, this case scenario 

devises a new approach for cognitive data analytics in vaccine production and supply chain. 

Creating a stronger resilience through cognition, resolving around understanding how and 

when bottlenecks and compromises happen, enabling healthcare systems to continuously 

adapt to global pandemics and employ AI techniques to understand and mitigate the cyber 

vulnerabilities of future adverse events i.e., Disease X. The second case scenario constructs 

and tests algorithmic solutions for protecting healthcare systems. The second case scenario 

is constructed for the AI algorithm to be tested on cloud computing.  

Conceptual design 

The conceptual design is grounded on the postulate that it is possible to construct predictive 

algorithms that can forecast risk in digital health systems operating at the edge of the 

network and severely improve the health care system’s ability to rapidly adapt to huge 

external changes 

The first scenario is constructed to forecast cyber risk events during future pandemics, and 

the second is for testing the AI algorithms on digital healthcare devices operating on the edge 

of the network. These scenarios are designed to resolve two contemporary problems. Covid-

19 has incentivised the adoption and scale-up of digital healthcare technologies. The first 

scenario forecast such cyber risk by creating urgency in predicting (forecasting) the potential 

risk of these complex and coupled systems. Although AI has been used in cybersecurity, the 

current AI algorithms cannot run on IoT devices with very low memory. The new AutoAI 

algorithm makes this possible, through faster and more efficient processing. This scenario 

forecasts the points of failure from data collected on the edge of the network.  

Design Phases 

Phase 1 synthesises the knowledge from existing studies to build the training scenarios for 

constructing a self-adaptive AI that can predict (forecast) the cyber risk in healthcare systems 

during a future Disease X event. Phase 2 extends into the development of a novel self-

adaptive version of the AutoAI, that can severely improve the health care system’s ability to 

rapidly adapt to huge external changes. The self-adaptive AI will not only secure the system 

by forecasting risk in Phase 1 but also address in Phase 2 how the system responds in 
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circumstances when failure and compromise occur. This research acknowledges that not all 

systems can be secured and places the efforts on constructing self-adaptive algorithms. In 

healthcare systems, this is a high-risk strategy, because of the patient data confidentiality 

and the risk of compromised data resulting in a loss of life. However, in times of crisis, such 

as the crises we have seen during Covid-19, any disruption to the healthcare system could 

lead to loss of life. Since both options are not acceptable, as an alternative option is proposed 

to (apply the AutoAI algorithm to) develop a self-optimising and self-adaptive healthcare.  

Phase 1: Predicting (forecasting) cyber risk in healthcare systems during a Disease X event 

Phase 1 engages with designing a new AI training scenario for predicting (forecasting) the 

cyber risks emerging from increased digitalisation during global pandemics (e.g., working 

from home during lockdowns).  

The first design obstacle O1 is to automate the Bayesian approach with new AI algorithms and 

discrete binary (Bernuolli) probability distribution. The first design milestone (M1) is to 

integrate and test if the novel AutoAI algorithm can operate on healthcare edge devices to 

detect (and forecast) anomalies before they turn into faults. One approach for this to be 

achieved is by applying apply discrete binary (Bernuolli) probability distribution. Alternatively, 

a second approach is to apply continuous probability distribution to determine the range and 

impact of a cyber-attack (size and duration) on edge devices. Both approaches will require 

automating the data preparation from edge devices. Such solutions are non-existent at 

present and require going beyond the current state-of-the-art to construct a more compact 

and efficient version of AI algorithms. The development of a new more compact and efficient 

versions of AI algorithms will create many additional benefits for healthcare and support 

services. The new self-adaptive AutoAI algorithms will be able to adapt to these changes 

because such AI will be capable of automated data collection, processing, and analysis of 

open-source intelligence (OSINT). The OSINT data accumulation in specific datacentres has 

created significant incentives and benefits for hackers to break into these datacentres. 

Hackers are already using deep learning methods to analyse failed attempts and to improve 

future attacks. The new self-adaptive, more compact, and efficient AutoAI will reduce the 

incentives for creating such data centres, by enabling the deployment of AI in edge devices 

(i.e., IoT devices, drones) for real-time automated data collection, processing, and analysis of 

raw data.  The second design obstacle O2 is to predict (forecast) risks and be more prepared 
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for Disease X by progressing from manual to automated and from qualitative and quantitative 

risk assessment of failures in healthcare systems. The design methods include ‘causal-

comparative design’ for synthesising data on actions and events that occurred during Covid-

19 and ‘correlational research’ to assess the statistical relationship between the primary and 

secondary failures [17]. A primary failure will be classified as the failure of the health system 

caused by an event (e.g., Covid-19), and the secondary as the failure of other health systems 

as the reactions to an event (e.g., delayed surgeries, delayed cancer diagnosis, and/or 

treatment). The second design milestone (M2) is to test if the novel AutoAI algorithm can 

forecast the actual loss including primary and secondary risk/loss from a Disease X event. This 

differentiates from forecasting risk/loss based only on primary failures. This is unusual 

because Disease X is an extraordinary event that could trigger catastrophic loss of life. The 

differences between primary and secondary loss are further described in recent literature 

[16]. In summary, the primary risk can easily be calculated and measured, but there are no 

mechanisms for reporting secondary risk. To address the (un)availability of data, the search 

for probabilistic data expands in new and emerging forms of OSINT data e.g., open data, 

spatiotemporal data, high-dimensional data, time-stamped data, and real-time data. 

Collecting and analysing such big data on a global scale is challenging, even with an AI-

assisted approach for data collection, filtering, processing, and classification. To reduce 

complexity stratified sampling and random sampling will be applied to obtain reliable data 

samples. The third design obstacle O3 is for the FAIR method2 to be adapted and used for the 

data analysis and the comparative risk/loss aspects of the collected data. This leads to the 

third design milestone (M3), advancing the integration of AI algorithms with established 

manual approaches for statistical risk assessment. Automation of the FAIR method will 

present reaching a significant milestone in advancement from manual to automated risk 

assessment. The unsupervised learning will be based on the postulate that failures will occur 

during a Disease X event. By forecasting failures, a solution can be devised to address how 

the system responds in these circumstances. In addition, by forecasting primary and 

secondary failures, the risk magnitude and the threat event frequencies can also be 

predicted. Automation of the FAIR method needs to combine risk analytics (e.g., FAIR), AI 

algorithms (e.g., ANN, CNNs, classification, regression), and statistical/analytical 

 
2 https://www.fairinstitute.org/fair-u  

https://www.fairinstitute.org/fair-u
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methodologies (e.g., confidence intervals; time bound ranges) with source evidence from a 

wide range of edge computing healthcare data, e.g., spatiotemporal data, high-dimensional 

data; time-stamped data. One of the main motivating points for intersecting the previously 

isolated disciplines is timing. Advancements in AI and edge computing present a new for 

studying global pandemics, and global pandemics such as Covid-19 are very rare events. 

Phase 1 of the WP3 undertakes experimental developments in research on progressing from 

the current state of manual and qualitative risk assessment into an automated and 

quantitative risk analytical approaches. Alternatives to mitigate this risk of failing in M1-3 

include designing multiple highly specific AI algorithms for solving specific problems, then 

connecting the output. Although designing one transferable algorithm is preferred, this plan 

could be presenting lower risk and less complexity.  

Phase 2: AI for vaccine development and self-adaptive production and supply chain bottlenecks  

Phase 2 engages with designing and testing the AutoAI as an algorithmic solution for the 

medical production and supply chain bottlenecks (e.g., vaccines, protective equipment) 

during global pandemics i.e., Disease X. Although the Influenza vaccines are faster than ever 

to produce, the production and supply process still takes many months. To prepare the 

healthcare system for future pandemics, the healthcare system has two options, the first is 

to stockpile medications and the second is to improve the medical production and supply 

chain capacity and speed. Even if the vaccines and medications for future pandemics existed, 

stockpiling would be a challenge. Therefore, Phase 2 undertakes experimental developments 

in research on designing an adaptive algorithm for integrating the medical production and 

supply chains into the Industry 4.0 concept. Phase 2 is founded upon knowledge from Covid-

19. The fourth design obstacle O4 (continuing from Phase 1) is to use and test how the novel 

AutoAI algorithm can identify and adapt modern technologies. The fourth design milestone 

M4 is for the novel AutoAI algorithm to be applied to resolve production and supply chain 

bottlenecks i.e., adapting to Industry 4.0 production and supply chains. While Phase 1 is using 

AI for cyber risk forecasting, Phase 2 is using AI for forecasting production and supply chain 

bottlenecks. The first bottleneck addressed is the need to secure the high-value medical 

products (e.g., vaccine) deliveries from theft, and sabotage. The second bottleneck addressed 

is the optimisation of the medical system resilience (i.e., the requirement to vaccinate the 

individuals operating the production/supply chain before starting a large-scale vaccination). 
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Triggering optimisation challenges in terms of finding the fastest and safest method to use 

autonomous machines (e.g., drones) to deliver vaccines. The third bottleneck to address is 

the lack of coordination and risk from shortages. The fifth design milestone M5 is to apply 

(and test) the novel AutoAI algorithm to operate on emerging new technologies (IoT, drones, 

autonomous vehicles, robots, 3D printing, etc.), and mixed design milestone M6: is to 

integrate the AutoAI algorithm on complex healthcare systems (often operating with legacy 

IT systems) to ensure strong cybersecurity in the medical production and supply chains. The 

WP3 requires a more technical approach for applying the new AutoAI in real-world scenarios 

for resolving practical problems e.g., cybersecurity, Disease X, production, and supply chain 

bottlenecks.  

Table 1:Conceptual design  

M Design obstacles (O), and design milestones (M)  O 

Phase 1: Predicting (forecasting) cyber risk in healthcare systems during a Disease X event. 

M1 Construct an automated Bayesian approach with the novel AutoAI algorithms and discrete 

binary (Bernuolli) probability distribution to forecast data breaches and the probability of a 

system going down.  

O1 

M2 Test if the novel AutoAI algorithm can forecast the actual loss including primary and 

secondary risk/loss from a Disease X event - with new and emerging forms of data. 

O2 

M3 Advance the FAIR method with unsupervised learning and regression algorithms and apply the 

AutoAI to forecast the cyber security readiness for Disease X event.  

O3 

Phase 2: Algorithmic solutions for medical production and supply chain bottlenecks.  

M4 Test how the novel AutoAI algorithm can identify and adapt modern technologies to help with 

resolving shortages of supplies in critical times e.g., 3D printing.   

O4 

M5 Construct a self-adaptive vaccine delivery system based on the novel AutoAI algorithm, real-

time data, and new modern technologies e.g., drones, autonomous vehicles, and robots. 

O5 

M6 Dynamic coordination with the novel AutoAI algorithmic design for real-time analytics of the 

vaccine supply chain in Disease X event. 

O6 

The expected difficulties in the conceptual design include the lack of suitable real-world 

medical testbeds (i.e., experimental technology). Numerous testbeds exist in controlled 

healthcare environments (e.g., EIT3), but the main characteristic of Disease X is 

unpredictability. Even if a real-world testbed can be secured in a Covid-19 scenario, the next 

pandemic might be defined with different characteristics. As an alternative to reaching the 

design milestones, the AutoAI can be tested in existing real-world production and supply 

chain testbeds designed for similar purposes (e.g., IIC4). Secondly, a small-scale low-cost 

autonomous supply chain testbed can be built. The second solution also enables testing the 

 
3 https://eithealth.eu/catapult/  
4 https://www.iiconsortium.org/vertical-markets/healthcare.htm  

https://eithealth.eu/catapult/
https://www.iiconsortium.org/vertical-markets/healthcare.htm
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algorithms more extensively, with randomness built with Monte Carlo simulations to test for 

unexpected scenarios. 

Discussion on ethics and the gender dimension in AI 

The emerging conceptual design can measure how AI infrastructures in the communications 

network and the relevant cybersecurity technology can evolve ethically that humans can 

understand while maintaining the maximum trust and privacy of the users. Particular 

attention is placed on the research methodology to eliminate gender and other types of bias 

in the participants’ selection process for case study scenarios and interview participants. 

Participants (experts) are selected with established sampling techniques, based on expertise. 

A separate ethical concern included in the conceptual design is the issue of AI and gender 

equality. A report commissioned by UNESCO in 20195 found gender biases in AI training data 

sets, leading to algorithms and devices spreading and reinforcing harmful gender stereotypes 

and biases that are stigmatising and marginalising women on a global scale. Similarly, Google 

image recognition has been found to show bias toward African Americans6. The conceptual 

design investigates technical solutions for combating gender and racial bias with solutions 

such as zeroing out potential bias in words by setting some words to zero; and the use of less 

biased/more inclusive data such as multi-ethics, and multi-gender data. Such solutions could 

eliminate scenarios where people do not want to discriminate, but they do, though 

unintentional bias when the AI algorithms get biased data and make biased decisions. The 

proposed solutions can be applied in some obvious examples where data comes from 

unhealthy stereotypes. Some of the examples to be considered include a) gender stereotypes 

in healthcare systems, e.g., sex appeal - in which instances should AI be gender neutral? Male 

or female? Or racial bias – should AI be black or white? 

Conclusion  

The two case study scenarios present a practical application of a new research methodology 

specific for designing a self-optimising AutoAI capable of forecasting cyber risks in the health 

systems through real-time algorithmic analytics. The new methodology can be applied to 

 
5 https://en.unesco.org/AI-and-GE-2020  
6 https://www.cnbc.com/2018/09/18/world-economic-forum-ai-has-a-bias-problem-that-needs-to-be-fixed.html  

https://en.unesco.org/AI-and-GE-2020
https://www.cnbc.com/2018/09/18/world-economic-forum-ai-has-a-bias-problem-that-needs-to-be-fixed.html
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designing a self-adaptive AutoAI specific for forecasting bottlenecks through autonomous 

analytics of digital health systems. Both scenarios use Covid-19 data to forecast cyber risks 

and bottlenecks in managing Disease X. This enhances the healthcare capacity in 

preparation for Disease X and create a comprehensive and systematic understanding of the 

opportunities and threats from migrating edge computing nodes AI technologies to the 

periphery of the internet. Enabling more active engagement of AI in the digitalisation of 

health systems, in response to the new IoT risk and security developments as they are 

emerging. 

These concerns on IoT risk and security are fundamental to this work and the proposed 

solutions need to be applied with interdisciplinary research that works across engineering 

and computer science disciplines. The new methodology resolves a contemporary scientific 

problem that is relevant to users and the healthcare industry in general. The scenarios 

constructed in the article, assess the data protection and integrity while testing and 

improving the AI algorithms in edge devices. The new methodology contributes to 

knowledge by enabling the designing of compact and more efficient algorithms and 

combining statistics for securing the edge. Promoting secure developments in digital 

healthcare systems, through integrating AI algorithms in vaccine supply chains and cyber 

risk models. 

Limitations and further research  

The volume of data generated from edge devices creates diverse challenges in developing 

data strategies for training AI algorithms that can operate with lower memory requirements. 

Designing sparse compact and efficient AI algorithms for complex coupled healthcare systems 

demands prior data strategy optimisation and decision making on collecting and assessment 

of training data. In other words, the training data strategy should come before or 

simultaneously with the development of the algorithm. This is a particular risk concern 

because the new AI algorithm discussed in this proposal will lack such data input and must be 

tested in constructed scenarios. Hence, the new compact AI algorithm will be designed for a 

very specific function. 
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