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Abstract. A new non-Archimedean approach to interacted gumarields is presenteth proposed
approach, a field operater(x, t) no longer a standard tempered operator-valuedidison, but a
non-classical operator-valued function. We proviagithis novel approach that the quantum field
theory with HamiltoniarP (¢), exists and that the correspondifig algebra of bounded observables
satisfies all the Haag-Kastler axioms except Lareotvariance. We prove that thép?™),,n > 2
guantum field theory models are Lorentz covariant.

1. Introduction

Extending the real numbeRsto include infinite and infinitesimal quantitiesginally enabled

D. Laugwitz [1] to view the delta distributiaf(x) as a nonstandard point function. Independently
A. Robinson [2] demonstrated that distributionslddie viewed as generalized polynomials.
Luxemburg [3] and Sloan [4] presented an alterngpeesentative of distributions as internal
functions within the context of canonical Robinsaheory of nonstandard analysis. For further
information on classical model theoretical nonstaddanalysis namelySA , we refer to [5]-[8].
Abbreviation 1.1In this paper we adopt the following canonical tiotss. For a standard sEétwe
often writeE;. For a seE; let °E; be a sétEg, = {*x|x € Eg}. We identifyz with °z i.e.,z = 9z
forallz € C. HencePEy = Ei if EC C,e.9.°C=C, °R=R, °P =P, °L} =L, etc.

Let"R. "Rey, "Ren, “Re, and*N,, denote the sets of infinitesimal hyper-real nurabpositive
infinitesimal hyper-real numbers, finite hyper-reaimbers, infinite hyper-real numbers and infinite
hyper natural numbers, respectively.

Note that:*]Rﬁn = "R\"Ry , "C = "R +i'R, *Cip, = "R + "Ry -

Definition 1.1 Let{X, ||:]|} be a standard Banach space.¥ar*X ande > 0, ~ 0 we define the
open~-ball aboutx of radiuse to be the sk, (x) = {y € *X|*||x — y|| < €}.

Definition 1.2 Let {{X, ||-]|]} be a standard Banach space; X, thus*Y c *X and letx € *X.Thenx

*oo

is an- accumulation point ofY if for anye € "R, there is a hyper infinite sequer{es, },,_,in *Y

such that{x,,}.=, N (B, ()\{x} # 0).

Definition 1.3 Let {{X, |||} be a standard Banach spaceYet *X,*Y is = -closed if any
x-accumulation point ofY is an element GfY.

Definition 1.4 Let {{X, ||:|]|} be a standard Banach space. We shall say thatahteyper infinite
sequencéxn};‘ﬁlin *X is*-converges ta € *X asn — *oo if for anye € "R, there isN € *N such
that for anyn > N: *[|x — y|| < &.

Definition 1.5 Let {{X, |I*llx}, {{Y, lI']ly} be a standard Banach spaces. A linear internahtupe
A:D(A) € "X - 'Y is=* -closed if for every internal hyper infinite sequel{mn};‘il in D(A) *
-converging tac € *X such thatdx,, » y € *Y asn - *o one hax € D(A) andAx = y.
Equivalently A is #-closed if its graph is -closed in the direct suiiX @ *Y.

Definition 1.6 Let H be a standard external Hilbert space. The grapheonternal linear
transformatiorT: *H — *H is the set of pairfp, Te)|¢ € D(T)}. The graph of’, denoted by'(T),
is thus a subset 61 x *H which is internal Hilbert space with inner prodgb,, Y1), (9., ¥,)) =



(1, 92) + (Y1,¥,).The operator is called as-closed operator if"(T) is a* -closed subset of
Cartesian produciH x *H.

Definition 1.7 Let H be a standard Hilbert space. [gtandT be internal operators on internal
Hilbert spacéH. Note that iflr'(T,) > I'(T), thenT; is said to be an extension®and we writel; D
T. Equivalently,T; o T if and only ifD(T;) 2 D(T) andT,;¢ = T for all € D(T).

Definition 1.8 Any internal operatdF on *H is #-closable if it has a-closed extension. Every
x-closable internal operat@rhas a smallestclosed extension, called isclosure, which we denote
by *-T.

Definition 1.9 Let H be a standard Hilbert space. [[ebbe ax-densely defined internal linear operator
on internal Hilbert spacei. LetD(T*) be the set op € *H for which there is a vectdre *H with
(TY, p) = (¢, &) for allyp € D(T), then for eaclp € D(T*), we defineT* ¢ = £. T* is called the:
-adjoint ofT. Note thatS c T impliesT* c S*.

Definition 1.10 Let H is a standard Hilbert space +Alensely defined internal linear operafoon
internal Hilbert spacéH is called symmetric (or Hermitian)if c T*. Equivalently,T is symmetric

if and only if (Te,) = (¢, TY) for all o, € D(T).

Definition 1.11 Let H be a standard Hilbert space. A symmetric intelinabr operatof” on internal
Hilbert spac€eH is called essentially sek-adjoint if itsx-closurex-T is self x-adjoint. If T is
x-closed, a subsét c D(T) is called a-core forT if = (T T D) =T.If T is essentially

self x-adjoint, then it has one and only one selédjoint extension.

Let F be the standard Fock space [9],[10] for a massi@etral scalar field in four-dimensional
space-time [10]. The elements*®f are internal sequences of functions on internahamum
spacéR3. Let the standard annihilation and creation opesdbe normalized by the relation

[a(k), at (k)] = 83(k — k). (1.1)

so that the free-field Hamiltonian with finite montem cut-off ¢ € °R is
Hoo = [ee @T(KDalp()d?k, u(l) = I + k3+13 . (1.2)
From (1.1) by transfer one obtains
[*a(k), *a’ (k)] = *83(k — k"), (1.3)
so that internal free-field Hamiltonian with hypeite cut-off € R, is
Hope = S "@T ) ("all)) Cul)) k. (1.4)

Thet = 0 internal field*¢, (x) with hyperfinite momentum cut-off € *R,., is

* 1 * * _—i * * d3k
©,(x) = eTSER flklsx e~ {ED[at(k) + *a(—k)]= (1.5)

(V20)

The spatially cut-off internal interaction Hamiltan with hyperfinite momentum cut-off € *R .,
is

*

"Hin(9) = 220 () Sesjon™ Tpepuaton™ Do "a7 k) "0t (ky ) a(=ljer)



x a(=ka) ("9 (Bioy ki) ) TTiy "u()2d3k;. (1.6)
We also need internal number operator with hypigfimomentum cut-offr € "R .,
Noe = [ @t k) "all)d®k (1.7)
and the domain

Do,z = Npen D(*H&x)- (1.8)

Remark 1.1 Note that the domaif, ,, is a nonstandarekternal set so there is no standardBeduch
thatDOIK = *D
Proposition 1.1 Let W, be a standard operatidf,: F — F of the form

Wo = Ji 1o i 2o Wty s km) @tk 1) = a(—km) T2, 4K (1.9)
and letN,; be a standard operat¥y: F — F of the form
No = fien a7k (k. (1.10)
Assume that for alt such thad < o < o the inequality holds
S I xo (ks oo, ki)W (ky o, ki) TIEZ d3R; < 0o,

wherey, (kq, ..., k) = 1if |k;| < o foralll < i <m, andy,(ky, ..., k) = 0 otherwise. Then for
all ¢ such thad < o < oo and for allj such thatj| < m the inequality holds

||(Na+1) S, + D )Hs

1

< (ff Holhys o ) WP (kg s o) Ty @3, ). (1.11)

Proposition 1.2 Let *IW,, be internal operatdil,,: *F — *F of the form
W = frestore e tze Wk s lm) "at (e 1) =+ al=ln) TT72; d3K;. (1.12)
Then for allx such thatr € R, and for allj such thatj| < m,m € "N, the inequality holds

_J (m-))
||(1v,{ D IWL N, + 1) T || <

1
2

< (L0 s ) W2 O e i) TR B ) (1.13)

Proof It follows directly from (1.11) by transfer.
Remark 1.2 It follows from (2.11) that:
(1) *H;,,(g) is well defined on the domaiby, ,,,

(2) there is a&-closurex-*H,,,(g) with domainD(x -*H; ,,(g)) 2 Dy,
(3) external seb,,, is ax-core for*H;,,(g) i.e.,*- (*H;,,(g) T Dy,.) = *H;,(9)



Remark 1.3 The operatok-*H;,,(g) is external mapping-*H;, (g): *F — *F i.e., there is no
standard operatof: F —» F with domainD(T) such that:

(1) *D(T) = D(* -*H,,.(9)) and (2)'T I *D(T) =+-"H;,,(¢) I D(* -"H;,.(9)):

Thus we cannot derive the desired properties obfiegator -*H; ,,(g) by using Robinson transfer
principle [2]-[7].

As that has been explained in [8] classical madebtetical nonstandard analyBiSA does not
power enough to resolve the stated in [8] problemt®nstructive quantum field theory related to
physical dimensiod = 4,

In order to avoid any difficulthess mentioned ahdmehis paper as in [8] we deal by using minimal
non-conservative extension 8§A developed in [11]-[14].We will denote this extesrsiy NSA*.

The formal theorNSA* is based on the following definitions and axiomssented below.

Remind that Robinson nonstandard analysis (NSA)yrdaneloped using set theoretical objects
called super-structures [5]-[7]. A superstructii(§) over a sef is defined in the following way:
Vo(S) =S, V1 (S) = V() U P(Vie(S)), V(S) = Unen V1 (S). MakingS = R will suffice for
virtually any construction necessary in analysisuided formulas are formulas where all quantifiers
occur in the form:vx (x ey — --- ),3x (x € y — -+ ). Anonstandard embedding is a mapping

x: V(X) - V(Y) from a superstructur®(X) called the standard universe, into another stipetare
V(Y) called nonstandard universe, satisfying the falhgupostulates:

1.Y="X

2. Transfer Principle For every bounded formuta(xy, ..., x,) and elements,, ...,a, € V(X) the
property®(ay, ..., a,) is true foray, ..., a, in the standard universe if and only if it isetrior

*ay, ..., *a, in the nonstandard univergéX) k ®(x;, ..., x,) © V(Y) ko (*ay, ..., *ay,).

3. Non-triviality For every infinite setd in the standard universe, the $ét|a € A} is a proper
subset of A.

Definition 1.12 A setx is internal if and only ifc is an element of A for somed € V(R). Let X be

a set andl = {4;};¢; a family of subsets ok .Then the collectioM has the infinite intersection
property, if any infinite sub collectighc I has non-empty intersection. Nonstandard univerge-i
saturated if whenevér; };c; is a collection of internal sets with the infanintersection property and
the cardinality of[ is less than or equal to

Remark 1.4 For each standard univerge= V (X) there exists canonical langualge and for each
nonstandard univerd€ = V(Y) there exists corresponding canonical nonstaridagliage

L = Ly [5].[7]

4 Therestricted rules of conclusion If Let A andB well formed, closed formulas so thgtB € *L. If
W E A, then=A Wgxyp B. Thus, if a statemert holds in nonstandard universe, we cannot obtain
from formula =4 any formulaB whatsoever.

Definition 1.13 [8] A setS c *N is a hyper inductive if the following statementdwinV (Y):

Ngen(@ ES > at €5).
Hereat = a + 1.0bviously a setN is a hyper inductive.
5. Axiom of hyper infiniteinduction

vS(S € "NVB(B © "N)[A1<ecpla €S - a* € )] - 5 ="N}.



Example 1.1 Remind the proof of the following statement: stane (N, <, =) is a well-ordered set.
Proof LetX be a nonempty subset & Suppose X does not have deast element. Then consider
the seN\X. CaselN\X = @. ThenX = N and sd) is a< -least element but this is a contradiction.
Case2N\X # @. Thenl € N\X otherwisel is a< -least element but this is a contradiction. Assume
now that there exists somes N\X such thah + 1, but since we have supposed tkiatoes not have
a< -least element, thus+ 1 ¢ X. Thus we see that for allthe statement € N\X implies that

n + 1 € N\X. We can conclude by axiom of induction thag N\X for alln € N. ThusN\X = N
impliesX = @. This is a contradiction t& being a non-empty subsetdfRemind that structure

("N, <, =) is not a well-ordered set [5]-[7]. We set n&w= *N\N and thuéN\X; = N. In contrast
with a setX mentioned above the assumptiog *N\X; implies thatr + 1 € *N\X; if and only ifn

is finite, since for any infinite € *N\N the assumption € *N\X; contradicts with a true statement
V(Y) En ¢ *N\X,=N and therefore in accordance with postulate 4 waaiBobtain frormm € *N\X;
any closed formul® whatsoever.

For further information on non-classical nonstaddamalysis namelNSA*, we refer to [8]-[13].
Abbreviationl.2 In this paper we adopt the following notations Bjr a standard sé&twe often
write E, let °Eg. = {"x|x € Es:}.We identifyz with °z i.e.,z = 9z for allz € C. HenceEg = Eg

if ESCeg.’C=C R=R, etc. Let'RE, "RE ., "REL,,"REq, “RE,, "N, de-note the sets of
Cauchy hyper-real numbers, Cauchy infinitesimaldmyi@al numbers, Cauchy positive infinitesimal
hyperreal numbers, Cauchy finite hyper-real numb@asichy infinite hyper-real numbers and infinite
hypernatural numbers, respectively. Note ﬂ%ﬁ,ﬁn = "R¥I\'RZ .

Definition 1.13 Let H be external hyper infinite dimensional vector spacer the complex field

*C# = *R¥ +i*R¥. An inner product ol is aC#-valued function{-,-): H x H — *C#, such that (1)
(ax + by, z) = (ax,z) + (by, z), (2){x,y) = (y,x), ) ||x|I? = (x,x) > 0 with equality(x, x) = 0 if
and only ifx = 0.

Theorem 1.1 (Generalized Schwarz Inequality) 4éf, (-,-)}be an inner product space, then for all
x,y € H: |{x,¥)] < |lx|llly]| and equality holds if and onlyif andy are linearly dependent.
Theorem 1.2 Let{H, (-,-)}be an inner product space, afigl||s = +/(x,x) . Then||-|| is a*R¥ -
valued#-norm on a spack. Moreover(x, x) is #-continuous on Cartesian prodéttx H, whereH

is viewed as thé-normed spac€H, |||l 4}

Definition 1.14 A non-Archimedean Hilbert spaékis a#-complete inner product space.

Two elementx andy of non-Archimedean Hilbert spaéeare called orthogonal ifx, y) = 0.
Definition 1.15 The graph of the linear transformatibnH — H is the set of pair§(¢, T¢)|(¢ €
D(T))}. The graph of the operat®y denoted by’ (T), is thus a subset éf x H which is a non-
Archimedean Hilbert space with the following inpeoduct({¢, ), (¢, ¥,)). OperatorT is

called a #-closed operatorTifT) is a #-closed subset Hf x H.

Definition 1.16 Let T, andT be operators on H. If(T,) o I'(T), thenT; is said to be an extension
of T and we writel’; o T. Equivalently:T; o T if and only ifD(T,) o D(T) andT;¢p = T¢ for all

¢ € D(T).

Definition 1.17 An operatoiT is #-closable if it has #-closed extension. Eve#tclosable operator
has a smallest-closed extension, called itisclosure, which we denote By T.

Theorem 1.3 If T is #-closable, thelf (#-T) = #-T'(T).

Definition 1.18 Let D(T™*) be the set op € H for which there is aé € H with (Ty, ) = (¢, &) for
ally € D(T).For eachp € D(T*), we definel* ¢ = £.The operator* is called thet-adjoint of T.
Note thaty € D(T*) if and only if|[(Ty, )| < C||ly]|4 for ally € D(T). Note thatS c T implies

T* cS.

Remark 1.5 Note that fog to be uniquely determined by the conditi@h, ¢) = (¥, ¢) one need



the fact thaD(T) is #-dense irH. If the domainD (T*) is #-dense i, then we can defind** =
(T)"

Theorem 1.4 LetT be a#-densely defined operator on a non-Archimedean Hikaced. Then: (a)
T* is #-closed. (b) The operat@ris #-closabie if and only iD(T*) is -dense in which cage= T*".
(c) If T is #-closable, therf#-T)* = T*.

Definition 1.19 Let T be a#-closed operator on a hon-Archimedean Hilbert spadecomplex
numberl € *C¥ is in the resolvent sei(T), if A — T is a bijection of D(T) ontoH with a finitely or
hyper finitely bounded inverse. If complex numbeg p(T), R; = (Al — T)™1 is called the resolvent
of T atAh.

Definition 1.20 A #-densely defined operat@ron a non-Archimedean Hilbert space is called
symmetric or Hermitian it < T*, that is,D(T) c D(T*) andT¢ = T*¢ for all ¢ € D(T) and
equivalently,T is symmetric if and only ifT¢, ) = (@, Ty) for allp,y € D(T).

Definition 1.21 A #-densely defined operatdr is called sel#-adjoint if T = T*, that is, if and only
if T is symmetric and®(T) = D(T™).

Remark 1.6 A symmetric operatdF is alwayst#-closable, sinc®(T) #-dense irf. If T is
symmetric,T* is a#-closed extension of’ so the smallest-closed extensiofi** of T must be
contained irf"*. Thus for symmetric operators, we hdve T** c T, for #-closed symmetric
operators we have = T** c T* and, for self#-adjoint operators we hale=T** = T*. Thus a
#-closed symmetric operat®ris self+-adjoint if and only ifT* is symmetric.

Definition 1.22 A symmetric operatdF is called essentially seif-adjoint if its#-closure#-T is self-
#-adjoint. If T is #-closed, a subsé c D(T) is called a core foF if #-T D =T.

Remark 1.7 If T is essentially self-adjoint, then it has one and only one selidjoint extension.
Theorem 1.5[8] (see [8], sect.15.1) j € S, (*RE#3) is real, then

Hy(9) = Ext- [yt @3 (0): () ¥ (1.14)

is essentially self-adjoint on the domaing,, = N, 2, D(HiL,).

Heregj: (x) is a nonstandard pointwise-defined operator vafuadtiong}: "R%® — L(F*)
#(x) = —— Ext- [, _ (Ext-exp[~i(k, 0)])[a (k) + a(—k)] < et (1.15)
P @)/ Ikl pL=U J2u®)’ '

wherex € *RE, ..
The main purpose of the present paper is to extendesult of [8] tol(¢?™),,n > 2. Our notation
and definitions are the same as in [8].

We remind that for every functighe C,”(*R¥%,, "R¥ ), ), the averaged free quantum field

i) = # Ext- [, (Ext-exp[ tu(k) — i(k, )D[a’ () + a(=k)] f(x)%d“x, (1.16)

is a self#-adjoint operator on a non-Archimedean Fock spat¢s].
A non -Archimedearf;-algebra of local observable¥ is defined as the-#orm #closure [8]

A = #-U, A*(0), (1.17)

where the union takes place over bounded redionisspace-time, anti* (0) is the von Neumann
#-algebra generated by [8]:



{Ext-exp (i(pff(f) + inﬁ(f)) If € ng(*Rf,‘f*in, *[R{ﬁﬁn)}.
A non —Archimedean near stand#@iff-algebra of physical local observab®%(0) is defined as
AL(0) = {Q e U*(O)IIIQll4 € "RE, fin}-

Let G be the restricted Poincare group of transformatmfm-dimensional Minkowski space-time
M, . Poincare transformatiorﬁa, A%‘l)} € °G generated by a Lorentz boosts alongithdirection
i = 1,2,3 and space-time translatian- x + a,a = (a!, a?,a3,7) are

fA)n -

= (a' + x cosh B; + tsinh B}, + x'sinh B; + t cosh B, a? + x2, a3 + x3), (1.18)
ano-

= (a' + x1,a? + x% cosh 8, + tsinh B, a® + x3,7 + x? sinh B, + t cosh 8,), (1.19)
)

= (a® + x1,a? + x%,a® + x3 cosh B3 + t sinh B3, T + x1 sinh 5 + t cosh B3). (1.20)

Theorem 1.6 For every{a, A(ﬁ?} € 9G,i = 1,2,3 and for every bounded séx c *R*3 there exists a

¢ fin

unitary operator&{’, i = 1,2,3 such that, for alf € C,” ("Rf%,, "R¥ )
Ug) [Ext-exp(ipfi (£) )] (Ug)) ~ Ext-exp <i(p,"jt <f{a,/1§?}> >, i=123, (1.21)

Wheref{a,Agz}(x, t)y=f ({a, A%‘L)} (x, t)). This mappings extends to a representati{%[}lgz} of

x-automorphisms ofl*such that
) # ~ or# ® :_
o)) (9140)) ~ ut ({a A } 0),z =1,23. (1.22)
The formal expressions for the Hamiltonian and btré¢ransformation generators are given by [8]
Hye = Ho + Hyye = Ext- [,y (Toxe () + Ty (x)) d3x, (1.23)
MY = Mo + My, = Ext- [ ¥ (To,e(x) + Ty () 35, = 1,23, (1.24)
where
1 #2 2.  #2 # o # 2 # o # z #oo# z
Ton(x) = > | () +m=: piie(x): +: (axlgo},(x)) i+ (6x2<p},(x)) i+ (6x3<p},(x)) :] (1.25)

is the free energy density with hyperfinite cutsfe "R, ,,, and where the interaction energy
densityT; ,,(x) reads



Ty (x) =: 2" (x)-. (1.26)
Formally one verifies the commutation relations
[iH,, M%*] = P¥,k = 1,2,3 (1.27)
and
[iH,, B¥] = 0,k = 1,2,3, (1.28)

whereP, k = 1,2,3 are the momentum operatd}$ = Ext- [+ P¢ (x) d**x with densities defined

by
PF(x) = [ 5 (%) 05 0 (x): +:0F i COmh (x): ] (1.29)

We wish to prove thatxt-exp(iB)M2* implements Lorentz rotations on suitable domain

Ext-exp(iBM2¥)| o (x, t)[Ext-exp(—ifM¥)| = of (AR (x,0) ), k = 1,2,3, (1.30)
B
where
@l (x,t) = [Ext-exp(itH,)] @} (x)[Ext-exp(—itH,,)], (1.31)

andA (x, £) = {o “‘)} (x,t).
In differential form (1.30) becomes

[iM3¥, ok (x, )] = toF @i(x, t) + x,0f @i (x, £), k = 1,2,3. (1.32)
We define now

M3¥(t) = [Ext-exp(—itH,)|M2*[Ext-exp(itH,)], k = 1,2,3, (1.33)
and using the commutation relations (1.27) and3jlu& obtain

Sy (ad(=itH,)) MP¥
ri#

MO (t) = Ext- = Mk — tBk, (1.34)
since second order and higher terms wanish identically. Thus we get
[iM2¥, 3 Cx, )] = [Ext-exp(itH,)][iMZ* (1), ok (x, 0)] [Ext-exp(—itH,)] =
= [Ext-exp(itH,)][iM3* — itPk, pf (x, 0)][Ext-exp(—itH,)], k = 1,2,3. (1.35)
Sinceg;: (x,0) commutes wittM; ,, by a standard computation we get
[iMY¥, ki (x,0)] = [iM3%, ki (x,0)] = x,mfi(x,0),k = 1,2,3. (1.36)
Also we get

[iPX, 0¥ (x,0)] = xk(pﬁ(x, 0),k =1,2,3. (2.37)

Substituting (1.36) and (1.37) into (1. 35), weadbthe desired commutation relation (1. 32).



The three main steps to convert the above arguimina rigorous proof are (a) to introduce a spatia

cut-off into the Lorentz boost generators in suetag that we obtain a setf-adjoint operatorsM,‘},’fq,

k = 1,2,3; (b) to show that for suitable bounded regions *R¥3. | (1.34) holds in the sense that for

¢ fin?
*oo #3 #
everyf € Co (*Rc,fin' *Rc,fin)'

[iM205 (), 02 (D] = [iMR5 — iBEg, 0k (], (1.38)

wherePk_, k = 1,2,3 are the locally correct momentum operators. Nad (1. 38) states that2*
n,g y p H,9

are the locally correct Lorentz boost generatorstfe regior0 corresponding to the exact
cancellation of higher order terms in (1.34) is fédet that second and higher order termMj}fB(t)

are localizedv -outside regior® and hence: -commutes withp}?(f). From (1. 38) one obtains the
relations

. a* o*
(iM% (©, 02 (D] ~ —f (¢ 57 + 5 550) b = 1.2.3, (1.39)

and its direct consequence
[Ext-exp(iBMR%)| @i (x, ) [Ext-exp(—iBMR% )] = @f (A%k) (x, t)),k =1,2,3. (1.40)

Definition 1.23 If I* = [a, b]® = [a,b] % [a, b] X [a, b] is & cube iMRY%,, where[a, b] is an
#-closed interval ifR¥ ;.. A causal shadow df is defined to be the diamond

03 = {(xq, %0, x3,)|a+ |t] <x <b—|t];k =123} (1.41)

Remark 1.8 Note that because we can always translate in thiéiyen,, k = 1, 2, 3 directions, it is
sufficient to prove Theorem 1.6 for sé&ssuch that botl® andAg‘)O,k =1,2,3 are contained in

0,3 for some #closed interval ¢ *Rf ... The advantage of working omﬁ;}*m is that the locally
correct Lorentz boost generatdllﬁf‘ ,k =1,2,3 are bounded below.

2. Properties of the L orentz boost generators M9% , k = 1,2,3

n,g’
In this section we consider the basic propertids}g andM,‘j,’fq, k = 1,2,3 in particular, the first
order estimates they satisfy. Note tHat, ande,_{;,k = 1,2,3 are well defined operators on a non-

Archimedean Fock spad&’. We take the definition of* and the definition of the pointwise-defined
time-zero field operators gi* as in [8] (see [8, Section 9]). The spatially offtHamiltonian is
defined as sel-adjoint operator on a non-Archimedean Fock siF&t¢8].

k k *oo * * k
Letg = {go, g1}, where g, = {gé )},k =123,9”,91 € C,"("R¥}ins "Résn) andgg®, g, =

0,k = 1,2,3. The spatially cut-off Hamiltonian reads
Hx,g = Hu(g) = HO,J{ + Tl,x(gl): (2-1)
whereT; ,, () = Ext-[,pus f (0)T;,,(x)d*x and

Ty (%) =2 7™ (x): (2.2)

is the interaction energy density. The operatpfg) has been studied in [8] and is known to be a
selt#-adjoint semibounded operator fi. For the regiord,s, defined above in section 1 we set now



MR¥ = aHy, + To, (xkg(()k)) + Tp 5 (X 91) (2.3)
with « > 0, and
Tox(f) = Ext'f*ﬂg§3 f(x)To,z(x)d#3x.
We assume now that

a+ xkg(()k) (%) = x,,9:(x) = x4, k = 1,23 0n I = [a,b]® c "R¥3 (2.4)

¢ fin+

and two additional technical conditions on the {go, g1}

%980 (0) = RE(x) = 0,hy € €, ("R, REgn) k= 1,2,3 (2.5)
and
191 (%) = [ + 2,95 ()] 92 (). (2.6)

We rewrite now the operat® ,,(f) as
Tow(F) = To ) (F) + Ton (f) = Ext-f, _ Ext- [, t® (s, kp)a (kyalky) d¥ky d*3k, (2.7)

+Ext-|

|kq|<3

Ext- [ 6P (ke ko)la” (kpas (—ko) + a(—ki)alky)] d*3ky ¥k, =
Ext-[. s Ext- [.pas (k1,300 (ky, 500t (y, k3)a* (ky)alks) d*¥ky d*k,
+Ext-[. s Ext- [.pss 0 (k1,200 (ki 1)t P (ky, ko) [a* (kp)a® (=ks) + al=ki)a(ky)] d¥ky d* ks,
t M (ky, ky) = const- O(ky, #)0 (ky, #)[Ext-f (kg — k3)| X [u(ky) + u(ky) + (ky, ko) + m?] x
X [u(k)pu(k;)] 712, (2.8)
t@ (ky, ky) = const- O(ky,3)0(ky, 30) [Ext-f (kg — k)| [—ulky) + pky) + (g, ky) + m?] x
X [u(k)ulk;)] 2, (2.9)
where

liflk| < x,

®(k’”)={01f|k|>x.

(2.10)
Note that t@, t@ e LE(*R¥°).
It follows thatTO(_‘;g(f)(N,{ +1)71,i = 1,2 are bounded,
|75 (W + 72| < const- [|e]] .
LetPX(f)

PX(f) = Ext-[.pus f (X)P¥ (x)d*x, (2.11)



WherePJ (x) is given by (1.29) anfl € C,” ("R%,, "R¥ ).

HereN,, is the number operator with hyperfinite cut-efand we have used thg, -estimate [8]: Let
W be a Wick monomial

W, = EXt'f|k1|s;4 d*3k, "'EXt_flkrlS}f dBk,w(ky, ..., k)at (ky) = a(k,) (2.12)
with a kernelw € L§(*R{3"), then
(N, + D42 W (N, + I)_b/2||# < const " [[wll4, (2.13)

wherea + b > r. A similar decomposition holds f&*(f), k = 1,2,3. The resulteads:
Proposition 2.1[8] Let A = To(’?,(f),i = 1,2 or BE(f) with £ € C,” ("R¥%,, "R, ). Then,

| (Houe + 1) "> AHo + 1) |, < e (2.14)

That is convenient to approximate the operam?g,k = 1,3,3 by the operatorM,‘},’fclg,k =1,3,3
with an additional momentum cut-off

k
M;?Ifcg = aHO,u,;c + TO,H,K (xkg(g )) + Tl,u,k(xkgl):

whereT, ,, , andT;,, . are defined by cutting off all the momentum intdgrat|k| > k. That is,T ,,
andT; ,,, are expressed as a sum of Wick monomials (24&) ef which is replaced in the definition
of Ty 5. @aNdT} ,, ,c DY

Wy = Ext-flkds” d*3k, "'Ext_flkrlsx d¥ k. (ky, o ke )w(ky, . k)at (ky) -+ a(k,).

Herey, (ky,....k,) = 11if |k;] Sk <xforalll <i <r, andy,(kq, ..., k) = 0 otherwise. We
abbreviate also

k
M(()),’Jc{,x,g = aHO,J{,K + TO,J{,K (xkg(() )) Jk=1,2,3.

Note that as a rule, estimates that hoIdMqu also hold fom/lg,’fqg, uniformly ink. For examplefor
allk € "RE, o,k < 5

| (Hosere + 1) * T30 () (Hopese + 1) ||# < const.,i = 1,2 (2.15)

and

—11/2

N, + D)1 (AN, +1) | < const.,i=1,2 (2.16)
» 0,1,k ) #

for I, + [, > 2, where the constants are independemrt #fs a domain of admissible vectors#it
DE = {l/}ll/} = Wo 1, ) EFHah, € €7 ("REFL L, "RE 1), ¥, = 0 for large n € *N } (2.17)

Remark 2.1 The operatongz ,k = 1,2,3 as constructed above, enjoys the property of being
semibounded.



Theorem 2.2 Let g = {g,, g1} satisfy the condition (2.4). Then there are cartsi@a andb such that
forallx < x

Hoy < a(Mphg +b),k =123 18)

on the domaiDff, x DE,..
Proof Fore > 0, there is a constadtsuch that [3]

0 < Hope + Tieuc(xx91(x)) + d, ke = 1,23 (2.19)

on the domaiDf, x Df . Fore > 0, there is a constantsuch that [8]
0 < Ho o + Topun (xk g (x)) tok=123 (2.20)

on the domaiDf, x Df . The inequalities (2.18) follows from adding (2.3d (2.20).
Proposition 2.3 There are positive constantsh, ¢ such that

M < a(H, +b) < c(MX*¥ +b),k =123 (2.21)

on the domaiDff, x Df .
Proof Note that fork = 1,2,3

Aty + b) = MY = (@ = Hos = Toe (1987 @) + Tyoe((@ = 51 91(0) + ab.

By choosing constant larger thanmax; [sup{x,|g;(x) # 0}], we have(a — x;)g;(x) > 0 and
therefore as in (2.19)

Ho, + TI,M((a — XK1 (x)) = 0.
Moreover, by (2.14) we can choasao that
(a—a—1)(Hop+1) = Toy (xk gdo (x)) > 0.
The second part of (2.21) follows by a similar adestion,

3. Quadratic estimates
In this section we prove the se#fadjointness of the operatavg)%, k = 1,2, by interpreting the
operatorT, ,, , as generalized Kato perturbation [8]. Thus we r@esting quadratic inequalities

(HO,% + 1)2 < aK(HO,% + ATO,K,K(fO,k) + TI,H,K(fl) + b)z' (3-1)

wherea,. andb are constants with, depending omr. HereA is finite constant anf, ,, =
a 12,95 (x) whereg{ (x) satisfies conditions (2.5).

Theorem 3.1 The operatorM(",’f,{_,c, k = 1,2,3 are essentially self-&djoint onD*. There are constants
a andb independent at, such that fok < » andk = 1,2,3

(Hop +1)° < a(MEX . +b). (3.2)



Remark 3.1 For ¢2™ we use the “pull through formulg3.5).Let T,, = #-(H,,, + V) andR(z) =
(T, —z)". Then

a(k)R(z) = R(z — u(k))a(k) — R(z — u(k))[a(k), VIR(2). (3.3)

We shall always be concerned with operators Taraessentially self-&djoint on domairD/,
defined in (2.17), and whose perturbatiors a finite sum of Wick monomials withgimooth kernels.
It follows thata(k) is defined on the-dlense domain

Dfn = (T, — 2)Df, (3.4)

and that (3.3) holds on this domain.

Lemma 3.2 Suppose thel, = #-(H,, + V) satisfies the above conditions. be€ D/, where
(z — ¢) isin the resolvent set @f, for allc > 0. Then forr € N a positive integer

. I 1.
a(l,r)R'ub = Ext- Zpart.(_l)] Rllv}flR]z R]jVH]R]j+1a1j+1lp' (3.5)

wherel = {i4, ..., i} be a set of distinct ordered positive integétsy) = {1, 2,...,7},

a; = Ext-[[}-;a (kl-l) fors >0, a; =1 fors = 0. The sum in (3.5) takes place over all partitiohs o
{1,2,...,r} into disjoint subsets , ..., I;,1 (including permutations among the subsets) fer 0,
1,...,7. The elements of eac¢hare taken in natural order. Lt = R({),R(z) = (T, — z)~, where

{ =z —Ext-Yie;u(k) andf; = [} Ulj1q U ..U Lyq. LetV! = [a(k;,), ..., [a(k;,), V] ...] fors > 0
andV! = 0 for s = 0. Note that the sum (3.5) includes terms whiere is empty but nok , ..., [;;
this convention adjusts the sigr1)/ correctly. Thg = 0 term is SimplyR; acy ).

Proof In order to apply (3.5) to the proof of (3.1) weshbe able to estimate the commutators

X8 (k) = [a(k), To e ()] 3.9)

i = 1,2, for sufficiently largek, wheref € C,” ("R¥%,,, "RE ).
Lemma 3.3

| X2 G, +D772|| = 0ut] ™. (3.7)

Pr oof X,EZ)(k)) is certainly #densely defined, say on domdinit is sufficient to prove (3.7) on D
and thenY}(,Z)(k)(N,{ + I)~1/2 extends to a bounded operator on all vectors bf Now we set

X (k) = EXt'f|k|5,{W(k' p)*a(—p)d*3p,
where by (2.9) the kernel(k, p) can be estimated by

lw(k, p)| = |h(k — p)I[rCO]~?[u(p)] /2

whereh € Sf‘?n(*]R?Jg‘E3 ) is rapidly decreasing. According to (2.13), byrapde calculation one obtains
| X2 G, +D772| < constx w(k) sz = O] ™.

Lemma 3.4 For arbitraryp € F# andc > 0



2

< const.X ||| (3.8)
#

_1 1
A= Ext- [, _ "k (Hope + ¢+ () * XV () (Hop + €) 2

Proof Let £#,n € *N be then-particle Fock space. Nom(,l) (k) is defined orD for all k and since

XM (k) mapsE# intoF}_, , it is sufficient to prove that (3.8) holds f¢re D n F# with the constant
independent ok. We remark that by the methods of the previousiant is easy to show that the
integrand in (3.8) is uniformly boundedknbut different methods are necessary to prove it
integrability. Now we define

XU = Ext- [, t D (k,p)a(p)d*p,

wheret (M (k, p) is given by (2.9); therefore we obtain

A” < Ext- flklsx d#3k Ext- f|p1|5k d#3p1 - Ext- f|p d#3pn—1 x

n—1lsx

x [(Ext-S2 up) + ul) +¢) 2 nt/2

X Ext- [, d%3p ¢k, p)| (Ext- 2152 w(p) + 100 + €)@ werprr, ] 1 (3.9)
wherea(p) has destroyed a patrticle by
(@a@)P)(P1, -+ Pu-1,0) = 02Dy, o, Dpo1, D) (3.10)
By the definition (2.9) we obtain
|t @ ke, )| (Ext- X1y u(py) + u(k) + €)™ < const.x [u(k)]*?(|Ext-f (k — p)|).
Replacing nowk by p,, in (3.9) we get
A, <axnx Ext-flpllsu d*3p, - Ext- f|pn_1|5}f d*3p, x
[P /2(Ext- Sy w(p) + ) 2Ext- [ d*3p (|Ext-f (b~ PPy o Pre1 D] =
=ax Ext-37_, EXt'f|p1|5n d*3p, - Ext- flpnIS% d*3p, x
X [EXt'f|p|s;¢ d*3pE;(ps, ...,pn)(|Ext—f(pj -p)|) |¥(p1, s D=1 Dr Dj1s ...,pn)|]2, (3.11)

wherea is a constant and

Ei(py, - pn) = [1(p;)/ (Ext- 37y u(py) + 0]

We shall write this symbolically a@(pj), suppressing the other variables. In obtainingl(3:e
have interchangeg; andp,,, and exploited the symmetry gf In (3.1 1) we wish to replacg (pj)
by E;(p) to get

A}, = a X Ext-Y}_, Ext- flpﬂs% d*3p, - EXt_flpnlﬁ?f d*3p, x



N 2
X [Ext- Sz @7 PE @) (|Ext-f (p; — P)|) [ (P1s -, Pj-1, P, D1, ---,pn)l]
For then the integral over p is a convolution betwe

;@) = E@|(p1, - Pj—1, 2, Pjs1s - Pn)|

andh(p) = |Ext-f(p)|, and the integral ove; is the square of thi #-norm of this convolution.
Now we get

2 ~ 112
Ext- f|pj|5” d*3p; [Ext-flp ™ h(p; — p)¢j(p)d#3p] = [|(Ext-h) x (Ext-¢,)||,,, <
2 2
< ||Ext-hll.,, > l|¢5ll,,
and
||Ext-fl||f00 = Ext-flpls;{ (Ext-f(p)) d*3p < oo.

Therefore,

2
A;, < const.x Ext-Z}‘ﬂ”Ej(pj)i,b(pl, ...,pn)”iz = const.X ”(Ext- Zj?:lEjz 1/21/1”#2 <

< const.x ||[y]|3,.
In order to justify the replacement Bf(p;) by E;(p), we set
Ei(p;) = Ei() + (E,-(p,-) - EJ(P))

and therefore we obtain
[Ext-flms” d#3pEj(pj)|(Ext-f)l/)|]2 = [Ext'flms;f d#3pEj(p)|(Ext-f)z/;|]2 +
+ [Ext- flp < d*p (Ej(pj) - Ej(p)) |(Ext—f)1/)|]2 +2 [EXt'f|p|s;4 d#3pEj(p)|(Ext—f)1/J|] X

X [Ext—flplSK d*3p (Ej(pj) - Ej(p)) |(Ext—f)1/;|]. (3.12)

Applying the operatiom x Ext-Y}_; Ext- f|l71|574 d*3p, - Ext- flp e d*3p,, to (3.12), we obviously
getA,, on the left andl;, from the first term on the right. To estimate sieeond term, we note that

1

2 _

|Ei(p;) - E; )| < |E,-(p,-)2 - E(p)?

|(Bxt- S 10) + ) (u(p)) - u(p))|1/2 |(Ext- 5 1) + ) (Ext- 5y upy) + u(p) + )|

1

2 < const.X n_%”pj - P”l/z

# )

1 1 1
< const.X n_5|,u(pj) — ,u(p)|2 < const.xn z ||pj||# — |Ipll4



where||-||«is Euclidian#- norm in*R#3 . Therefore the integral of the second term in (3ck) be
estimated by

-1 B30 o ot #3
const.x n xExt-ZjExt-flp1|SKd py - Ext flpnls%d D X

[Ext-fl | d®pllp; -l |(Ext-F(o; - ) ) w(ps, ---.pj_l,p.pjﬂ,---.pn)|]-
plsx

But, as before, this is the square of Be#-norm of the convolution of the functiapwith a rapidly
decreasing function and so it can be estimated by

const.x n X Ext- Zjlltpllﬁ < const.X [[y]|3,

where the constant is independent.af *N. The third term resulting from (3.12) can then be
estimated by the generalized Schwarz inequalityiegpo Ext- 27:1 Ext- f|l71|574 d*3p; -

Ext- [

|Prl<3

1 I 1
need estimate. For I&t= {is, ..., i;}; then (T()(_}{)(f)) =0if (To(‘f{)(f)) and(To(i)(f)) = 0 when

d*3p,, . Henced,, is bounded as claimed. The single commutator3 éesall that we

1
s > 2. Whens = 2, (To(f{) (f)) reduces to the constaz®(k , )t @ (k, — k,); thus for all s, To(i) )

satisfies

by virtue of (3.7) and (2.11).
Remark 3.2 We now go to prove (3.1) by using the formula (3F9r convenience, we work now
with operators

< const.X Ext-[1;e/[u(k;)]~/? (3.13)
#

(r200) @+ 772

T () = #-| (Hose + ATo o (fore) + Ty (1)) 1 D] (3.14)

which areM2% up to constants. To apply the pull-through form@a) it is necessary to know that
the operator§?%, k = 1,2,3 are self#-adjoint. For the moment we assume this, postpathiegroof
until Theorem 3.8. We remark though that in theedas 0, T2 reduces tdi,, . (f;) which is known
to be self#-adjoint. The next lemma gives an estimate on coratarg such that

X3 (k) = [all), Ty (F)] 3.15)

which is finite or hyperfinite polynomial of degréen — 1) in the fieldepj (x). SinceT,2% remains
semibounded (Theorem 2.2) when perturbed by a palyal in the field of degree less than, we

have the following estimate in terms of the resotw&, ,(z) = (T, — z)_l:
Lemma3.5Letr € *N be a positive integer. There iga< 0 independent ot andr such that, for
Z1 S 20,23 S Zg

1
| Rk TR @), < constx izl =, (3.16)

where the constant is independentzf z,. Here, in the notation of Lemma 3.2,



TI(}“?Ok [a(k1)[ [a(k,.) Tl;uc(fl)] ]]

Theorem 3.6 Assume that the operatdf$k are given by (3.14) is self@djoint, wherek < . Then
there are positive constamts(k), andd (k) all independent of such that

(Hop +1)° < (c(k) + 22d(Kk)) (T + b)°. (3.17)
Proof Obviously it is sufficient to prove that
| (Hosx + DRy (—b)0|; < (c(k) + 22d () 1w l3 (3.18)

fory in the dense sdt,; , = (T,?,’ﬁ + b)D as in (3.4). This choice af ensures thar,, ,.(—b)y €
D,  is in the domain of all the operators we wishpplg to it. Hereb is chosen so large that

2
1/ZRM,K(—b)l/Z ”# < const, (3.19)

| (Hoaee + 1)
(see 2.18and so that (3.16) holds with= 1
||R1/2 (2) XS (kR (zl)” < const.x 0(k, ) [u(k)] 2 (3.20)

for z; < —b. Now we get

” (HO,J{,K + I)R”’K(—b)l/)”i =

2
(Hoses+1+100) " aGOR, (5] D" 321)

Ext- flklsx
But by the pull-through formula (3.3) we get
@Ry (=) = Rige(—b = (k) alk ) = Ry se(—b — (k) %
x | Ax 0 0) + AXZ ) + X320 Rige (=Y,

whereX(l) (k),i = 1,2, are defined by (3.6) with a momentum cut+affSubstituting this into (3.21),
we obtain by generalized Schwarz’ inequality,

2
”(HO.%.K + 1) R%,K(‘ b)'vb”# =

< 4xt- [ IOl APl + || AXE0O R (—bYp| +
+22 52 [ 4x 000 Ry (b0} (3.22)

1/2
where A = (HO_,{_,c +1+ ,u(k)) R, (—b — u(k)). But by (3.19) we obtain

1

||A1/)||#<const><||R1/2( b— ,u(k))d)” < const.X (Ho;uc'i'li(k)) Y

#



Therefore from (3.22) we get

|(Hosxe + 1) Rese (D)9, <

2

2
const.X Ext- [, . d*3ku(k) + ||AX;({3;2 (k) Ru,x(—b)‘l’”# +
#

|k|sk

+P§f
i=1

H(Ho,%,,c + M(k))_% a(k)y

I 2
(Hose + 1(0)) 2 X0) Ryse(—bY

#

The integral of the first term on the right canvimitten as

Bxte [ h(0) | aGOHG V2 | a%ie = | B2 H 2w | < I,

1/2
0,2,k

theXf,f?c(k), i = 1,2,3, are all bounded byonst.x 0(k, k) by virtue of (3.20) and (2.13). Hence the
integral is hyperfinite and the bound (3.18) hole. remark that because of the momentum cut-off it
was not necessary to use the full force of Lemmas83®, but only the estimates

whereH, , " is taken equal to zero on the Fock vacuum. Thragén the integrand involving

||R1/2X(” ()R} , < const.x O(k ). (3.23)

Remark 3.3 We now prove the self-#djointness oMg,’;,K,k =1,2,3 by treatmgl‘o,m as a Kato
perturbation. Generalized Kato’s criterion is [8]:

Proposition 3.7 LetT is a self-#adjoint operator and I€t be a #core forT. Suppose tha is
symmetric and that there are positive constaraadb with a < 1 such that

1AYlls < all(T + b)Yyl

for allyy € D(T). ThenT + A is self-#adjoint onD(T) and essentially seif-adjoint onD.
Theorem 3.8 Fork < » andg satiating (2.4) g,m,k = 1,2,3 are essentially seif-adjoint onD.
Proof We show that,2% given by (3.14) is self<djoint wheref, , = {xkggk)/a},fl = xxgi/,

k = 1,2,3 andA = 1; this is equivalent to the statement of the theorem. We use Theorem 3.6 to prove
Theorem 3.8 in spite of the fact that the conclugibthe second theorem appears as a hypothesis of
the first. By Lemma 2.1 we know that there is astantc; such that

I, < eall (Hoe + D, (3.24)

for ally € D(H,,.). We choos¢ to be a sufficiently large integer such thafc(k) + d(k))l/2

],wherec(k) andd (k) are the constants in (3.17). Let us consider thaesece of valuet = j/J,j =
..,J. LetP; ;. be the statement thBfx (j/)) is selt#-adjoint andy; . the statement that

1 m(fOk) is a Kato perturbation G120k (j/)), i.e..||J 7285 « (for)¥l, < all(T2kG/D + b)Y,

for constants andb with a < 1. As we have already observeg, holds sincd,2%(0) reduces to the
HamiltonianHy, ,, ,.. Note thatP; , impliesQ; x, k = 1,2,3 since, forp € D ( T;?,ﬁ(j/])),

T8 (o)l < el | (Hose + Dll, < e ex (et + () * (TG /) + b)Y,



by the inequality (3.24) and (3.17). However, bggasition 3.7, the stateme@f ,impliesP;,q x, k =
1,2,3.

4. Higher order estimates
In this section we derive higher order estimatetheffollowing form

H] < a (M2 +b) < c(Hoyp + 1) (4.1)

0% —
and
HZ, + N2" < a(M2% + b)*", (4.2)

wherea,. andc, are constants depending onThe estimates (4.1) are used to prove that the

(M%)’ are essentially se#-adjoint onDf, and do not survive in thelifnit: i« - »; on the other
hand, the estimate (4.2) does transfer to thmi# k = » and, in fact, enables us to prove that this
#-limit exists. For reat € *R¥ we define the generalized number operator witrehfjite
momentum cut-offc € *R% ,

Ny, = EXt_flkls;f at (k) [uk)]* a(k)d*k. (4.3)

Note thatN,, o = N,, andN,,; = H ,,.
Lemma4.1(1)If T < v, then

N, . < const.- N,, .. (4.4)
2)If T > 0,r > 0, then
NP < HELNE . (4.5)

(3) Lett € *R¥ andr € *N a positive integer, then for any vectpe D (N;/TZ)

r
v, =
#

Ext-¥7-4 [Ext— [d#Bky - d#3kjprj(uf, ...,,u]T-) (Ext— [1j-10 (kj ,J—f)) ||a(1,j)1p||i], (4.6)

where@(k, ») is defined by (2.10)y(4 ;) is defined in Lemma 3.2, angl; is a homogeneous
polynomial of degree € *N with positive coeficients that satisfies, fgr> 0,

(Ext- H{zlxl)(Ext- Z{zlxl)r_] < prj(xl, ...,xj) < const.- (Ext- H{zlxl)(Ext- Z{zlxl)r_]. 4.7)

In this section we set

MR% = #-[(Hoy + Vi) 1 D],

-1
where VX = Tg,,  (fox) + T (fi) k = 1,2,3. Let R, (=b) = (ML +b) .

Lemmad4.2 Letr € *N be a positive integer. Then there are consignendb wherea,. depends
onk < x, such that



| (Hoer + 1) )|, < o || (M2k + b)EIIJH#,k =123 4.8)

forall € D ((M,‘}ffc + b)5>.

Proof (4.8) is proved by hyper infinite induction ere *N: the cases = 1,2 are already known by
Theorem 2.2 and 3.6. Lgte Dy, = D(M2X + b),k = 1,2,3, whereb = —z, is chosen sufficiently
large that (3.16) and (3.19) hold. By (4.6),

(r+1)/2

Arit e = ||(HOM +1) Rk(—b)lp”i -

Ext- Z§=1Ext'f|k1|sx "3k - Ext-flknlsx d®3kipr(p1, o 1) X

2

i 1/2
x ||(HO,M + Ext-3_ uk) + 1) aq R ; (4.9)

where me have converted all but ((mQ_,{_K + 1)1/2 into an integral of products of annihilation
operators. We apply the pull through formula (3cbpull thea, ;) through ther,, and we dominate

1/2
the factor(Ho .« + Ext-Y)_ u(k) +1)"" by
R? = Ri(=b — Ext-3 p(k;))
by using (3.19). This gives

Arit e < Ext-37_; Ext- flkllﬁc d*3ky - Ext- flknls;c d*®kipr (1, 0 1) X

1/2+,1 1/2 1/2 IL 1/2
x (Ext- Sparcorcup || R 20 RY? = RYPGR | ) (4.10)

Let us consider a typical factﬁylV,{”R,m, regarded as a function of the variatkgs..., k;

lg?

wherei, € [;,v = 1, ..., t. Because of the momentum cut-off, the estimatd${&nd (3.23) hold:

||R1/2 yhpl/2

" ]l+1 #

< const.X )(},(kll, . kit)» )(},(kil, ---'kit) = Ext-[]5,=, 0 (kim ,x).

I
Note that whem > 2, (TO,H,K(fo_k)) lisa multiple of the identity. Therefore, from1@) and (3.19),
Ari1 0 < const.X
X Ext-Y_; Ext- fk |<Kd#3’k1 - Ext- flk |<Kd# ki Ext-Y.(1,j)=z,0z, Prj Xx(Z1) X

-1/2

|| (Hos + Bxt- Zier, k) +1) ez (@.11)

where we have set

Zy = fg=1 I = {ilr ---'ij—s}1 Zy = liv1 = U o Jsh X(Z1) = Yo (kil' ---'kij_s)-

By the binomial expansion and (4.7) we get



Prj (i1, s 1) < const.x [u(K)V ™ X Ext-Tliez, #(k) [ — $)p@) +17

Here the const. depends o » and

Ps+ts(Z2) < const.X pgye s (u(kjl), ...,,u(kjs)).
By (4.7), sinceu(k) > m > 0,

Pes(fa, oo ;) < constX porg(y, ..., phs).

if t <t’. Inthe above sum overs + t < r; therefore,
Prj(Mas s ) < Drs(Z2)
Integrating out the variables i, in (4.11), we obtain

Apsrpon < Ext-Yj_  Ext-Fg, - Ext- [ Ext-Tliez, 0(k;, K)d*3k; prs(Z,) X

)r/Z -1/2

X ||aZz (HO.%,K +1 1/21/}” < const.X ||(H07{K (HO,J{.K ll)”

by virtue of (4.6) withe = 1. Settingy = (M;?,’fc + b)d), k = 1,2,3, whereg is an arbitrary element of
the domairD, we obtain

(r-1)/2 (

| (Hopee + D 2¢>||# < constx || (Hozex + 1) mMEk +b)g | (4.12)

By the inductive assumption we have

(r+1)

(r—l)/Z( (M2k +b) % ¢

, (4.13)
#

|| (Ho,u,;c + [) 1\4,(3’],(C + b)¢||# < const.X

which appears to prove the lemma. However, we dyetoknow thaD is a #core for(M;?,’fc +
(r+1)

b) 2 and so we must argue more carefully. Define rnunoperators

(r-1)/2
(Hoper + ATE  + TPK  + D),

Bk(ﬂ)z(Ho,u,x + I)
k = 1,2,3 on the domainD. It is sufficient to prove thd® is a #core forB, (1). For then (4.12)
@+
extends fronD to D (B, (1)); by induction (4.13) holds ab ((M,‘},’,‘C +b) 2 > c D(Bk(1)), and the

proof of the lemma is complete. As in the proofbEorem 3.8, we consider a sequence of
valueslj = j/l,j = 0,1,...,], and regard the operator

K =]_1(HO,K,K + [)(T_l)/z

as a perturbation dfy (4,). By (4.12)

TO,J{,K

(r+1)/2

| (Hoese + 1) || < c|[Bc)9|,



for anygp € D, where the constantsandc are seen to be independenﬂp‘e [0,1]. But, as in the
next lemma,

(r-1)/2

|| (HO,}{,K + I) TO,}{,K(HO,H,K + [)_(T+1)/2 ||# < Cy < oo,

Hence, by choosing hyperintegez *N,,J > cc,, we have fotp € D,

(r+1)

(HO,}{,K + I)T¢

< |[Bx ()¢

#

ICurcll, < T cx (4.14)

|#’

wherea = J~'cc, < 1. That isC is a Kato perturbation @ (4;). Note that domai is a #core
for B (0). This follows from the facts that (4.8) holds whies 0, i.e. whenM2% is replaced

by HOK. = Hy,,c + TP, and that power§H2K.)" are essentially self-adjoint onD. From 4.14 we
see thaD is also a #ore forB,(0) + C = B,(4,) and thaD (B, (4;)) = D(B(0)) Continuing in
this way we reach the conclusion ti¥ais a #core forB, (1). To complete the estimate (4.1), we
dominate powers df%, k = 1,2,3 by powers ot ,, .

Lemma4.3Letj € *N be a positive hyperinteger. Then there are pestonstant$ andc,, where
¢, depends or such that

|(m2)w |, <

(o + )"0 ke = 123 (4.15)

Here2n is the order of the interaction.

Proof Here2n is the order of the interaction. Sin(déo,},,,C + b)nj is essentially self<adjoint onD it
is sufficient to prove (4.15) fap € D. Now because of the momentum cutMQ_’j,,K has the form
M8,§,K = Ho . + 2 W;, wherelW; is a Wick monomial (2.12) whose kernel haso#npact support.
Each such monomid/; maps domaim into a set of vectors which have a finite numdgpanticles
and which are of #ompact support ar{d*w(*]Rif ) #almost everywhere in the momentum
variables. It follows the@Mgl’;,K)j can be expanded dhinto a sum of welldefined products of the
form A = Ext-[[},= Héf;?,’gl Wim+2 whereExt- Y5_, i, = j, andW represents a typical Wick
monomial inMZ% . . Each such product can be dominatedMy,. + b)" provided thab is chosen
sufficiently large, sap > 2nju(k). It suffices to show that

W(HO,}{,K + a)_i = (HO,}{,KZ +ta-— Znﬂ(K))_Hn B, (4.16)

-nj .

whereB is a bounded operator. For then it is clear byehypfinite induction thaﬂ(Ho,},,,C + b) is
bounded. Take W of the form (2.12) with< 2n. Then

W(Hopp +a) " =

-i
= (Ho_,{_,c +a-— 2n,u(1c)) Ext- flkllsx d*3k, - Ext- [

|[knlsk

A3k, v(ky, ..., ky) X

x a*(kq) = a(k:),

where



Vs e ky) = (Hopo + @ = 21000)) (Hoper + @ pulks) £+ ()
where thet is chosen according to whether the correspondfit§) is ana or a*(k). Since
—2nu(x) < tu(ky) £ £ ulk,)
the operator fhorm
vk, .. k)lle < lwiky, ..., k)l

By an extension of the basic estimate (2.13) tectve case of operator-valued kernels, it follows
that

-n
B = (HO,,{,K +a-— Zn,u(K)) Ext- f|k1|51c d*3k, - Ext- flanSK d®k,v(ky, .., k) X

x a*(kq) = a(ky).

is a bounded operator. This completes the protie@femma. Note that by the generalized spectral
theorem [8], ther dependence df can be incorporated into constapt

Theorem 4.4 Letj € *N be a positive integer. Then the opera(dﬂﬁ,’j,,,c)j, k = 1,2,3 are essentially
self-#-adjoint onD.

Proof LetC, =D, =D ((M;?,’fC + B)nj),k = 1,2,3, whereb is a large positive number. By the
previous two lemmas we have that

Dy © € © D ((Hopen + B)" ) < b (M J ) (4.17)
SinceD is a #core for(H ,, , + B)nj, it follows from (4.15) that
D (#-(M2%) 1D) 2 D ((Hos +B)").

Therefore, by (4.17),

#-(M%) 1 D o #-(M2K) 1 ¢

sinceC,, is a core fo(M}?f,‘c)j, k=123.
Theorem 4.5 Lett > 0 andr € *N be a positive integer. Then there are constaatsdb
independent ok such that

||H1/2 N(r—l)/le”# < aH(MS’I’cC +b)£lp

0,,k" " 1,K,—T

|# (4.18)

forally € D ((M;?,’fC + b)E).
Proof The proof is by hyper infinite induction enthe case = 1 being (3.19). By the previous
theorem it is sufficient to prove (4.18) fgre D. We set nowp = (M,‘},’fC + b)z/) € Dy, where

b = — z, is chosen sulfficiently large that (3.16) and (348ld. By a now familiar procedure we
expand



_ 1/2 r/2
Ar+L%x'_ ”HQ%K nK, 1¢”

by (4.6) and apply the pull-through formula. Theuieis similar to (4.10)
Ar i1 S const.x Ext-Y7_; Ext- fldeK d*3k, - Ext- flknlsrc d*3kipy (Ui, o 17T) X

1/2:,1 1/2 1/2
(Ext Zpartof(lj) ||R / IR / "R]L/ V Jie1 @ 11+1¢|| ) (419)

By (4.7) one obtains

prj(lﬁ_r, u]‘T) < const.X (;11 X .. X H}.)_T_

We insert this inequality into (4.19) and estimidwe integral over the “variables” of. Sayl; =
{i1, ..., it }. We must estimate

2

. (4.20)
#

1 1
2 yyhip2
Rh V” R]z b1

-7
Ext- [, "k Ext- [ d®k (i (k) % ox (k) X

where
1 2 I 1/2 1/2¢,1;
¢1 ]1/ %1R / "R]L'/ V% R]i+1a1i+1¢
does not depend on the variableg,ofor which we recall thatj; = I; U ;;; U ...U I; ;1. Now
1 2
V - TO(}{)KZ + TO(J{)K,' + TI,J{,K,'

and by the triangle inequality it is sufficient@stimate each of these three contributions to J4.20
separately. By (3.16) the contribution &f,, , can be dominated by

-1-t
const.x Ext- flkllsx "3k, - Ext-flkitlsk d®k;, (,u (ki) X X (kit)) X I3 <
< const.X ||¢411Z, (4.22)

where the constant is independenk ofs for theTT((f)” terms, whent > 1 we have

(TO(‘QK)Il =0,

and by (3.13) and (3.19), we have

for all t. Thus the contribution cYI'O}”c
estimate

I -
R1/2 (To(,?,x) Y R1/2 1/2

< const.X Ext- Hiell[ll (ki )]
#

to the integral (4.20) is bounded as in (4.21)eibains to

(1) =% (k)

whent = 1. By (3.19) and (3.8), we have



Ext-f,, 1 d"k, (ki ) R0, < ol

1/2
ki1|SK 1
Hence we have integrated out the variablel of

Ar+1}uc < const.X Ext- Z 1Ext' Zpart.of(l,j) Ext- f|kl|5,€ Ext- HlEIZU Ulid#3kl [.u(kl)]_T X

2
1/2 .
x ||R H R]i+1a1i+1¢||#'

In this way we integrate over the variables,0b ... U I; to obtain

1
Ap g1 < const.X Ext-3j_q Ext-Yc 1,5y Ext- f|kllsrc Ext-[Tie; d® ke [u(k)] ™" ||R}as ¢

#

By a change of variables we can rewrite the sum paed/ as a sum over subséis 2, ..., s} of
(1,2,...,7r). Using the estimates (3.19) and (4.7), we get

AT+17{K < const.x Ext- Zs Of|k |<k d#3k1 - Ext- f|k |<Kd kspss(ﬂl y s Us T) X
-1/2 2
pit+1 ) A(1,5)P

S

(Ho,x,x + Ext-

i=1 "

_ 2
where thes = 0 term is simply” (Ho_,{_,c + I) 1/2<¢>||#. It follows from the expansion (4.6) that
-1/2 2 )
A1 < CONSt.X ||(N,f,C _+ I) (Ho,x,x + I) d)” < const.X ||(NfT +N/2 ¢>||#

#

=)
by (4.4). Sincep € D, € D <(M8,’;,K +b) 2 ) we obtain by the inductive hypothesis,

(r-1)

AT+1,}{,KZ = ||Hl/2 Nr/Z (MO}{KZ + b) 2

0,,K" "M,K,—T

| < const.X
#

#

= const.X H(Mo;uc

where the constant is independenk of
Corollary 4.6 Let§ > 0 andr be a positive integer. Then there are constaatsdb independent of
K such that

(r+ 1)

(MSk +b) 2 IIJH (4.22)
#

0,1,k HK,—T

||H(1 5)/2N(T+6)/21/J|| <a

(r+1)
forall1/;€D<(M,2’,‘c+b) ) =1,2,3.

Proof The Corollary follows immediately from the Theorbynmeans of (4.5).
Remark 4.1 The estimates (3.19) and (4.22) do not permit ubtninate the operatéf, ,, . itself by



the operatorsf2% + b, k = 1,2,. However we can dominat, ,, . as in (4.2) if we abandon the
requirement that the powers 6§ ., andM2% agree. The inequality

HE, < a(M%, + b)’ (4.23)
we prove withj = 2n.

Corollary 4.7 There are constantsandb independent ot such that for alip € D((MSI’;,K)n)

|Hosetll, < al| (2% +)"w ]| . 24)
Proof By Theorem 4.4 it is sufficient to prove (4.24) fbe D. SinceD c D(MJ% ) N D(T;,)
obviously we have

(M(())’Jc{x + b)l/) = (Mglfc + b)l/) - TI,KIIJ- (4.25)

SinceT; . (f1) is a sum of Wick monomials witk -kernels and maximum ord2n [8], it follows
from the basic estimate (2.13) that

”Tz,u,K(NO,,{_K + ])_"”# < const,, (4.26)
where the constant is independenk oT herefore from the identity (4.25) we obtain

1085 + B)ll, < 11(M2% + D)l + || Tosere Vo + D)7 ||, % || Mo + 1) ",
by (4.22). But by Theorem 3.1 we obtain

||H0_,¢,K1/1||# < const.x ||(M2% + b)1p||#
and therefore the estimate (4.24) is proved.

5. Essential self-#-adjointness of the #-limit M2% asx —4 x

In the previous two sections we established a nuwigroperties of the hyperfinite ultraviolet cut-
off Lorentz boost generator2®, k = 1,2,3 by methods that depended o< » being hyperfinite.
Now we take the #imit k —4 » and find that many of the propertiesf. transfer to the
#-limiting operatorsM2*, k = 1,2,3 . As the next lemma stateg2, k = 1,2,3 #-converges to
M k =1,2,3 on the #dense domain

D, = D(H,,) N D(N}),n € *N. (5.1)

Note that #convergence in this sense is not strong enougbriwal the #imiting operator and in

Theorem 5.3 we prove that the resolvd?ﬁg (2) = (M}O,f,‘C — z)_l,k = 1,2,3 #converge in thorm.
From this it follows that the operatav®, k = 1,2,3 are essentially self-&djoint onD.
Lemma5.1 Lety € Dy, thenMpky —, MO,k = 1,2,3 as k —y .

Proof We write now Mg% ;= Ho . + To ke (xkg(()k)) + T} 5 (X 91), k = 1,2,3 of the form

Mglfc = HO,}{,K + TO,J{,K(fO,k) + Tl,x,k(fl): k=1,23.



By the estimate€2.15), (2.16), and (4.26J, ,, . (fox) andT; ., are defined on domai,, for k <
x. In fact, precisely these estimates prove#ivergence. For consider the difference

AH,KZ = Tl,n(fl) - TI,}{,K(fl)'

A, , can be written as a sum of Wick monomials whoseedsrare the tails dff kernels. Therefore,
by (2.13),[| 4y (N,, + D7"||, bounded by thé3-#norms of these tails which go to zero@s ».

Since a similar argument can be madeTﬁ},K(f) it follows that onD,,

T2 e+ Thore = Tos) + Ty (5.2)

0,3,k

The strongt-convergence of the differences
B = To . (fox) = Tosere(for ) k = 1,2,3
K 0,#\J0,k 0,%,k\JO,k )’ 14y
to zero onD(HO_},) does not follow from a corresponding statement-nbrm #-convergence, since
k -1
”B}(,_K)(HOI,{ +1) ||# 40 (5.3)

as k -4 n. However, by (2.15) ||B,Ekk) (Hou + 1)_1 ” is uniformly bounded im. It is thussufficient
’ ! #

to show thaB,g"‘K)z/)r -4 0 for r € *N patrticle vectowp, = Y (p4, ..., p,) € D. By (2.8) one obtains

(B;Skx) lpr) (D1, -, 01) = Ext- Z§=1 EXt'f d#ngx,K(k: Pj)lp(m: ---:Pj—l;k: Pj+1r ---:Pr): (5.4)
where
Wy (k,p) =t (k, p) (B(k ,2)0(p, %) — O(k ,1)O(p, K)), (5.5)
where0(k, k) is defined by (2.10yith » = k. Therefore,
|Bfff";31/1| < 2Bxt-Xjoy Ext- [, d*¥kt® (k, p)Y(po, s Djm1, Ko Djsts s Pr), (5.6)

where by (2.15) the right side is &hfunction in variablegp,, ..., p,) whose#-norm is bounded by
const.” (Hope + I)_1 Yy

" Moreover, ag —4 x, (Bf,k,c) lllr) (p41, -, pr) = 0 pointwise so that by

the dominated #onvergence theore ffk,c Yy

—4 0. For the proof of resolvent £onvergence
#

we require a thorm #convergent statement fﬁégk(fo_k). The failure in (5.3) is to be expected, for,
roughlyspeaking; we can regard (fox) @sHo ., and obvioushC,, . = (Ho, — Hosxc ) (Hos +

0,%,K

1)_1 does no#-converge to zero i#-norm However, this argument indicates tlHaatfka) (HOI,{ +

N
Lemma 5.2 Leti, j € *N be nonnegative integers, afict C,” ("R¥3%,, “R¥;.).
(1) Fori+ j > 2,

#—>#0f0rr>1.

[ CHose+ )™ (120 = 76320 (o + )| 4 0 s 4 5.7)



(2)Fori+ j =2,
—i/2 -j/2
| (o + D) (To(,f?(f) - To(,f,),,c(f)) (Hope + 1) ||# Sy 0 ask -y % (5.8)
(3) Fori + j = 2n,

| Glose + D)™ (e () = Tosese (D) (Hoe + 1) 777|240 asic >4 (5.9)

Proof Equation (5.7) is a consequence of estimates ojeedlin [8] for Wick monomials with one
creating and one annihilating leg. These estimatesve L% - L?~ #norms on the kernels such that

Iwllarx == -essupy (1G] (Bxt- [, Iwlh,p)| dp) ). (5.10)

Given a#-measurable functiofi: *“R#3 - *R¥ [16], the~ -essential supremum ¢fis the smallest
numbera such that the sék € *R¥3|f(x) > a} has infinite small Lebesguerteasure, i.e.,
w({x|f(x) > a}) = 0. The essential supremum of a functjois denoteds -essup,(f). The
essential supremum of the absolute value of aifumgf| is denoted|f||f; and this serves as the

#-norm for L¥> -infty-space.
As an example of (5.7), we consider the dase 1 andj = 2. Asin (5.4),

By = TS (F) = TV () = Ext- [ wy(k, p)a” (k) a(p)d**kd*p.

We see that for particle vectok),. = ¥ (p4, ..., p,-) the inequality holds

1
Bx,x(Ho,x + 1) 2Y(p1, 0P| <

T w. k’p
Ext- {z ~ Ext- f d“’kM lw(py, - Dj-1, K Djss e pr)|}.
j=1 [u(p))]

12 Y is bounded by the-#orm of

Therefore”Bm (Hope +1)

Pr

Ay lr] = Ext- [ | Wy, (e, p) [0 (0)17Y20 (D, 3) a* (k) a(p)d*3 kd*3ply, |

and

1 1
< H(HO,,{ +1) 24, (Ho, +1) 2
#

1
H(HO,H +1) 2By, (Hop + 1) .

< [|wyen (k. D) @I, .-
see[8]. According to the definition (5.10) by (5.5) arl9) we obtain

1w (e DY@ 2, | = supi{l®)] ™ Ext- [ |wy e (k, ) [(P)]~1/2| d*¥p} < const.x

X (z -esssupy {[,u(k)]_%Ext—ﬂExt—f(k — p)| ((E)(k,%)@)(p,%) —0(k,x)0(p, K))d#3p})



=60t k) o4 0 ask -y x. .Xb)
Theorem 5.3 There is a semibounded sela#joint operatof’,, such that foe sufficiently negative

”((M,‘{)’,‘c - Z)_l) — (T, — Z)‘1||# -4 0 ask oy . (5.12)

Proof We first establish th#-norm#-convergence of then-th powergR,.(—b)]?" of the resolvents
for all b sufficiently large. Then th#norm#-convergence aR,.(—b) follows by taking2n-th roots
and applying the generalized Stone-Weierstrassréhe{B]. Letk < » be two values of the
hyperfinite ultraviolet cut-off. We use the follawg formula

RZ™ — RZ" = Ext- Y72 REZ™IH( MYk — M¥)RL. (5.13)
The differenced/2% — M2%, k = 1,2,3 contain of three terms
BW =10) 10, 8@ =72 1@ & =7, 7T .
By (4.22) we get
[RZ*1-BURL]|,, < const X [|(N,, + D72 BO (N, + D7,
where the constant is independenkoT herefore by (5.8) and (5.9) whgn= 2 or 3,
||R,%n+1‘iB(j)R}i,||# -4 0ask oy 2.

As for BV, at least one afor 2n + 1 — i is greater than. Therefore by (4.24) and (3.19),

1 .
R =B DR, < constx {||(Hoe + 1) 28D (Ho, + )| +
#

1 .
+ H(Ho_,{ +1)2BD(Hy,, +1)

|}—>#0aSK—>#%.
#

by (5.7). This obviously establishes the&onvergence ak2"™. LetR, (z) = #-lim, ., , R (2). As a
#-limit of resolventsR, (z) is itself the resolvent of an operator if and aifiyhe null space
N(R,(z)) = 0 for somez [8]. But notice that this is a direct consequeoceemma 5.1: Suppose
that ¢ € N(R,,(—b)) whereb is sufficiently large so tha, (—b) #-converges. Take vectér
arbitrary inD,, . Then

(0,95 = (MY + b)8, R (—=b))s — (M2 + D)8, R, (=b))ys = 0,

so thatp = 0. ThereforeR,,(—b) is invertible, and” = [R,,(—b) |~ — b as a #densely defined,
#-closed, symmetric operator with the sufficientlgatve real axis in its resolvent set, is actually
self-#-adjoint and bounded below.

Theorem 5.4 M,‘j", k = 1,2,3 are essentially self-&djoint onD.

Proof From the strong+#onvergence aff2% to M3* onD,, it follows by a simple argument that

M% ' D, cT,. (5.14)

Note that by the independence iof cutoff, the estimate (4.2) transferdlig i.e.,



H§ e + NZ™ < a(Ty, + b)*" (5.15)

and therefor€ = D(T;?™) c D,,, and from (5.14) one obtains T, I C € M%* I D,, . Now the
domain C is a #-core for T,,, hence

T,=#T, I Cc#M¥ "D,
a symmetric extension of a seHatdjoint operator and therefore we conclude that
T, = #-M%* I D,,.

Essential self+adjointness oM, k = 1,2,3 on the domai follows from self-#adjointness on the

domainD,, by a standard argument.
Corollary 5.5 For suitable constants b, c andk = 1,2,3

H, < a(M2* +b), (5.16)
HZ < c(HE, + N2" + 1) < a(M% + )" (5.17)

The same inequalities hold with the rolesigfandM2¥ interchanged so that

D((H, + b)) = D (M2 +b)""*), 8)1
D(H}) c D(M2¥), (5.19)
D((MZ)") € D(H,). (5.20)

Proof SinceD is a #core forM,‘}",k = 1,2,3, it is a #core for(Mf," + b)l/2 and (5.16) follows from
closing (2.2). (5.17) is just a restatement of §5.8inceH,, is a special case 82 obtained by
setting,gék) (x) = 0, itis clear that the higher order estimates (btidd forT,, = H,,; hence the
roles ofH,, and M2%, k = 1,2,3 can be interchanged in (5.16) and (5.17).

6. Lorentz covariance
According to the discussion in Section 1 this antsto showing that if* = [a, b]® *]R{*jfﬁm and if

fis ac,” ("R¥%4,,, "Rf4,) function withsupp(f) U supp (fAB) c 0,3, then on suitable near

standard domain
[Ext-exp(iM3¥B)] @, () |Ext-exp(—iM3*B)| = ¢, (fAB)' (6.1)

Notice that (6.1) is operator equaligince for*]Riﬁ,ﬁn valuedfunctionf, ¢, (f) is a sel#-adjoint

operator whose domain inclust((Mffk + b)l/z). In addition, we prove on the domain
D ((Mi¥ +b)"*) x D ((M¥ +b)""*) that
[Ext—exp(iMffkﬁ)](p,{(x, t) [Ext—exp(—iMffkﬁ)] =@, (Aﬁ (x, t)). (6.2)

Here the vectoréx, t) andAg(x, t) are in0;3, and the forms in (6.2) arecgéntinuous inc andt by
the first-order estimate (5.16) and results of5&jt.6.



Notice that the main part in the proof of (6.1)dsverify the commutation relation (1.15) ffre

C(;°°(0,3, *]R{f’ﬁn) andg a cut-off function for the regiof,s . For convenience, we assume that a
function f with support contained in the regiop defined by

08 = {(x17x27x37 t)la' +e+ |t| < Xk <b-¢e- |t|rk = 1'2'31 |t| < E}I (63)

and where > 0 is some small enough number. This representsgsodbgenerality since arfyin

C(;°°(0,3, *]R{f’ﬁn) can be presented as a sum of studhfollows from this assumption that|#| < ¢,
then external integral

[Ext-exp(iH,, (¢t + 5))] {Ext- Jogrs 0 (O (x, t)d#3x} [Ext-exp(—iH,(t +5))] (6.4)
is related to a non-Archimedean von Neumann algilbfd) generated by the set
{Ext—exp(kp%(hl)) + Ext—exp(in,{(hz))ﬂhi € COOO(*[R{ﬁ%M, *[R{ﬁﬁn),supp(hi) cldi= 1,2}.

The main parts of the proof are as follows:
Partl. Fory € D(H}*® ) we define

Fie(8) = (@, [iMF (), 0 (O |1)s (6.5)

whereM¥(t) = [Ext-exp(—itH,)|M¥[Ext-exp(itH,,)]. Note thatF;, (t) is well-defined and three
times #continuously #differentiable by (5.19) and [&ection 6]:

[[(Hy + b2, (F)(H, + b)"U+D/2|| <. (6.6)

forj=0,1,2,.... Obviously one obtains,

LI = [ [He MEDL 0] D0, 6.7)
Oy, [[H},, [H M O] 9 (f)] D) (6.8)

Part2.The commutators in (6.7)-(6.8) can be evaluatedDfdx D} one obtains, in the sense of
bilinear forms,

[iH,, M¥]| = P + Ext- f*R§3 2n: 2 (x)m, (x): g1 (x) (xk —a —x,g%F (x)) d*3x (6.9)

whereP¥, k = 1,2,3 is a locally correct momentum operators

Pk = pk <djik (xkg(()k) (x))). (6.10)

By (2.6) the integral in (6.9) vanishes, and in agglw (1.27),

[iH,,, M3¥] = Pk (6.11)



on the domaiD (H}} ) x D(H}} ) c D} x D}. Since the operato’ andM* are defined o (H} ),
extends to an operator equality BH2*? ). Therefore, we obtain on the doma@ifH} 2 ) x
D(HZ*? ) that

it [ite, M1 = [iHy, B] = 5%, 18)

where

Svk — T _(x g( )(.')C)> -
0,% k
d#xlzc 0

d#z
#

d#
P (xkg(()k) (x)) dBx—T, ( dii;)). (6.13)

—m2Ext- f*Rﬁ3: 02 (x):

Part3.SinceS¥, k = 1,2,3 are local operators whose kernels vanishel ave expect thask, k =
1,2,3 commutes wittR(13). The exact statement[iS¥, R(I®)] = 0,k = 1,2,3 on domain D; x D,
Note thatD}i c D(S¥),k = 1,2,3.It follows from (6.4) and (6.6) on domain D}f x D} that

[Sk, [Ext-exp(isH,,) @, (f)Ext-exp(—isHH)]] =0 (6.14)

for |s| < € andsupp(f) c O;

Part4.The rigorous counterpart of the formal expansiaB4)Lis to writeF;, (t) in terms of its
generalized Taylor seri¢8,Theorem 2.2]7 For somes, |s| < [t|

Fie(6) = Fi(0) + tF (0) + = F ). 6)1
For |t| < & (6.15) on domai (H}*3 ) x D(HZ*? ) reads
[iMR (), 0 ()] = [iME, 9, ()] = iliBE, @2 (D] (6.16)
Part5.The commutators on the right of (6.16) can be atalliby passing to the sharp time fields,
¢y (fsr t) = Ext- f*Rﬁ3 f(x,8) @, (x,t)d*3x.
where the subscrigtindicates the time dependence of a funcfiohe result for|t| < € reads
(M), 9 (s O] = (i fes0) =t (S, 0)
on domainD (H}+3 ) x D(HJ*3 ). That is, for|t| < e we get
(M), 9 (fos O] = 7, Crefer ) = 0 (£ 555 ). (6.17)

Sincesupp(f) < O, we can integrate (6.17) with respect @nd thus on domaiD(H}{1+3 ) X
D(HZ*3®) we obtain

. ot o* a*
[iME(6), 9 (i O] = T (i, ) = s (£ 57 ) = =0 (3 55 + £ 550 ) (6.18)



Part6. In order to deduce (6.1) from (6.18) we must shioat the equality (6.18) holds on a domain
of the formD ((MQ")J) XD ((Mg")]). Note that ify € D ((MQ")]), thenExt-exp(—iMp*B)y €

D ((M,‘}k)j) and
gk (X, ¢, :8) = (Ext'exp(_iM}(«){kﬁ)lp' (7 (X, t)Ext'eXp(_iM}(«){kﬁ)>#
is a #continuous function aof andt [8, Section 6with a distribution #derivative ing,

(Ext-exp(—iM*B)y, {xk a#(g’;(tx’t) +t a#(p”(x't)} Ext-exp(—iM3*B))x

a#xk

by the equality (6.18).Thug, (x, t, 8) satisfies the distribution differential equationpartial
#-derivatives

a#gk(xltrﬁ) — a#gk(xltrﬁ) a#gk(x'trﬁ)
LI — sy T o T (6)19

The distribution differential equation (6.19) hasraque solution with initial conditio@y (x, t, 0):
gk (xr t, 0) = (l/), (p}{(x' t)ll))#.

This proves (6.2) ob ((Mgk)j) X D ((Mgk)j) and, by extension, on the domain
D (Mg +b)"*) x D (MZ* + b)""*).
Obviously the operator statement (6.1) is follomsniediately. It remains only to prove the following.

Lemma6.1LetI® c *R¥%,,, g satisfy (2.4)-(2.6)¢ > 0, andf € C,”(0;, *R¥4,). Then, in the
sense of bilinear forms

(MO, 9 (] = =y (1 T2 + £ 5L (6.20)

onD(H, ) x D(H, ) or onD(Mg2¥ ) x D(Mg¥).

Proof As we know that (6.20) holds dn(H}+3 ) x D(H}*3 ). Lety € D(H,, ); since D(H}*3 ) is a
#-core forH,,, there exists a hyper infinite sequengel € *N in D(H},‘+3 ) such thatp; -, 1 and
H, Y, =4 H,p asl - *co. By the first order estimate, we have for somestamtsa andb

||(M2" +a)""*(H, +b)™1/? ||# < *oo, (6.21)
and by (6.6) we get
(|03 (i) (Hye + )2, < *oo. (6.22)
whereu;, = x; % + t:%; is inC,” ("R¥%,.,, "R¥.,). Therefore,
(M + a) ", —4 (MY +a) "y (6.23)

and



O W)Y =4 0, (W)Y (6.24)

Moreover, by (6.6) we obtain

|(H, + b)Y 20, (f)(H,, + b)_1/2||# < *oo, (6.25)

From (6.21) and (6.25) one obtaib§H,, ) € D ((HH + b)1/2<p},(f)) and that

(M2 + ) 0, (P >4 (M +0)" 0, (). (6.26)
Note that

1/2 1/2

W1, [IMP* (), 0 (N1 )e = I (M + a) "¢y, (M2 + a) ", (NY)s —

—i((Mk + a)l/zfﬂu(f)lpl: (M3k + a)l/zlpl)#-

And therefore from (6.23) (6.24), and (6.26) wedalode that (6.20) extends byc#ntinuity to
domainD(H,, ) x D(H,, ). By (5.20), (6.20) is then exactly valid when rest& toD((MB,")n) X

D((M,‘}k)n). Finally, the extension to domain(M2* ) x D(M2¥) follows directly as above from the
inequality

oMt +5) 2| < oo

§ 7. The spectral theorem related to bounded in*R# operators.

In this section, we will discuss the generalizeecsgal theorem in its many aspects.  This atrect
theorem is a concrete description of all sekkdjoint operators. There are several apparenttindis
formulations of the spectral theorem. In some sémsgare all equivalent. The form we prefer iis th
section, says that every boundedit§ self+-adjoint operator is a multiplication operator. This
means that given a bounded' i/ self+#-adjoint operatod on a non-Archimedean Hilbert spaéé,
we can always find &-measurg:” on a#-measure spadé¢ and a unitary operatéf: H* —

L5(M,d* u*) so thattUAU ) (x) = F(x)f (x) for some boundetRf-valued#-measurable
functionF on M. In practice M will be a union of copies diR# andF will be x so the core of the
proof of the theorem will be the construction ofta@ #-measures. Our main goal in this section will
be to make sense outf6fA), for f a#-continuous function. We will consider also theneasure
defined by the functionaf. = (1, f(A)y) for fixedy € H*.

Definition 7.1.The operato#-norm of a linear operator: H#* —» H* is the largest value by whieh
stretches an element Bf,

Allsop = Al ( gy = sup{llAxllglx € HF, |Ix[ly = 1}.

An operatorA is called bounded itR¥ if lAll4op < oo, otherwise operatat is called unbounded in
*R¥. We often write bounded operator instead boundétinand unbounded operator
correspondingly.

Definition7.2. A linear operatod: H* — H* is called finitely bounded i1||A||L( ) = lAllgop €
“RE g ie., if lAll 40p is @ near standard number.

Definition7.3. Let C*(U) be the linear space t€#- valued#-continuous functions agf-compact



supportU c *R¥ endowed with the essential stymorm||f||+., = ess sup,ey{f (x)}. An functionf
in C*(U) is called finitely bounded if|f]|:c, € *]R{f,ﬁn i.e., if||f|l-» is @ near standard number.
Definition7.4.We define nowC{ (U) ¢ ¢*#(U) by

Cha() = {f1If € C*WIA[lIf ' € "REg] ;-

An functionf is called finitely bounded if € Cf, (V) i.e. if || f|l-w € *RE4,. Note thatCf, (V) is a
linear space over fieltR .

Theorem?7.1. (#-continuous functional calculus) Létbe a bounded tiR¥ self+#-adjoint operator on
a non-Archimedean Hilbert spalié. Then there is a unique mgpC*(a(4)) - L( H*) with the
following properties:

(a) ¢ is an algebraie -homomorphism, that is,

¢(fg)=d (P9 A )=2¢0(Nd D)=L ()= ¢ ()"

(b) ¢ is #-continuous, that ig|¢ (f)IIL( ) < Cllf oo -
(c) Let f be the functiorf (x) = x; theng (f) = A.

Moreover,¢p have the additional properties:

(d) If Ay = Ay, theng (f)y = f(Dy.

(€)ale (F)] = {f (V|4 € a(A)} [Spectral mapping theorem].
(f) If £ > 0, theng () > 0.

@l Dl ury = 1 1o

Remark 7.1.The proof which we give below is quite simple, &ay (c) uniquely determing(P) for
any hyperfinite polynomiaP (x). By the generalized Weierstrass theorem 7.3, thefsg/perfinite
polynomials is#-dense irC*#(a(A)) so the main part of the proof is showing thatA) [l 4op =
Supaeq(a)|P(1)|. The existence and uniguenesgdhen follow from the generalized B.L.T. theorem
7.4. To prove the crucial equality, we first pr@avepecial case of (e) which holds for arbitrary
bounded ifR# operators.

Lemma7.1l. LetP(x) = Ext-YN_,_oc,x™, N € *N. P(A) = Ext-YN_,_, c,A™. Then
o(P(4)) ={P(D)|1 € a(A)}.

Proof LetA € a(A4). Sincex = A is aroot ofP(x) — P(4), we haveP(x) — P(1) = (x — 1)Q(x), so
P(A) — P(A) = (A—1)Q(A). Since(4 — 1) has no inverse neither dae&4d) — P(4) that is,

P(1) € o(P(A)). Conversely, let € o(P(A)) and letd,, ..., 1, be the roots oP(x) — p, that
is,P(x) = = a(Ext-[[le1(x — ). If A4,..., A, & 0 (A), then(P(A) — )™t = a [Ext- [T}, (x —
21)71] so we conclude that somg € o (A) that is,u = P(A) for somel € a(4).

Definition 7.5. Letr(A) = sup;eq(a) |4]-Thenr(4) is called the spectral radius Af

Theorem 7.2. LetX be a non-Archimedean Banach spate, £L(X). Then#-lim,,,c, /14" 40
exists and is equal tq(A). If X is a non-Archimedean Hilbert space ahid self#-adjoint, then



r(4) = Al ex)
Lemma 7.2 Let A be a bounded seif-adjoint operator. Then

IP(ADll#op = suPreaa|lP(DI.
Proof Bytheorem 6.2 we obtain
1PMDFop = IPA)"PDlsop = IPPYMllyop = SuPseo(ppyay IAI-

By Lemma 7.1 we obtain

— 2
SUPeq((PP)a)) 141 = SuPses(a) IPPD)] = (supaesay IP(])".

Notation7.1.We often writegp, (f) or f(A) for ¢ (f) in order to emphasize the dependence on
operatorA.

Definition7.6. (Hyperfinite Bernstein Polynomials) For eacle *N, then-th hyperfinite Bernstein
PolynomialB/ (x, f) of a function f € C*([a, b], “R¥) is defined as

Bl (e, f) = Ext-3E_o f (%) (a1 — x)n %,

Theorem7.3. (Generalized Weierstrass approximation theoremYLee'C#([a, b], *]Rz*j), [a,b] c

*R#. Then there is a hyper infinite sequence of polyiatsp, (x),n € *N that#-converges uniformly
to f(x) on|a, b].

Proof Consider firsf € C#([O,l], *]R{*j). Once the theorem is proved for this case, themgétheorem
will follow by a change of variables. Sinf@ 1] is #-compact, thet-continuity of f implies uniform
#-continuity. So, given € > 0, there exist$ > 0 such thatvx,y(x,y € [0,1D[|x — y| < § =
If(x) — f(¥)| < €/2]. Now, letM = ||f]|-»- Note thatM exists sinceg is a#-continuous function
on a#-compact set. Now, fi§ € [0, 1]. Then, if|x — &| < §, then the inequality holdg (x) —

f(&)] < €/2 by #-continuity. Alternatively, ifix — &| = &, then

x—¢ 2
If(x) = f©)] < 2M < 2M ( - ) + /2.

From the above two inequalities, we obtain that

vx e [0.1D[1f - F©1 < 2m (55 + 2]
The hyperfinite Bernstein Polynomials can be useapproximatef (x) on [0, 1]. First, note that
BIGuf~f®) = BIGf)~ f©OBL(xD)
and for alln € *N
Bi(x,1) =Ext-Tp_o(F)x*(1—)"F = (x + (1 — )" = 1,

where the generalized Binomial Theorem was usédeirsecond equality. Thus,

BE G f — 0| < BY (x2m (555) +£) = ZBE G (x - 99 + /2,



where in the second step the fact hat B (x, ) for0 < f andBf(x,g) < Bf(x,f)ifg<f
were used. Both can be proven directly from théniefn of B (x, f). It can also be shown that

Bi(x,(x — ) =x? + n7 1 (x — x?) —2&x + &2.
So

B e, f — F(©)] < &+ 2] 2mCer?)

In particular,

[BAGE, £~ F©)] < &+ 28D

A simple calculation shows that ¢ 1], the maximum of — z2 is1/ 4 . Thus,

2M

BEEf—f@) <>+

So, takeV > —— forn > N we get
2682¢

1B (&, f = £(©)

*o0"

This proves the theorem fércontinuous functions ofo, 1]. Now we letg € C*([a, b]). Consider

the functiong : [0,1] — [a, b] defined by ¢ : x = (b — a)x — a, ¢ is clearly a homeomorphism.
Thus, the composite functigh= g o ¢ is a#-continuous orj0, 1]. By application of the theorem for
functions o0, 1], the case for an arbitrary interJal b] follows.

Theorem 7.4. (Generalized B.L.T. theorem) Suppose thas a non-Archimedean normed spacés

a non-Archimedean Banach space, &ndZ is a#-dense linear subspaceaflf T:S - Yis a
bounded ifiR? linear transformation (i.e. there exists< *oo such thaf|Tz||s < C ||z||« for

all z € S), thenT has a unique extension to an elemei(@f, Y).

Definition 7.7. (Unital Sub-Algebra, Separating Points). Kebe a#-compact metric space. Consider
the non-Archimedean Banach algebfgK, *R¥) = {f : K —» *R¥ | f is #-continuous} equipped
with the sup-normj|f||-.. Then, (1)4 c C* (K, *R¥) is a unital sub-algebraif € A and if

f,g9 € Aa, B € R¥ impliesthainf + Bg € Aandfg € A. (2)A c C* (K, *R¥) separates
points ofK if for all s,t € K withs # t, there existg € A such thaf'(s) # f(t) .

Proof of the Theorem 7.Let¢(P) = P(A). Then|| ¢ (P)||L( H*) = IPllc# (5 ay) SOP has a unique

linear extension to th-closure of the polynomials i (o(4). Since the polynomials are an algebra
containingl, containing complex conjugates, and separatingtpgihis#-closure is all of#(a(4).
Properties (a), (b), (c), (g) are obvious ang dbeys (a), (b), (c) it agrees withon polynomials and
thus by#-continuity onC*(a(A). In order to prove (d), note that(P)y =P(A)y and apply
#-continuity. To prove (f), notice that ff > 0, thenf = g* with g is *R¥-valued angj € C*(a(4).
Thuso (f) = ¢ (g)? with ¢ (g) self#-adjoint, sop (f) = 0.

Remark 7.2 Notice that in addition the following statementdch

Q) p(f) = 0ifand only iff = 0.

(2) Sincefg = gf forall £, g, {f(A)|f € C*(a(A))} forms an abelian algebra closed under adjoints.
(3) Sincellp (Ol gy = If Il ANAC*(a(A)) is #-complete {f (A)|f € C*(a(A))}

is #-norm-#-closed. It is thus a non-Archimedean an abeliaalgebra over fieldC? of operators.

(4) Ran(¢) is actually the non-Archimededri-algebra generated bythat is, the smalle€t*-algebra



over field*C# containingA.

(5) Notice thatC#(a(A)) and the non-Archimededii-algebra generated byaret-isometrically
isomorphic.

(6) The statement (b) actually follows from (a) &vdposition 7.1. Thus (a) and (c) alone determine
¢ uniquely.

Proposition 7.1 Suppose thap: C¥(X) —» L(H*) is an algebraie-homomorphism¥ a#-compact
metric space. Then: (a)fif> 0, theng (f) =0, (b)||¢ (f)IIL( H#) < I1f ] *co-

8. The spectral #-measures.

Definition 8.1. [16] (o%- Algebrg. Let X be any set. A familfF c 2% is called as*- algebra orX, if:
(i) @ € F;

(ii) F is closed under complements, dec F impliesX\A € F;

(iii) F is closed under hyper infinite unions, i.edjf,n € *N is a hyper infinite sequence fh then
Une:n4n € F.

Proposition 8.1.If Zis ac*- algebra orX then:

1. #is closed under hyper infinite intersections, ii.el,,,n € *N is a hyper infinite sequencein
thenN ey An-

2.X€EF.

3. Zis closed under hyperfinite unions and hyperfiiitersections.

4. Fis closed under set differences.

5. Zis closed under symmetric differences.

Proposition 8.2.SupposeF c 2% is a family of subsets satisfying the following:

1.0 €F;

2. F is closed under complements;

3. F is closed under hyper infinite intersections.

Then¥ is ac*- algebra.

Proposition 8.3.If F,, a € I is a collection ot#- algebras o, thenn, F, is also ar- algebra
onX.

Proposition 8.4.(a#- algebra generated by subsets). K die a collection of subsets ¥fThere exists
ac*- algebra, denoted” (K) such thak c o*(K) and for every other#- algebraF such that

K c F we have that #(K) c F . We callo®(K) theo*- algebra generated I

Proof Defines#(K) 2 N{F|F is ac*- algebra ok, K c F}. This obviously is a#- algebra with the
required properties.

Proposition 8.5.If K c £ thena®(K) c o#(L). Also, if K ¢ F andF is ac*- algebra, thea™ (K)
c F.

Definition 8.2.[16] (Borel o*- algebra). Given a topological spatethe Borels*- algebra is the -
algebra generated by the open sets. It is deritéxl); specifically in the cask = *R#¢,d € *N we
have that by definitio* (*Rf%) = ¢#(U|U is an -open set).

Definition 8.3.A Borel#-measurable set, i.e. a seBifi(X), is called a#-Borel set.

Definition 8.4. Let f be a*R¥-valued function defined on a sétWe suppose that somé&- algebra
Q € P(X) is fixed. We say that f i§-measurable, if “*([a, b]) € Q for any hyperreala, b € *R#
such that < b.

Proposition 8.6. [16] Let f: X — *R# be a function. Then the following conditions areigglent:
(a) f is #-measurable;

(b) £72([0, b)) € Q for any hyperreab € *R¥;

(€) f~*((b, *)) € Q for any hyperreab € *R¥;



(d) £71(S) € Q for anyS € B*(*RE%).

Proposition 8.7. Let f andg be#-measurable functions, then

(@) (a x f) + (B x g) is #-measurable for ary, b € *R¥;

(b) functions maf, g} andf x g are#-measurable

(c) functionsf, = max{f, 0},f- = (—f)., and|f| = f. + f- are#-measurable.

Definition8.5. A pair (X, F) whereF is ac*- algebra orX is call#-measurable space. Elementsiof
are calledt-measurable sets. Giver#taneasurable spa¢#, F), a functionu”: F — [0, *oo] is called
#-measure oiiX, F) if:

1.u*(@) = 0;

2. (Hyper infinite additivity) For all hyper infite sequences,,,n € *N, A,, € F of pairwise disjoint
sets inF, we have thap”(Unew An) = Ext- Ynen 1 (4n).

Definition8.6.[16] (X, F, u*) is called a#-measure space.#measure spad&, F, u¥) is called
hyperfinite ifu#(X) < *oo . It is calledo®- hyperfinite ifX = U,e-ny A4, Whered, € F andp®(4,) <
*oo for alln € *N.

Definition 8.7.Let F is ac*- algebra of subsets of a sgtand letE = (E, || - ||+) be a non-
Archimedean Banach space. A functjdh: F — E U {*0} is called a vector-value#-measure

(or E-valued#-measure) if:

1.p*(®) = 0;

2. 0¥ (Unen4An) = Ext- Tyen 1*(4,) for any pairwise disjoint sequendg,n € *N, 4,, € F;

3. For anys € F, u*(S) = *oo, there exist® € F such thaB < S and 0 < ||u*(B)||, < *co.

Definition 8.8. (a) LetF be as*- algebra of subsets of a $&tA functionp® : F — *C¥# U {*o0} is
called a comple¥-measure if:

1.p*(®) = 0;

2. 0¥ (Unen4An) = Ext- Tyen 0¥ (4,) for any pairwise disjoint sequendg,n € *N, 4, € F;

3. For anys € F, p#(S) = *oo, there exist® € F such thaB € S and 0 < u#(B)|# < *oo.

(b) LetF be as*- algebra of subsets of a setA functionp® : F —» *R# U {*} is called a signed
#-measure if:

1.u* (@) = 0;

2.0 (Unern An) = Ext- Yne-n 1 (4,,) for any pairwise disjoint sequendg, n € *N, 4, € F;

3. For anys € F, p#(S) = *oo, there exist® € F such thaB € S and 0 < |u#(B)|# < *oo,

Definition 8.9. If a certain property involving the points #fmeasure space is true, except a subset
having#-measure zero, then we say that this property ésttralmost everywhere (abbreviated as
#-a.e.).

Definition 8.10.Let (X, F, u¥) is a#-measura space and fgin € *N be a hyper infinite sequence of
*R#-valued functions defined on. We say that:

1. f, =« f pointwise, iff (x) =4 f(x) forallx € X;

2. fn =4 f almost#-everywhere#-a.e.), iff,(x) =4 f(x) for all x € X except a set gf-measurd);

3. fu =4 f #-uniformly, if for anye > 0, e = 0 there isN(¢) € *N such thatsup{|f,(x) — f(x)|: x €
X} < eforalln > N(e).

In the following definitions, we fix a®- hyperfinite#-measure spadg, F, u*).

Definition 8.11.LetA; € F,i = 1,...,n € *N be such thai”(4;) < *oo for alli, and 4; N Ai=0

for all i # j. The external function defined by

f(x) = Ext-3iq Ai Xa, (%),



A; € "R¥ is called a simple external function. The Lebesegxternal integral (Lebesgieintegral)
of a simple external functiofi(x) is defined as

Ext- [, f(x)d*u* = Ext- Y1 A; n (4)).

Definition 8.12.Suppose th&-measurai” is hyperfinite. Letf: X —» *R¥ be an arbitrary nonnegative
bounded ifR#¥ #-measurable external function andfign € *N, be a hyper infinite sequence of
simple external functions whigh-convergest-uniformly tof. Then the Lebesgugintegral off is

Ext- fo(x)d#u# = #-lim;,_ o, (Ext- fon(x)d#u#).

Definition 8.13.[16] Let f: X - *R¥ be a#-measurable function. Then the Lebesgtiategral off
is defined by

Ext- [, f(x)d*u* = Ext- [, f+*()d*u* — Ext- [, f~(x)d*p*.

If both of these terms are finite or hyperfiniteththe function f is callef-integrable.In this case we
write £ € L (X, F, p*).

Notation 8.1.[16] Assume thaf, g: X — *R¥ are#- integrable functions and such that<, g #-a.e.
f

Ext- [, f)d*u* < Bxt- [, g(d*y

we abbreviat¢ <; g.
Proposition 8.8. (1) Letf: X » *R¥ be an arbitrary nonnegativemeasurable function then

Ext- fo(x)d#u# = sup{Ext— fx @ (x)d*u* |¢ is a simple function such that 0 < ¢(x) < f(x)}.
(2) If f,g: X - *R¥ are#-measurabley is #-integrable, andlf (x)| <, g(x), thenf is #-integrable
and

|Ext- [, f(x)d*u*| < Ext- [, g(x)d*p*.

(3) Ext- [, |f (x)|d*u* = 0 if and only iff (x) = 0 #-a.e.
(B I f1, fa,...f: X > *R¥ n € *N are#-integrable then, foky, A5,..., 4, € 'R¥, the linear
combinationExt- Y/, A;f; is #-integrable and

Ext- [ (Ext- 3=y A;f)d*u* = Ext- 3y A;(Ext- [, fid*p*).
(5) Letf € L} (X, F,u*), then the equality
v#(A4) = Ext- [, f()xa()d*n* £ Ext- [, f (x)d*p*

defines a signed-measure on the”- algebraF.
Theorem 8.1.[16].(Thegeneralized monoton&convergence theorem) ff ,n € *N is a hyper
infinite sequence in%* (X, F, u*) such thaff; <; f;,, for allj € *N andf (x) = supuesnfn (%) then

Ext- [ f()d*u* = #-limp,_,o, (Ext- [ f (x)d*p*).



Theorem 8.2.[16].(The generalized dominatéfdconvergence theorem) LEtandg be
#-measurable, lef, be#-measurable for any € *N and such thgif;,, (x)| < g(x) #-a.e.,
lfn ] <5 g(x) for anyn € *N andf, (x) =4 f(x) #-a.e. Thery is also#-integrable and

Ext- fo(x)d#u# = #-limp_-o (Ext- fon(x)d#u#).
Definition 8.14. IfE € X; X X, andx; € X;,x, € X,, we define
Ey, = {x € X3|(x1,x) € E}and E*2 = {x € X;: (x,x;) € E}.

If f:X; X X, - *Riis a function, we defing.: X, - *RE andf*2: X; —» *R¥ by £ (x) = f(x1,%)
andf*z(x) = f(x, xz).

Theorem 8.3.[16].(The generalized Fubini's theorem) kéu% bes®-hyperfinite#-measures on
(X1, F1) and(Xy, F2), (X1 X X5, F1 @ Fa,uf @ 13) = (X, Fy, 1) X (X, Fp, 13), and let

feELl (XixXoF1 @ Fppf @ Hg)-Thenfxl € L (X2, Fo b)) pi-#-a.e.,

and f*z € L} (X*,F1,uf) u3-#-a.e., and the following equalities hold:

Ext- [y £ 4" (i @ uE) = Bxe- [, [Ext- [, £z d*ul| = Bxt- [, [Bxe- [ £, d*ul]

We introduce now th&-measures corresponding in natural way to a bouimd@&d self+-adjoint
operators. Lel be bounded inR¥ self#-adjoint operator. Lep € H*. Then

f= W, f(A)y

is a positive'R#-valued linear functional oﬁ#(a(A)). Thus, by the generalized Riesz-Markov
theorem, see Theorednl,there is a uniqué—measure;fj, on the#-compact setr(4) with the
property

W, f(AP) = Ext- [, fFA)A* .
Definition 8.15.[8] The #—measuredf, is called the spectr#i-measure associated with the veapoe
H* The first and simplest application of t,h@ is to allow us to extend thHecontinuous functional
calculus taB*(*R¥ ), the bounded ifiR% #-Borel functions orfR%. Let g € B*(*R¥ ). It is natural
way to defingg(4) so thay, g(A)y)y = Ext- fa(A) g(D)d* uj,. The polarization identity lets us
recover(y, g(A)y), from the functionaly, g(4)y)s and then the Generalized Riesz lemma lets us
constructg (4).
Theorem 8.1.[8] (Generalized Riesz-Markov theorem) ebe a locally#-compact non-
Archimedean metric space endowed Wik -valued metric. Le€? (X) be the space af-continuous
#-compactly supportetiC#-valued functions oi. For any positive linear functiondl onC#(X),
there is a uniqué-measurey, onX such thavf € C¥(X): ©(f) = Ext- [, f(x)d* u* (x).
Theorem 8.2.[8] (Generalized Riesz lemma) L¥tbe a#-closed proper vector subspace of a
#-normed spacéX, || - ||4+) and leta € *R¥ be any real number satisfyifg< a < 1.Then there
exists a vecton € X of unit#-norm||u||z = 1 such thafju — y||lz = a forally €Y.
Theorem 8.3.[8] (spectral theorem-functional calculus form) Uebe a bounded itR? self-
#-adjoint operator on non-Archimedean Hilbert spdéeThere is a unique mag: B*(*R¥ ) -
L( H*) so that: (a)p is an algebraie -homomorphism.
(b) P is #-norm#—continuousﬂcﬁ(f)||L( S ILF |l oo -



(c) Letf be the functiorf (x) = x; thend(f) = A.

(d) Supposé, (x) —4 f(x) for each x aa —4 *co0 and hyper infinite sequendi¢, ||+, is bounded
in"R¥.Thend(f,,) = d(f), asn —4 *oo strongly.

Moreoverg has the properties:

(€) If Ay = 2, thend(f) = f (D).

() If £ > 0,thend(f) = 0.

(9) If BA = AB theng(f)B = BH(f).

9. The spectral projections

Definition 9.1.[8] Let 4 be a bounded ifR? self+#-adjoint operator anfl a#-Borel set of R%.

Pq = xq(A) is called a spectral projection 4f

As the definition suggestgy, is an orthogonal projection singg = x4 = 1pointwise. The
properties of the family of projectiofiB8,|Q an arbitrary#-Borel se} is given by the following
elementary translation of the functional calculus.

Proposition 9.1.The family{P,} of spectral projections of a bounded'®R{ self-+#-adjoint operator,
A, has the following properties:

(a) EachPq, is an orthogonal projection.

(b) Py = 0; P_qq) = I for somen € *RY, .

(©) If Q = Ext-U,2, Q, withQ, nQ, =@ for alln # m then

Po = s-#-limy_ o (Ext-¥N_1 Po,)
(d) Pa,Pa, = Pa,nq,-
Definition 9.2. A family of projections obeying (a)-(c) is called @jection-valued#-measure
(p.v. #-m.).
Remark 9.1. Note that (d) follows from (a) and (c) by abstreghsiderations. As one might guess,
one can integrate with respect to apm. If P is a p.v#-m., then(o, Pop). is an ordinary
#-measure for any. We will use the symbal®(¢p, P,¢), to mean integration with respect to this
#-measure. By generalized Riesz lemma methods, iharanique operatd with (¢, Bg)y
= Jge fD)a* @, Prg)y.
Theorem 9.1.If P, is a p.v#-m. andf a bounded ifR¥ #-Borel function orsupp(Py,), then there is
a unigue operatd® which we denotqﬁR,gf(A)d#«p, P, )4 so that

(@, By = [.gu fF DA, Pr o)y

10. The spectral theorem related to unbounded in *R# self - #- adjoint operators.

In this section we will show how the spectral tieprfor bounded iriR? self+#-adjoint operators
which we developed in section 9 can be extendesiboundedn *R¥ self+#-adjoint operators.
Proposition 10.1.Let (M, u*) be a#-measure space witlf’ a hyperfinite#-measure. Suppose thft
is a#-measurable’R# -valued function oM which is finite or hyperfinitg:#-a.e.. Then the operator
Trip - f¢ on L (M,d*u*) with domainD(Ty) = {¢|fe € L5 (M, d*u*)} is self#-adjoint and
o(Ty) is the essential range Bf.

Proposition10.2. Let f and T; satisfy the conditions in Proposition 6.4.1. Sugpiosaddition that
feLi(M,d*u*) for2 < p < *o. Let D be any#-dense set it (M, d*u*), whereqg™ + p™* =

1/2. ThenD is a#-core forTy.

Theorem 10.1.(Spectral theorem-multiplication operator form) Uebe a self#-adjoint operator on a



*00- dimensional a non-Archimedean Hilbert spa&é with domainD (A4). Then there is &-measure
spaceM, u*) with u* a hyperfinite#-measure, a unitary operatdr H* — L4(M,d*u*) and a'R}:
-valued functiorf onM  which is finite or hyperfinitg*-a.e. so that

(@) ¥ € D(A) if and only if f(-)(UY)(-) € L (M, d*i*).

(b) Ifp € U[D(A)], then(UAU *@)(m) = f(m)¢p(m).

Remark 10.1.There is a natural way to define functions of & gehdjoint operator by using the
Theorem 10.1. Given a bound#eBorel functionh on*R# we define

h(A) = UTp U™ (10.1)

whereTyyy is the operator obf (M, d*u*)) which acts by multiplication by the functidugf (m)).
Using this definition the following theorem follovessily from Theorem 6.4.1.

Theorem 10.2. (Spectral theorem -functional calculus form) Udbe a self#-adjoint operator on
H*. Then there is a unique mapfrom the bounde#-Borel functions on

“R¥ into£( H*), so that

(a) ¢ is an algebraie-homomorphism.

(b) @ is #-norm#-continuous, that is||¢3(h)||L( ) < [l

(c) Leth, (x),n € *N be a hyper infinite sequence of boundedtiRfi #-Borel functions

with #-1lim,,_,:, h,, (x) = x, for eachx and|h,, (x)| < |x| for allx andn € *N. Then, for any

¥ €D(A),
#- limn—»*oo ($ (hn)lp) = Al/)

(d) If hy, (x) =4 h(x) pointwise and if the hyper infinite sequeniég, (x)|+«,n € *N is bounded
in *R¥, theng (h,,) =« ¢(h) strongly.

In addition:

(e) If Ay = Ay theng (h) = h(A).

(N If h > 0, theng(h) = 0.

The spectral theorem in its projection-valdedcheasure form follows directly from the functional
calculus. LefPy be the operatgrg (A) wherey, is the characteristic function of tifemeasurable set
QO c *R¥. The family of operator§P,, } has the following properties:

Proposition 10.3.The family{P,,} of spectral projections of aboundedR{ self+#-adjoint operator,
A, has the following properties:

(a) EachpPy, is an orthogonal projection.

O)Py=0;P_oprc0) =1

(©) If Q = Ext-U,2, Q, withQ, nQ, =@ for alln # m then

Po = s-#-limy_ o (Ext-XN_1 Po, )
(d) Po, Pa, = Pa,na,-
Definition 10.1. A family of projections obeying (a)-(c) is called ejection-valuedt-measure
(p.v. #-m.).
Remark 10.2. This is a generalization of the notion of boundegjgxtion-valued #-measure
introduced in Section 9. In that we only requtte-w, -y = I rather tharP_, ,) = I for somea €

*R¥, . For vectokp € H*, (@, Pop)4 is a well-defined Bore#-measure orR¥ which we denote by



(p,P,0)4 asin § 4.3. The complex?-valued#-measurel®(p, P,y), is defined by polarization.
Thus, given a bounded 1iR# #-Borel functiong we can defing(4) by

(0, 9(4) @y = Ext- [.gu g()d*(p, Prg)y. (10.2)

It is not difficult to show that this mag — g(A) has the properties (a)-(d) of Theorem 10.1g &)
as defined by (10.2) coincides with the definitairy (A) given by Theorem 10.1. Now, suppg@ses
an unboundedC#-valued#-Borel function and let

Dy = {@lExt- [y g)d* (9, P1g)y < oo}, (10.3)
Then,D, is #-dense ind* and an operatqy(4) is defined orD, by
(0, 9(A) @)y = Ext- [.pu gD)d¥(@, Prp)y. (10.4)
As in Section 9, we write symbolically
g(A) = Ext- f*Rgg()l)d#PA. (10.5)
In particular, forp, 1 € D(A),
(0, 9(A) ¥}y = Ext- [.gs g()d™ (@, P2ih)y. (10.6)

if g is *R¥ -valued, thery(A) is self#-adjoint onD,. We summarize:

Theorem 10.3. (Spectral theorem-projection valugemeasure form).There is a one-to-one
correspondence between séladjoint operatorg and projection-value#-measure$Py} on H# the
correspondence being given by

A = Ext- [,p4 Ad*P;. (10.7)

We use now the functional calculus developed alweeder to defindxt-exp(itA).

Theorem 10.4 Let A be a selft-adjoint operator and defirié(t) = Ext-exp(itA). Then

(a) For eachr € *R¥, U(t) is a unitary operator ané(t + s) = U(t)U(s) for all s, t € *R¥.

(b) If ¢ € H* andt -, to, thenU (t)¢p -4 U(to)d.

(c) Foranypy € D(A): (U®)Y —)/t) =4 iApast -y 0.

(d) If #-lim,, o ((U()Y — P)/t) exists, thenp € D(A).

Proof (a) follows immediately from the functional calcsland the corresponding statements for the
*C#- valued functiorExt-exp(itA). To prove (b) observe that

|Ext-exp(itA)y — Y||3 = Ext- f*RﬁlExt-exp(it/l) — 112d*g(A)d*(Pyp, ).

Since|Ext-exp(itA) — 1|? is dominated by th#&-integrable functiory (1) = 2 and since for each
A € *R¥ |Ext-exp(itd) — 1|2 -4 0 ast -, 0 we conclude thatU (t)y — ) -4 0 ast -4 0, by the
generalized Lebesgue dominatéaonvergence theorem. Thus> U(t) is strongly#-continuous
att = 0, which by the group property proves» U(t) is strongly#-continuous everywhere. The
proof of (c), again uses the dominatedonvergence theorem and the estinpAtg-exp(itx) —

1|2 < |x|. To prove (d), we define



D(B) = {1/)| #-lim,_, (U(t)zp_w) exists}

u@y—y
t

and letiBy = #-lim;_, o (
SoB = A.

Definition 10.2. An operator-valued functioti(t) satisfying (a) and (b) is called a strongly
#-continuous one-parameter unitary group.

Definition 10.3If U(t) is a strongly#-continuous one-parameter unitary group, then ttie se
#-adjoint operatod with U(t) = Ext-exp(itA) is called thet-infinitesimal generator off (t).
Theorem 10.5. Let U(t) be a strongly#-continuous one-parameter unitary group on a nhon-
Archimedean Hilbert spadé”. Then, there is a se#f-adjoint operatod on H* so that

U(t) = Ext-exp(itA).

Theorem 10.6. Let U(t) be a one-parameter group of unitary operatorstoypar infinite
dimensional non-Archimedean Hilbert spate Suppose that for afi, p € H*, (U(t)y, )y is
#-measurable.Theli(t) is strongly#-continuous.

Theorem 10.7. Suppose thal/ (t) is a strongly#-continuous one-parameter unitary group. Rdie a
#-dense domain which is invariant undAit) and on whicli(t) is strongly#-differentiable. Then
i~ times the strong-derivative ofU(t) is essentially sel-adjoint onD and its#-closure is the
#-infinitesimal generator aff (t).

Theorem 10.8. Let A be a self-adjoint operator ¢fi' andD be a#-dense linear set contained in
D(A). If for all t, Ext-exp(itA): D — D thenD is a#-core forA.

Remark 6.4.3. Finally, we have the following generalization ofétitem 10.5. Iy (1) is a*R#-
valued#-Borel function orfR#, theng(A) = Ext- f*R*g g(2)d*P;. defined omD, (10.3) is self-

#-adjoint. If g is boundedy (4) coincides withp(g) in Theorem 1.

Theorem 10.9. Let U(t) = U(ty,...,t,) be a strongly-continuous map ofR*™ into the unitary
operators on a hyper infinite dimensional HilbgraseH* satisfying U(t + s) = U(t)U(s) LetD be
the set of hyperfinite linear combinations of vestof the form

) . A simple computation shows th&itis symmetric. Byd), B o A4,

Of = Ext- [ f(OU @A™, (10.8)

where¢ € H#,fec(f*m(*[R{f"). ThenD is a domain of essential setfadjointness for each of the
generatorsl; of the one-parameter subgroupd,0, . o tj,.,0), eachAj :D - D and the4j
commutej = 1,...,n. Furthermore, there is a projection-valdedheasureé?, on *R#" so that

(9, U@}y = Ext- [ gun| Ext-exp(i(t, 1))] d*(p, Pap)s (10.9)

for all ¢,y € H*.

Remark 10.4.Suppose that andB are two unbounded se#-adjoint operators on a non-
Archimedean Hilbert spac#*.We would like to find a reasonable meaning fordtaement: A and
B commute.” This cannot be done in the straightfodweay since the operatal = AB — BA may
not make sense on any vecfipe H* for example one might ha®an(4)) N D(B) = @ in which
caseBA does not have a meaning. This suggests that Weafirequivalent formulation of
commutativity for bounded se#f-adjoint operators.The spectral theorem for bourssdfel-adjoint
operatorsA andB shows that in that cageB — BA = 0 if and only if all their projections?4 andPg,
commute. We take this as our definition in the umisted case.

Definition 10.3 Two (possibly unbounded ifR# self+#-adjoint operatord andB are said to
commute if and only if all the projections in thessociated projection-valugdmeasures commute.



Remark 10.5.The spectral theorem shows that iandB commute, then all the bounded* R
#-Borel functions ofd andB also commutes. In particular, the resolvetjtéd) andr,(B) commute
and the unitary groupBxt-exp(itA) andExt-exp(itA) commute. The converse statement is also true
and this shows that the above definition of "conefiig reasonable.

Theorem 10.10 Let A andB be self#-adjoint operators on a non-Archimedean Hilbert
spacel # . Then the following three statements are equivalent:

(@) P{,py andP( ;) commute.

(b) If ImA andImy are nonzero, theRy (A)R, (B) — R, (B)Ry(A) = 0.

(c) Foralls,t € *R¥, [Ext-exp(itA)] [Ext-exp(itA)] = [Ext-exp(itA)][Ext-exp(itA)].

Proof The fact that (a) implies (b) and (c) follows frahe functional calculus. The fact that (b)
implies (a) easily follows from the formula whickpeesses the spectral projectionsidndB as
strong#-limits of the resolvents together with the factttha#-lim,_, o ic Ry4:(A) = P{‘Z‘l}. To prove

that (c) implies (a), we use some simple facts ati®Fourier transform. Lgt € S#(*]R{f), then, by
generalized Fubini's theorem [16],

Ext- f*Rgf(t) ([Ext-exp(itA)]p, )y =
= Ext- f*mgﬁf(t) (Ext— f*R,g([Ext—exp(—itA)]) df(Pf(p,l/))#) dft =

= J2myExt- [ f Q) di(PL 0, )y = 2my(0, f(AP)s.
Thus, using (c) and generalized Fubini's theoreamag
(@, fDGBY)s =

= Ext- [.pu Ext- [ £ (£) g(5) (@, [Ext- exp(—itA)][Ext- exp(isB) |y =

= (@, GBI (Ap)s

so, for allf, g € S*(*R¥), f(A)§(B) — §(B)f (4) = 0. Since the Fourier transform mag(*R)
ontoS*(*R¥) we conclude that(A)g(B) — g(B)f(4) = 0 for all f, g € S*(*R¥). But, the
characteristic functiony, ) can be expressed as the pointwidemit of a hyper infinite sequence

fn,n € "N of uniformly bounded functions such thgt € S#(*]Rif),n € *N. By the functional
calculus we get

s-#-limy_an f,(4) = PlL 1)

Similarly, we find uniformly boundeg,, € S#(*]R{C#),n € *N #-converging pointwise t@ 4 and
therefore

s-#-limy_+o gn(B) = P(Bc,d)-

Since thef,, andg,, are uniformly bounded ifR# andf;,(4)g,(B) = g(B)f,(A) for eachn € *N,
we conclude thaIP(“C‘l'b) andP(i‘d) commute which proves (a).



Conclusion

The technique of nonstandard analysis in constreicijuantum field theory in order to obtain the
standard model: ¢35 (x): by using model theoretical nonstandard analys&ANoriginally have been
approved by Peter J. Kelemen and Abraham Robirlsgr18].As pointed out in author’s papers [8],
[19], canonical NSA does not power enough in otdeabtain the standard modelp; (x): by using
the classical nonstandard analysis, see also eafparin S. Albeverio handbook [5] section 7.4 and
section 1 of this paper. In order to avoid thificliitness related to NSA we apply minimal non-
conservative extension of NSA nam&lgA” [11]. UsingNSA* Haag-Kastler axioms established for
standard model(¢*), in author’s papers [8], [19]. It is shown in tiiaper that the standard
quantum field theory modél?™),,n > 2 is Lorentz covariant see also [20].For mo@et™),,n >

2 in unphysical dimensiod = 2 Lorentz covariance has been established in L. d4eR paper [21].
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