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Abstract

Class-conditional GAN generates class-conditional data from continuous latent distribution and
categorical distribution. Typically, a class-conditional GAN can be trained only when the label,
which is the conditional categorical distribution of the target data, is given.

In this paper, we propose a novel GAN that allows the model to perform self-supervised class-
conditional data generation and clustering without knowing labels, optimal prior categorical prob-
ability, or metric function. The proposed method uses a discriminator, a classifier, and a generator.
The classifier is trained with cross-entropy loss to predict the conditional vector of the fake data.
Also, the conditional vector of real data predicted by the classifier is used to train the class-
conditional GAN. When training class-conditional GAN with this classifier, the decision boundary
of the classifier falls to the local optima where the density of the data is minimized. The proposed
method adds a classifier gradient penalty loss to the classifier loss to prevent the classifier’s deci-
sion boundary from falling into narrow a range of local optima. It regulates the gradient of the
classifier’s output to prevent the gradient near the decision boundary from becoming too large. As
the classifier gradient penalty loss weight increases, the decision boundary falls into a wider range
of local optima. It means that the sensitivity of each class can be adjusted by the weight of the
gradient penalty loss. Additionally, the proposed method updates the prior categorical probability
with the categorical probability of real data predicted by the classifier. As training progresses,
the entropy of the prior categorical probability decreases and converges according to the classifier
gradient penalty loss weight.

1 Introduction

Among recent deep generative models, generative adversarial network (GAN) [1] and diffusion model
[13] have shown state-of-the-art performance.

In general, the generative performance of diffusion models is known to be higher [14]. However,
analyzing the latent space of diffusion models can be challenging due to their high-dimensional latent
spaces and recurring inference. On the other hand, GANs have a lower-dimensional latent space and
require only a single inference for sampling, making it easier to analyze the latent space and apply
it to applications. Especially, the lower-dimensional latent space of GAN can be utilized in many
applications through generative model inversion. For example, InterFaceGAN [16] showed that the
label of data is linearly separable in latent space. It also proposed a method to continuously change
the attributes of the input face image using these characteristics. Several applications utilizing GAN
inversion can be seen in the GAN inversion survey paper [20].

Among variations of GANs, a conditional GAN [2] (CGAN) is a GAN that can generate conditional
data distribution. CGAN’s generator takes an unconditional latent vector and a conditional vector as
input and generates conditional data corresponding to the conditional vector. In general, the training
dataset for CGAN should consist of a target (real) data vector and the corresponding conditional
vector, which can be continuous, discrete, or both. Pix2Pix [17] is an example of a conditional GAN
using a continuous conditional vector. Pix2Pix takes an image that is a continuous conditional vector
and generates a corresponding conditional image. For example, Pix2Pix can be trained to take a
grayscale image as input and output a corresponding color image.

Class-conditional GAN is a conditional GAN where the conditional vector is a discrete categorical
vector. Auxiliary Classifier GAN (ACGAN) [3] and Conditional Activation GAN (CAGAN) [4] are
examples of class-conditional GANs. ACGAN and CAGAN take one or multiple discrete categorical
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vectors as input and generate data corresponding to the categorical vectors. In ACGAN, a classifier
is trained to predict the label of real data, and a generator is trained so that the fake data generated
with the discrete categorical vector is correctly classified by the classifier. CAGAN is a composite
of multiple GANs, where each GAN is trained to generate each class. Therefore, CAGAN does not
use a classifier, but only multiple adversarial losses to generate class-conditional data. However, these
class-conditional GANs can only be trained given the labels (class-conditional vector) of the data.
Therefore, these methods cannot be used with unlabeled datasets.

Unlike ACGAN or CAGAN, class-conditional InfoGAN [5] can generate class-conditional data even
if the data is not labeled. In class-conditional InfoGAN, the classifier and generator are trained so
that the conditional vector of the generated data is correctly classified by the classifier. InfoGAN has
shown that it is possible to generate class-conditional data without knowing the conditional vector of
the real data if the generator and the classifier are trained with classification loss. This is because
the generator tries to generate class-conditional data that is easy to be classified by the classifier.
For example, the MNIST handwritten digits dataset [9] consists of handwritten images of 10 different
digits, each with a proportion of 0.1. If a class-conditional InfoGAN is trained on the MNIST dataset
using a 10-dimensional categorical conditional vector, with each category assigned a probability of 0.1,
then each conditional vector will uniquely represent one of the ten digits. Although InfoGAN does
not require a conditional vector of the real data, it can only be trained given the optimal categorical
probability.

Elastic InfoGAN [12] proposed a method for class-conditional data generation even when the opti-
mal prior categorical probability is not known. In elastic InfoGAN, the categorical latent probability
is updated to minimize generator loss through gradient descent. Elastic InfoGAN also restricted each
class to have the same identity by using contrastive loss [15] with identity-preserving transformations.

In this paper, we analyze the problems of previous works and propose a novel self-supervised
(unsupervised) class-conditional GAN, Classifier Gradient Penalty GAN (CGPGAN) to address them.
CGPGAN can be used under the following conditions:

1. The labels of all data are unknown.

2. Optimal categorical latent distribution is unknown.

3. Metric to measure the distance between the data is unknown.

CGPGAN uses a discriminator, a classifier, and a generator. The classifier of CGPGAN is trained
with cross-entropy loss to predict the categorical vector of the fake data. Also, the categorical vector
of real data predicted by the classifier is used to train the class-conditional GAN. When training class-
conditional GAN with the classifier, the decision boundary of the classifier falls to the local optima
where the density of the data is minimized. This is because the density of data near the decision
boundary of the classifier should be low to minimize the classification loss. However, if the probability
density function of the data estimated by the model is lumpy, the decision boundary of the classifier
may fall on a very narrow range of local optima. CGPGAN uses a classifier gradient penalty loss
for the classifier to prevent the classifier’s decision boundary from falling into narrow a range of local
optima. It regulates the gradient of the classifier’s output to prevent the gradient near the decision
boundary from becoming too large. As the classifier gradient penalty loss weight increases, the decision
boundary falls into a wider range of local optima. It means that the sensitivity of each class can be
adjusted by the weight of the gradient penalty loss in CGPGAN. Additionally, CGPGAN updates the
prior categorical probability with the categorical probability of real data predicted by the classifier. As
training progresses, the entropy of the prior categorical probability decreases and converges according
to the classifier gradient penalty loss weight.

InfoGAN cannot be used under condition 2 because it requires an optimal categorical latent distri-
bution. Elastic InfoGAN cannot be used under condition 3 because it requires a metric for identity-
preserving transformation. Also, Elastic InfoGAN cannot adjust the sensitivity of each category, while
CGPGAN can adjust the sensitivity of each category through the classifier gradient penalty loss weight.

2 Class-conditional Data Generation

Typically, when training a GAN, everything is assumed to be continuous. It means that the data
distribution and latent distribution are assumed to be continuous, and the generator and discriminator
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Figure 1: Left plot: Two-dimensional dataset consisting of four Gaussian clusters. The centers and
probabilities of each cluster are (−1, 2), (0,−2), (1,−1), (2, 1) and [0.1, 0.2, 0.3, 0.4], respectively. The
standard deviation for all clusters is 0.3. Right plot: Samples generated by GAN trained only with a
continuous latent distribution.

of GAN are assumed to be continuous functions (in general, deep learning models are differentiable
continuous functions for error backpropagation). However, the data distribution is not necessarily
continuous. When data distribution includes a discrete part and latent distribution is continuous, a
sufficiently complex deep generative model can approximate the discrete part of the data distribution.
However, approximating the discrete part of the data distribution is still not easy for most deep
generative models, which is a continuous function.

The left plot of Fig. 1 shows a data distribution example consisting of four Gaussian clusters.
There is no perfect discrete part in this data distribution (i.e., the probability density function is still
continuous), but it is easier and better to represent this data distribution with a 4-dimensional discrete
categorical latent distribution.

The right plot of Fig. 1 shows generated data with GAN trained only with a continuous latent
distribution. One can see that the model generates lines connecting the clusters. This is because the
latent distribution is continuous, and the generator is a continuous function, making it difficult to
represent the discrete part of the data distribution. As training progresses, the probability density
of the line connecting the clusters decreases, but it requires a long training period, and it is hard to
say that the continuous latent distribution correctly represents data distribution (i.e., entangled data
representation).

For datasets with discrete parts, using a discrete latent distribution is more appropriate for model
training and disentangled data representation. Class-conditional generative models, such as ACGAN
[3] or CAGAN [4], take both continuous latent distribution and discrete categorical latent distribution
as inputs and generate class-conditional data distribution. Training model with discrete categorical
latent random variable allows the model to represent discrete parts of the dataset appropriately. How-
ever, ACGAN or CAGAN can only be trained when class-conditional vectors (labels) of real data are
given.

Class-conditional InfoGAN [5] can perform class-conditional data generation and inversion (cluster-
ing) by maximizing mutual information of generator input categorical latent distribution and classifier
output distribution, even if the data is not labeled. The following equations show losses for (class-
conditional) InfoGAN.

Lq = λclsLcls (1)

Ld = Ld
adv (2)

Lg = Lg
adv + λclsLcls (3)

Lcls = Ez,cf [−cf · log(Q(G(z, cf )))] (4)

Ld
adv = Ex,z,cf [Ad(D(x), D(G(z, cf )))] (5)

Lg
adv = Ez,cf [Ag(D(G(z, cf )))] (6)

In Eqs. 1, 2, and 3, Lq, Ld, and Lg represent classifier loss, discriminator loss, and generator
loss of InfoGAN, respectively. Lcls and λcls represent classification loss and classification loss weight,
respectively. In Eqs. 4, 5 and 6, Q, D, and G represent classifier, discriminator, and generator,
respectively. In Eq. 4, Lcls is categorical cross entropy between categorical latent vector c and

3



predicted probability of generated data Q(G(z, cf )). cf and z represent the categorical latent vector
and continuous latent vector sampled from the categorical latent distribution C and continuous latent
distribution Z, respectively. Operation ”·” represents the inner product. In Eqs. 5 and 6, Ad and Ag

represent adversarial loss function [6] for GAN training. In InfoGAN, a classifier Q can share hidden
layers with a discriminator D for efficiency.

From the above equations, one can see that a classifier Q and a generator G are trained to minimize
classification loss Lcls. InfoGAN has shown that, given an appropriate categorical latent distribution
C, it can perform class-conditional data generation and clustering (inversion) even when the data
is unlabeled. However, InfoGAN still needs prior probability of categorical latent distribution C.
Without knowing the appropriate categorical latent distribution C, InfoGAN cannot perform class-
conditional data generation and clustering appropriately. Additionally, InfoGAN’s generator is trained
with both adversarial loss and classification loss like ACGAN. It means that InfoGAN shares the same
problems as ACGAN: adversarial loss and classification loss conflict with each other in generator loss,
resulting in a decrease in the generative performance of the model. Specifically, the density of fake
data is always lower than the density of real data near the decision boundary of classifier Q. This is
because the generator is trained to move the generated data away from the decision boundary due to
the classification loss.

Elastic InfoGAN [12] proposed a method for class-conditional data generation when the prior
probability of a categorical latent distribution is not known. In Elastic InfoGAN, the categorical
latent distribution probability is updated to minimize generator loss through gradient descent. To
allow the gradient to flow up to a categorical latent distribution probability, Elastic InfoGAN uses
Gumbel softmax [18, 19]. Elastic InfoGAN also used contrastive loss [15] to ensure that each class has
the same identity. Contrastive loss allows augmented data with identity-preserving transformations to
be classified in the same class. By training the classifier with contrastive loss, generators are constrained
to generate data with the same identity if they are of the same class. For example, Elastic InfoGAN has
used rotation, zoom, flip, crop, and gamma change as identity-preserving transformations for image
data.

However, there are still several problems in Elastic InfoGAN. First, contrastive loss can only be used
if a good transformation that preserves the identity of the data is known. Therefore, it cannot be used
in data domains where good identity-preserving transformations are not known. Second, clustering
only can be performed based on identity-preserving transformations. For example, on the MNIST
handwritten digits dataset, Elastic InfoGAN will consider digits 6 and 9 as the same class if 180-
degree rotation is used for identity-preserving transformation. Also, like InfoGAN, Elastic InfoGAN
uses classification loss for the generator like ACGAN, which causes conflict between adversarial loss
and classification loss and decreases the generative performance of the model.

3 Classifier Gradient Penalty GAN

In this paper, we introduce Classifier Gradient Penalty GAN (CGPGAN) which can perform class-
conditional data generation and clustering under more general conditions than previous works. CGP-
GAN can be used under the following very general conditions:

1. The labels of all data are unknown.

2. Optimal categorical latent distribution is unknown.

3. Metric to measure the distance between the data is unknown.

InfoGAN cannot be used under condition 2 because it requires an optimal categorical latent dis-
tribution, and Elastic InfoGAN cannot be used under condition 3 because it requires a metric for
identity-preserving transformation.

A CGPGAN consists of a discriminator D, classifier Q, and (class-conditional) generator G. The
generator G takes dz-dimensional continuous latent distribution and dc-dimensional categorical latent
distribution as inputs to generate class-conditional data. The classifier Q is trained to predict the label
of the generated data, and the label of the real data predicted by the classifier is used for adversarial
training of the discriminator and generator for class-conditional data generation. The generator G
and discriminator D are trained with class-conditional GAN loss to generate class-conditional data.
Instead of ACGAN loss [3], CGPGAN uses CAGAN loss [4] for better generative performance.
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The following equations show the losses for CGPGAN.

Lq = λclsLcls + λcregLcreg (7)

Ld = Ld
adv (8)

Lg = Lg
adv (9)

Lcreg = Ez,cf

[
∥∇G(z,cf )

(
(1−Q(G(z, cf )) · cf )2

)
∥22
]

(10)

Ld
adv = Ex,z,cf [Ad(D(x) · argmax onehot(Q(x)), D(G(z, cf )) · cf )] (11)

Lg
adv = Ez,cf [Ag(D(G(z, cf )) · cf )] (12)

In Eq. 7, λcreg and Lcreg represent classifier gradient penalty loss weight and classifier gradient
penalty loss, respectively. Classification loss Lcls is cross-entropy loss, which is the same as InfoGAN’s
classification loss (Eq. 4). In Eq. 9, one can see that there is no classification loss Lcls in generator
loss Lg. Since CGPGAN’s generator is trained with adversarial losses only, there is no conflict between
Lcls and Lg

adv as in InfoGAN.
Eqs. 11 and 12 show CAGAN adversarial losses for CGPGAN. Since the true label cf of the fake

data G(z, cf ) is known, the adversarial loss for fake data in CGPGAN is the same as CAGAN loss.
However, the label of the real data x is unknown. Instead, in CGPGAN, argmaxonehot(Q(x)) is used
as the label of the real data x. The argmaxonehot function replaces the maximum value of the vector
with 1 and all other values with 0 (e.g., argmax onehot([0.2, 0.5, 0.3]) = [0.0, 1.0, 0.0]).

Eq. 10 shows classifier gradient penalty loss for CGPGAN. Lcreg is the gradient of cross-entropy
loss Lcls with respect to generated data G(z, cf ). The classification loss Lcls can be minimized by
simply classifying the generated data well, but it can also be minimized by increasing the slope of the
decision boundary or by moving the decision boundary near the generated data with lower density.
Therefore, when training the classifier with cross-entropy loss, we assumed that the decision boundary
will naturally move to the local optimum which minimizes the density of the generated data, and the
slope of the decision boundary will increase. If the slope of the decision boundary is very large and
the probability density function of the generated data is lumpy, the decision boundary will converge
to a local optimum in a very narrow region that minimizes the density of the data. To avoid classifier
decision boundary converging local optimum in a narrow region that minimizes the probability density
of generated data P (G(X,C)), CGPGAN uses a classifier gradient penalty loss Lcreg. By relaxing the
slope of the classifier’s decision boundary, the decision boundary can converge to a local optimum in
a wider region. One can see that the classifier gradient penalty loss Lcreg becomes higher when the
generated data point G(z, cf ) is near the decision boundary in Eq. 10. In the classifier, the larger the
classifier gradient penalty loss Lcreg, the more the decision boundary converges to the local optimum
in a larger region. Therefore, CGPGAN can adjust the sensitivity of each category (cluster) through
the weight of the classifier gradient penalty loss λcreg.

Additionally, CGPGAN updates the probability of the categorical latent distribution P (C) during
the training with Ex [Q(x)] (i.e., P (C) ≈ Ex [Q(x)]). Through this approximation, CGPGAN can
approximate P (C) without knowing the optimal prior probability. However, updating P (C) early in
the training can make CGPGAN converge to a trivial solution (i.e., one category has a probability of 1
and the other has a probability of 0). To avoid converging a trivial solution and ensure that the ratio
of real to fake data in each category is similar, CGPGAN normalizes Q(x) by the batch distribution
only at the beginning of training.

Algo. 1 shows the training step of CGPGAN.
The training step of CGPGAN requires X (data random variable), Z (continuous latent random

variable), C (categorical latent random variable), D (discriminator), Q (classifier), and G (generator).
In lines 1-3, the sample function represents the sampling function from a random variable. x (real

data point), z (continuous latent vector), and cf (fake categorical latent vector) are sampled from X,
Z, and C, respectively.

In line 4, G generates fake data x′ with z and cf . In lines 5 and 6, D and Q takes a fake data point
x′ as input and outputs af (fake adversarial vector) and c′f (fake categorical latent vector prediction),
respectively. Similarly, in lines 7-8, D and Q take a real data point x as input and outputs ar (real
adversarial vector) and c′r (real categorical latent vector prediction).
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Algorithm 1 Algorithm to train CGPGAN

Require: X,Z,C,D,Q,G
▷ update D and Q

1: x← sample(X)
2: z ← sample(Z)
3: cf ← sample(C)
4: x′ ← G(z, cf )

5: ar ← D(x)
6: c′r ← Q(x)
7: af ← D(x′)
8: c′f ← Q(x′)

9: if early in training then
10: c′r = prob normalize(c′r)
11: end if
12: cr ← argmax onehot(c′r)

13: Lcls ← −cf · log(c′f )
14: Lcreg ← ∥gradient((1− c′f · cf )2, x′)∥22

15: Ld ← Ad(ar · cr, af · cf )
16: Lq ← λclsLcls + λcregLcreg

17: D ← minimize(D,Ld)
18: Q← minimize(Q,Lq)

▷ update G
19: z ← sample(Z)
20: cf ← sample(C)
21: x′ ← G(z, cf )
22: af ← D(x′)

23: Lg ← Ag(af · cf )

24: G← minimize(G,Lg)

25: P (C)← update(P (C), c′r) ▷ update P (C)
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In lines 9-11, the real categorical latent vector prediction c′r is normalized for stable training only
at the beginning of the training. In line 10, the prob normalize function forces the real categorical
latent vector cr to approach a uniform distribution. This ensures that the ratio of real data to fake
data in each category is similar, allowing for stable training in the early stages of CGPGAN training.

prob normalize(c) = c− batch average(c) +
1

dc
(13)

Eq. 13 shows the function to normalize the categorical latent vectors c, where c is a b×dc matrix, and
b represents the batch size. batchaverage is a function that computes the element-wise average vector of
c. Therefore, batchaverage(c) is dc-dimensional vector. One can see that batchaverage(probnormalize(c))
is always [ 1

dc
, 1
dc
, ..., 1

dc
]. However, the prob normalize function restricts the representation of the real

categorical latent vector cr, so it is disabled after some training. In line 12, real categorical latent
vector cr is calculated from c′r.

In line 13, Lcls represents classification loss for cf prediction. Lcls is categorical cross-entropy loss.
In line 14, gradient(y, x) function calculates gradient dy/dx.

In lines 15 and 16, Ld and Lq represent discriminator loss and classifier loss, respectively. Ad

represents GAN adversarial loss functions for the discriminator. When training GAN with R1 or R2
regularization [7], we recommend using R2 regularization because the true label of generated data is
known, unlike real data.

In lines 17 and 18, discriminator D and classifier Q are updated to minimize its loss. In lines 19-24,
generator G is updated to minimize its loss.

In line 25, P (C) is updated with predicted real categorical latent vector c′r. The update function
can be a simple moving average, an exponential moving average, or others. In CGPGAN, P (C) is
initialized with [ 1

dc
, 1
dc
, ..., 1

dc
], and c′r is normalized at the beginning of the training (line 10). Thus,

at the beginning of training, P (C) will always be [ 1
dc
, 1
dc
, ..., 1

dc
]. This makes C to not converge to a

trivial solution.

4 Experiments

We trained the models to generate two-dimensional Gaussian clusters, MNIST dataset [9], and AFHQ
dataset [21]. In Gaussian clusters experiments, we compare the performance of Vanilla GAN [1],
InfoGAN [5], Elastic InfoGAN [12], and our proposed CGPGAN. In MNIST experiments, we com-
pared the clustering of CGPGAN according to classifier gradient penalty loss weight λcreg. In AFHQ
experiments, we trained a CGPGAN to generate the AFHQ dataset.

4.1 Gaussian Clusters Experiments

In Gaussian clusters experiments, we used the dataset consisting of four 2-dimensioanl Gaussian clus-
ters as a training dataset. The left plot of Fig. 1 shows data distribution for the experiments. One
can see that there are four Gaussian clusters with different probabilities in data distribution. The
generator, discriminator, and classifier consisting of four fully connected hidden layers with 512 units
were used for training. The following hyperparameters were used for experiments.

Z ∼ N(0, I256)

optimizer = AdamW


learning rate = 0.0001

weight decay = 0.0001

β1 = 0.0

β2 = 0.99


batch size = 16

λr2 = 1
train step per epoch = 2000

epoch = 100
activation function = Leaky ReLU

λr2 represents R2 regularization [7] loss weight (λr2Lr2 = λr2Ez,cf

[
∥∇G(z,cf )(D(G(z, cf )) · cf )∥22

]
).
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Figure 2: Vanilla GAN (trained only with adversarial loss) is trained with both continuous la-
tent distribution and categorical latent distribution. Left plot: 1-dimensional categorical latent
distribution (P (C) = [1.0]). Right plot: 4-dimensional optimal categorical latent distribution
(P (C) = [0.1, 0.2, 0.3, 0.4]).

Figure 3: InfoGAN trained with 4-dimensional optimal categorical latent distribution (P (C) =
[0.1, 0.2, 0.3, 0.4]). Eight times repeated.

Classification loss weight λcls = 1.0 was used for InfoGAN, elastic InfoGAN, and CGPGAN.
We used exponential moving average with decay rate = 0.999 as update function for CGPGAN. In
InfoGAN, Elastic InfoGAN, and CGPGAN, classifier Q and discriminator D do not share hidden
layers. Equalized learning rate [8] was used for all trainable weights. Also, exponential moving average
[8] with decayrate = 0.999 was used for generator weights. In CGPGAN and Elastic InfoGAN, dc = 16
was used, and P (C) was updated after epoch 30 (i.e., in CGPGAN, early in training in line 9 of Algo.
1 was True until epoch 30). Since we assumed that there is no good metric to measure the distance
between data, we did not use identity preserving transformations in Elastic InfoGAN. Only gradient
descent on a categorical latent distribution with Gumbel softmax was used for Elastic InfoGAN.

Fig. 2 shows samples generated with vanilla GAN (trained only with adversarial loss). The left
plot of Fig. 2 shows data generated by a vanilla GAN with a one-dimensional categorical latent
distribution. Since there is no discrete part in the latent distribution, the vanilla GAN generates lines
between clusters. This shows that when training a GAN with only continuous latent vectors, the latent
space is entangled and not suitable for representing data with discrete parts.

The right plot of Fig. 2 shows data generated by a vanilla GAN trained with optimal categorical
latent distribution (P (C) = [0.1, 0.2, 0.3, 0.4]). One can see that the generator of vanilla GAN did not
use the information of categorical latent distribution, and training was exclusively performed only with
a continuous latent distribution. Therefore, the generator output was also continuous, which caused a
line generation between each cluster. This means that even if the generator takes a discrete categorical
latent distribution as input, additional loss is required to make the generator use it meaningful.

Fig. 3 shows data generated by InfoGAN trained with the optimal categorical latent distribution.
Unlike the Vanilla GAN, one can see that the model generates class-conditional distribution with the
categorical latent distribution. However, one can still see the problems of InfoGAN in this figure.

The first problem was that even though the categorical latent distribution was optimal, sometimes
each conditional vector was not mapped to the correct cluster. We repeated the InfoGAN training
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Figure 4: Elastic InfoGAN trained with different temperatures and learning rates. Contrastive loss
was not used. Row 1: t = 0.1, Row 2: t = 0.3, Row 3: t = 1.0, Column 1: lr = 0.0001, Column 2:
lr = 0.0003, Column 3: lr = 0.001. Categories with a probability of less than 1% were omitted.

Figure 5: CGPGAN trained with different λcreg. Categories with a probability of less than 1%
were omitted. Plot 1: λcreg = 0.0, P (C) = [0.2003, 0.3029, 0.0994, 0.3973]. Plot 2: λcreg = 1.0,
P (C) = [0.1973, 0.0956, 0.4054, 0.3018]. Plot 3: λcreg = 10.0, P (C) = [0.0992, 0.4002, 0.5006]. Plot 4:
λcreg = 100.0, P (C) = [0.9002, 0.0998].

eight times, one can see that in some iterations, some classes were assigned correctly, but never all
classes were assigned correctly. For example, in the second and fourth plots, class 3 was assigned
correctly. In the fifth plot, classes 0 and 1 were assigned correctly. In the sixth plot, classes 1 and
3 were assigned correctly. However, there was never an iteration when all four classes were assigned
correctly. This is because when the decision boundary of the InfoGAN classifier is not initialized very
ideally, the decision boundary of the classifier converges to a local optimum, resulting in inaccurate
cluster assignments. And since the probability of the classifier being initialized very ideally is very
low, InfoGAN was not able to assign all classes correctly.

The second problem is that the generator does not generate data near the decision boundary of
the classifier. In Fig. 3, one can see that the generator of InfoGAN does not generate data near the
decision boundary of the classifier. This is because classification loss and adversarial loss conflict with
the generator of InfoGAN.

Fig. 4 shows data generated by elastic InfoGAN. We tested several combinations of hyperparame-
ters (temperature t and learning rate for the categorical latent distribution lr), but Elastic InfoGAN
could not generate class-conditional data correctly.

Fig. 5 shows samples generated by CGPGAN trained with different λcreg. In the first and second
plots of Fig. 5, each category is assigned to each cluster correctly. Because the probability density
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Figure 6: CGPGAN trained with λcreg = 0.1. Categories with a probability of less than 1% were
omitted. Eight times repeated.

function of the generated data distribution is smooth due to the simplicity of the data and small model,
each class is assigned correctly, even though there was no classifier gradient penalty in the first plot.
Also, the probability of each category is also very accurate, and there was a natural division between
clusters, unlike InfoGAN. This is because CGPGAN’s generator is only trained with adversarial losses
of CAGAN, not classification loss, so there is no conflict between those losses. In the third and fourth
plots, multiple clusters were assigned to the same category. This is because λcreg was too high, causing
the classifier to converge to a local optimum in a wide region. This shows that CGPGAN can adjust
the sensitivity of each category via λcreg.

Fig. 6 shows the results of eight iterations of CGPGAN training with λcreg = 0.1. One can see
that CGPGAN is generating class-conditional data correctly over multiple iterations.

4.2 MNIST Experiments

In this experiment, we trained CGPGAN to generate the MNIST handwritten digits dataset [9]. The
MNIST dataset consists of 10 digits from 0 to 9, with each digit representing about 10% of the total.

The generator, discriminator, and classifier simply consist of CNNs. learningrate = 0.001, dc = 32,
epoch = 300 were used for the experiments. The categorical latent distribution of CGPGAN was
updated after epoch 100. Other hyperparameters are the same as in section 4.1. We used FID [10],
precision & recall [11] for generative performance evaluation. All evaluation methods used the Inception
model. 32k training samples were used for generative performance evaluation.

Figs. 7, 8, 9,10 show the difference in class-conditional data generation of CGPGAN according to
λcreg.

First, in Fig. 7, since λcreg was too low, the classifier decision boundary converged on a local
optimum in a narrow region. Thus, some digits were split into multiple categories, but it does not
mean that CGPGAN performed an incorrect class-conditional data generation. If we ignore the human
knowledge of each digit, digit 2 with a loop and without a loop, and digit 7 with a horizontal line in
the center and without a horizontal line can be considered different categories. In Fig. 7, the digit 2
was divided into categories 4 (column 4) and 11 (column 11). However, this division is still meaningful.
One can see that the digit 2 in category 4 has a loop, but category 11 has no loop. Also, the sum of
the probabilities of those two categories is 0.074 + 0.0274 = 0.1014, which is similar to the proportion
of the digit 2 in the MNIST digits dataset. Digit 7 was divided into categories 6 and 15. One can see
that the digit 7 in category 6 does not have a horizontal line, but category 15 has it. The sum of the
probability of those two categories is 0.0902 + 0.0138 = 0.1040, which is about 10%. This shows that
the optimal clustering (and class-conditional data generation) may depend on the sensitivity of each
cluster.

As λcreg increases, the classifier decision boundary converges to the local optimum over a wider
region. In Fig. 10, λcreg = 120 was used for training. One can see that multiple digits are clustered
into one category, except for digit 1. For example, digits 3, 5, and 8 were clustered in category 2. Also,
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Figure 7: MNIST generated data with λcreg = 50. Each row has the same continu-
ous latent vector, and each column has the same categorical latent vector. Out of dc cate-
gories, those with a probability less than 1% were omitted. The probabilities for each category
are [0.0975, 0.1059, 0.0384, 0.0740, 0.0974, 0.0902, 0.0395, 0.0601, 0.0657, 0.0385, 0.0274, 0.0563, 0.0504,
0.1002, 0.0138, 0.0447]. FID: 1.3140, precision: 0.8158, recall: 0.6763.

Figure 8: MNIST generated data with λcreg = 70. Each row has the same continu-
ous latent vector, and each column has the same categorical latent vector. Out of dc cate-
gories, those with a probability less than 1% were omitted. The probabilities for each category
are [0.0975, 0.1051, 0.0993, 0.0765, 0.0901, 0.0454, 0.0988, 0.0964, 0.0668, 0.0270, 0.1012, 0.0957]. FID:
1.4724, precision: 0.8122, recall: 0.6728.
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Figure 9: MNIST generated data with λcreg = 100. Each row has the same continu-
ous latent vector, and each column has the same categorical latent vector. Out of dc cate-
gories, those with a probability less than 1% were omitted. The probabilities for each category
are [0.1060, 0.0467, 0.0359, 0.1566, 0.0982, 0.1014, 0.0900, 0.1064, 0.0522, 0.0706, 0.0395, 0.0965]. FID:
1.3847, precision: 0.8084, recall: 0.6802.

Figure 10: MNIST generated data with λcreg = 120. Each row has the same continuous
latent vector, and each column has the same categorical latent vector. Out of dc categories,
those with a probability less than 1% were omitted. The probabilities for each category are
[0.1013, 0.2940, 0.0491, 0.0908, 0.0586, 0.1004, 0.0947, 0.2110]. FID: 1.6374, precision: 0.8076, recall:
0.6734.
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Figure 11: The entropy of a categorical latent distribution over epochs.

digits 4 and 9 were clustered in category 8. It means that the distance between those digits is closer
than other digits for the model. The digit 1 was divided into two categories based on whether it was
tilted or not in Figs. 7, 8, 9, 10. It means that for the model, it is easy to distinguish between a tilted
digit 1 and a vertical digit 1.

Fig. 11 shows the entropy of a categorical latent distribution over epochs. Entropy was calculated
every 10 epochs. One can see that the larger λcreg is, the faster the entropy decreases.

In this experiment, we showed that CGPGAN can properly generate the class-conditional data of
the MNIST handwritten digit by adjusting λcreg. In particular, when λcreg is low so the sensitivity of
each cluster is high, CGPGAN found that there are different patterns within some digits (e.g., digits 1,
2, and 7 in Fig. 7). When λcreg is high so the sensitivity of each cluster is low, CGPGAN found that
some digits have a similar pattern (e.g., digits 3, 5, 8, and 4, 9). This means that CGPGAN can generate
class-conditional data by adjusting the sensitivity of each cluster according to λcreg. Separately, all
three CGPGANs have good unconditional generative performance from FID and precision & recall.

4.3 AFHQ Experiments

In this section, we trained CGPGAN to generate AFHQ dataset [21]. The AFHQ dataset consists of
animal face images. We resized the images to 256× 256 resolution and used them for training.

The following hyperparameters were used to train the model.

Z ∼ N(0, I512)

optimizer = AdamW


learning rate = 0.003

weight decay = 0.0001

β1 = 0.0

β2 = 0.99


batch size = 8
λr2 = 10.0
epoch = 150
λcreg = 50.0

dc = 16
decay rate = 0.999

activation function = Leaky ReLU

The model simply consists of CNN residual blocks, and P (C) was updated after epoch 50.
Fig. 12 shows generated samples of CGPGAN trained with the AFHQ dataset. In Fig. 12, each

row has the same continuous latent vector, and each column has the same categorical latent vector.
One can see that each column has similar patterns. For example, the animals in the second column
have an overall yellow fur, while the animals in the third column have striped or spotted patterns. The
animals in the seventh column have black muzzles, and the animals in the twelfth column have black
fur. In addition to these, each column exhibits a similar pattern.
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Figure 12: AFHQ dataset generated with CGPGAN. Each row has the same continuous la-
tent vector, and each column has the same categorical latent vector. Out of dc categories,
those with a probability less than 1% were omitted. The probabilities for each category
are [0.0196, 0.1668, 0.0408, 0.1252, 0.2575, 0.0504, 0.05388, 0.0624, 0.0220, 0.0260, 0.0706, 0.0757, 0.0266].
FID: 10.3326, precision: 0.7183, recall: 0.3062.
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5 Conclusion

In this paper, we introduced CGPGAN, a self-supervised class-conditional GAN. Unlike previous works,
CGPGAN does not require a label of data, optimal categorical latent distribution, and a good metric
to calculate the distance between data. Therefore, CGPGAN can be used in more general situations
regardless of the data domain.

CGPGAN uses CAGAN loss, classification loss, and classifier gradient penalty loss. Also, the
categorical latent distribution is updated to approximate the classifier output distribution of the real
data. The classifier gradient penalty loss weight of CGPGAN controls the sensitivity of each cluster.
The higher the classifier gradient penalty loss weight, the wider the decision boundary of the classifier
converges to the local optima, so the sensitivity of each cluster decreases. The entropy of the categorical
latent distribution gradually decreases and converges to the appropriate value according to the classifier
gradient penalty loss weight.

CGPGAN showed better performance than Vanilla GAN, InfoGAN, and Elastic InfoGAN in Gaus-
sian cluster generation experiments. We also showed that CGPGAN could perform self-supervised
class-conditional data generation on the MNIST and AFHQ experiments.
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